首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using a mass-spectrometric disequilibrium technique, net uptake of HCO(3)(-) and CO(2) during steady-state photosynthesis was studied in whole cells and chloroplasts from the green algae Tetraedron minimum and Chlamydomonas noctigama, grown in air enriched with 5% (v/v) CO(2) (high-CO(2) cells) or in air [0.035% (v/v) CO(2); low-CO(2) cells]. High- and low-CO(2) cells of both species were able to take up CO(2) and HCO(3)(-), with maximum rates being largely unaffected by the growth conditions. High- and low-CO(2) cells of T. minimum showed a pronounced preference for HCO(3)(-) while the rates of net HCO(3)(-) and CO(2) uptake were similar in C. noctigama. The most significant differences between high- and low-CO(2) cells of the two species were the 5- to 6-fold increase in the apparent affinities of net HCO(3)(-) uptake and CO(2) uptake after acclimation to air. The high-affinity uptake systems for inorganic carbon were almost completely induced within 4 h in both algae. Photosynthetically active chloroplasts isolated from both species were also able to take up CO(2) and HCO(3)(-). As in whole cells, HCO(3)(-) was the dominant carbon species taken up by chloroplasts from T. minimum while CO(2) and HCO(3)(-) were taken up at similar rates in plastids from C. noctigama. In addition, high-affinity uptake systems for CO(2) and HCO(3)(-) were detected in chloroplasts preparations after acclimation of the parent cells to air. Isolation of ribulose-1,5-bisphosphate carboxylase/oxygenase revealed K(m) values of 13 and 42 micro M CO(2) for the enzymes from T. minimum and C. noctigama, respectively. These results are consistent with the presence of inducible and energy-dependent high-affinity HCO(3)(-) and CO(2) uptake systems associated with chloroplasts, indicating that these organelles play an important role in the CO(2)-concentrating mechanism.  相似文献   

2.
3.
Cyanobacteria have evolved an extremely effective single-cell CO(2) concentrating mechanism (CCM). Recent molecular, biochemical and physiological studies have significantly extended current knowledge about the genes and protein components of this system and how they operate to elevate CO(2) around Rubisco during photosynthesis. The CCM components include at least four modes of active inorganic carbon uptake, including two bicarbonate transporters and two CO(2) uptake systems associated with the operation of specialized NDH-1 complexes. All these uptake systems serve to accumulate HCO(3)(-) in the cytosol of the cell, which is subsequently used by the Rubisco-containing carboxysome protein micro-compartment within the cell to elevate CO(2) around Rubisco. A specialized carbonic anhydrase is also generally present in this compartment. The recent availability of at least nine cyanobacterial genomes has made it possible to begin to undertake comparative genomics of the CCM in cyanobacteria. Analyses have revealed a number of surprising findings. Firstly, cyanobacteria have evolved two types of carboxysomes, correlated with the form of Rubisco present (Form 1A and 1B). Secondly, the two HCO(3)(-) and CO(2) transport systems are distributed variably, with some cyanobacteria (Prochlorococcus marinus species) appearing to lack CO(2) uptake systems entirely. Finally, there are multiple carbonic anhydrases in many cyanobacteria, but, surprisingly, several cyanobacterial genomes appear to lack any identifiable CA genes. A pathway for the evolution of CCM components is suggested.  相似文献   

4.
沉水植物光合作用的特点与研究进展   总被引:18,自引:0,他引:18  
沉水植物属于高等植物,由陆生被子植物演化而来,它们在形态、光合生态生理方面对水下生活环境发生了一系列适应性变化。沉水植物的光合作用受水体中光、温度、pH和无机碳等影响,本文对此进行了综述。水中低CO2扩散率以及细胞外较厚的扩散层阻碍了沉水植物净碳的吸收,因此,沉水植物光合作用速率受到无机碳供应的限制。为获得无机碳,沉水植物在形态结构和生理生化上表现一定的特性,包括薄的叶片层并含有叶绿体以及对HCO3-利用的能力,拟C4型和CAM型光合代谢途径的选择。这些是沉水植物碳浓缩机制的具体体现。  相似文献   

5.
The oceans globally constitute an important sink for carbon dioxide (CO(2)) due to phytoplankton photosynthesis. However, the marine environment imposes serious restraints to carbon fixation. First, the equilibrium between CO(2) and bicarbonate (HCO(3)(-)) is pH dependent, and, in normal, slightly alkaline seawater, [CO(2)] is typically low (approximately 10 mum). Second, the rate of CO(2) diffusion in seawater is slow, so, for any cells unable to take up bicarbonate efficiently, photosynthesis could become carbon limited due to depletion of CO(2) from their immediate vicinity. This may be especially problematic for those dinoflagellates using a form II Rubisco because this form is less oxygen tolerant than the usually found form I enzyme. We have identified a carbonic anhydrase (CA) from the free-living marine dinoflagellate Lingulodinium polyedrum that appears to play a role in carbon acquisition. This CA shares 60% sequence identity with delta-class CAs, isoforms so far found only in marine algae. Immunoelectron microscopy indicates that this enzyme is associated exclusively with the plasma membrane. Furthermore, this enzyme appears to be exposed to the external medium as determined by whole-cell CA assays and vectorial labeling of cell surface proteins with (125)I. The fixation of (14)CO(2) is strongly pH dependent, suggesting preferential uptake of CO(2) rather than HCO(3)(-), and photosynthetic rates decrease in the presence of 1 mm acetazolamide, a non-membrane-permeable CA inhibitor. This constitutes the first CA identified in the dinoflagellates, and, taken together, our results suggest that this enzyme may help to increase CO(2) availability at the cell surface.  相似文献   

6.
Marine diatoms, the major primary producer in ocean environment, are known to take up both CO(2) and HCO(3)(-) in seawater and efficiently concentrate them intracellularly, which enable diatom cells to perform high-affinity photosynthesis under limiting CO(2). However, mechanisms so far proposed for the inorganic carbon acquisition in marine diatoms are significantly diverse despite that physiological studies on this aspect have been done with only limited number of species. There are two major hypotheses about this; that is, they take up and concentrate both CO(2) and HCO(3)(-) as inorganic forms, and efficiently supply CO(2) to Rubisco by an aid of carbonic anhydrases (biophysical CO(2)-concentrating mechanism: CCM); and as the other hypothesis, biochemical conversion of HCO(3)(-) into C(4) compounds may play a major role to supply concentrated CO(2) to Rubisco. At moment however, physiological evidence for these hypotheses were not related well to molecular level evidence. In this study, recent progresses in molecular studies on diatom-carbon-metabolism genes were related to the physiological aspects of carbon acquisition. Furthermore, we discussed the mechanisms regulating CO(2) acquisition systems in response to changes in pCO(2). Recent findings about the participation of cAMP in the signaling pathway of CO(2) concentration strongly suggested the occurrences of mammalian-type-signaling pathways in diatoms to respond to changes in pCO(2). In fact, there were considerable numbers of putative adenylyl cyclases, which may take part in the processes of CO(2) signal capturing.  相似文献   

7.
The temperature response of C(3) and C(4) photosynthesis   总被引:1,自引:0,他引:1  
We review the current understanding of the temperature responses of C(3) and C(4) photosynthesis across thermal ranges that do not harm the photosynthetic apparatus. In C(3) species, photosynthesis is classically considered to be limited by the capacities of ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco), ribulose bisphosphate (RuBP) regeneration or P(i) regeneration. Using both theoretical and empirical evidence, we describe the temperature response of instantaneous net CO(2) assimilation rate (A) in terms of these limitations, and evaluate possible limitations on A at elevated temperatures arising from heat-induced lability of Rubisco activase. In C(3) plants, Rubisco capacity is the predominant limitation on A across a wide range of temperatures at low CO(2) (<300 microbar), while at elevated CO(2), the limitation shifts to P(i) regeneration capacity at suboptimal temperatures, and either electron transport capacity or Rubisco activase capacity at supraoptimal temperatures. In C(4) plants, Rubisco capacity limits A below 20 degrees C in chilling-tolerant species, but the control over A at elevated temperature remains uncertain. Acclimation of C(3) photosynthesis to suboptimal growth temperature is commonly associated with a disproportional enhancement of the P(i) regeneration capacity. Above the thermal optimum, acclimation of A to increasing growth temperature is associated with increased electron transport capacity and/or greater heat stability of Rubisco activase. In many C(4) species from warm habitats, acclimation to cooler growth conditions increases levels of Rubisco and C(4) cycle enzymes which then enhance A below the thermal optimum. By contrast, few C(4) species adapted to cooler habitats increase Rubisco content during acclimation to reduced growth temperature; as a result, A changes little at suboptimal temperatures. Global change is likely to cause a widespread shift in patterns of photosynthetic limitation in higher plants. Limitations in electron transport and Rubisco activase capacity should be more common in the warmer, high CO(2) conditions expected by the end of the century.  相似文献   

8.
The effects of pH-induced changes in seawater carbonate chemistry on inorganic carbon (C(i)) acquisition and domoic acid (DA) production were studied in two potentially toxic diatom species, Pseudo-nitzschia multiseries and Nitzschia navis-varingica, and the non-toxic Stellarima stellaris. In vivo activities of carbonic anhydrase (CA), photosynthetic O(2) evolution and CO(2) and HCO(3)(-) uptake rates were measured by membrane inlet MS in cells acclimated to low (7.9) and high pH (8.4 or 8.9). Species-specific differences in the mode of carbon acquisition were found. While extracellular carbonic anhydrase (eCA) activities increased with pH in P. multiseries and S. stellaris, N. navis-varingica exhibited low eCA activities independent of pH. Half-saturation concentrations (K(1/2)) for photosynthetic O(2) evolution, which were highest in S. stellaris and lowest in P. multiseries, generally decreased with increasing pH. In terms of carbon source, all species took up both CO(2) and HCO(3)(-). K(1/2) values for inorganic carbon uptake decreased with increasing pH in two species, while in N. navis-varingica apparent affinities did not change. While the contribution of HCO(3)(-) to net fixation was more than 85% in S. stellaris, it was about 55% in P. multiseries and only approximately 30% in N. navis-varingica. The intracellular content of DA increased in P. multiseries and N. navis-varingica with increasing pH. Based on our data, we propose a novel role for eCA acting as C(i)-recycling mechanism. With regard to pH-dependence of growth, the 'HCO(3)(-) user' S. stellaris was as sensitive as the 'CO(2) user' N. navis-varingica. The suggested relationship between DA and carbon acquisition/C(i) limitation could not be confirmed.  相似文献   

9.
C(4) plants are rare in the cool climates characteristic of high latitudes and elevations, but the reasons for this are unclear. We tested the hypothesis that CO(2) fixation by Rubisco is the rate-limiting step during C(4) photosynthesis at cool temperatures. We measured photosynthesis and chlorophyll fluorescence from 6 degrees C to 40 degrees C, and in vitro Rubisco and phosphoenolpyruvate carboxylase activity from 0 degrees C to 42 degrees C, in Flaveria bidentis modified by an antisense construct (targeted to the nuclear-encoded small subunit of Rubisco, anti-RbcS) to have 49% and 32% of the wild-type Rubisco content. Photosynthesis was reduced at all temperatures in the anti-Rbcs plants, but the thermal optimum for photosynthesis (35 degrees C) did not differ. The in vitro turnover rate (kcat) of fully carbamylated Rubisco was 3.8 mol mol(-)(1) s(-)(1) at 24 degrees C, regardless of genotype. The in vitro kcat (Rubisco Vcmax per catalytic site) and in vivo kcat (gross photosynthesis per Rubisco catalytic site) were the same below 20 degrees C, but at warmer temperatures, the in vitro capacity of the enzyme exceeded the realized rate of photosynthesis. The quantum requirement of CO(2) assimilation increased below 25 degrees C in all genotypes, suggesting greater leakage of CO(2) from the bundle sheath. The Rubisco flux control coefficient was 0.68 at the thermal optimum and increased to 0.99 at 6 degrees C. Our results thus demonstrate that Rubisco capacity is a principle control over the rate of C(4) photosynthesis at low temperatures. On the basis of these results, we propose that the lack of C(4) success in cool climates reflects a constraint imposed by having less Rubisco than their C(3) competitors.  相似文献   

10.
Genes encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were cloned from dinoflagellate symbionts (Symbiodinium spp) of the giant clam Tridacna gigas and characterized. Strikingly, Symbiodinium Rubisco is completely different from other eukaryotic (form I) Rubiscos: it is a form II enzyme that is approximately 65% identical to Rubisco from Rhodospirillum rubrum (Rubisco forms I and II are approximately 25 to 30% identical); it is nuclear encoded by a multigene family; and the predominantly expressed Rubisco is encoded as a precursor polyprotein. One clone appears to contain a predominantly expressed Rubisco locus (rbcA), as determined by RNA gel blot analysis of Symbiodinium RNA and sequencing of purified Rubisco protein. Another contains an enigmatic locus (rbcG) that exhibits an unprecedented pattern of amino acid replacement but does not appear to be a pseudogene. The expression of rbcG has not been analyzed; it was detected only in the minor of two taxa of Symbiodinium that occur together in T. gigas. This study confirms and describes a previously unrecognized branch of Rubisco's evolution: a eukaryotic form II enzyme that participates in oxygenic photosynthesis and is encoded by a diverse, nuclear multigene family.  相似文献   

11.
Inorganic carbon acquisition in red tide dinoflagellates   总被引:3,自引:0,他引:3  
Carbon acquisition was investigated in three marine bloom-forming dinollagellates-Prorocentrum minimum, Heterocapsa triquetra and Ceratium lineatum. In vivo activities of extracellular and intracellular carbonic anhydrase (CA), photosynthetic O2 evolution, CO2 and HCO3- uptake rates were measured by membrane inlet mass spectrometry (MIMS) in cells acclimated to low pH (8.0) and high pH (8.5 or 9.1). A second approach used short-term 14C-disequilibrium incubations to estimate the carbon source utilized by the cells. All three species showed negligible extracellular CA (eCA) activity in cells acclimated to low pH and only slightly higher activity when acclimated to high pH. Intracellular CA (iCA) activity was present in all three species, but it increased only in P. minimum with increasing pH. Half-saturation concentrations (K1/2) for photosynthetic O2 evolution were low compared to ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) kinetics. Moreover, apparent affinities for inorganic carbon (Ci) increased with increasing pH in the acclimation, indicating the operation of an efficient CO2 concentration mechanism (CCM) in these dinoflagellates. Rates of CO2 uptake were comparably low and could not support the observed rates of photosynthesis. Consequently, rates of HCO3- uptake were high in the investigated species, contributing more than 80% of the photosynthetic carbon fixation. The affinity for HCO3- and maximum uptake rates increased under higher pH. The strong preference for HCO3- was also confirmed by the 14C-disequilibrium technique. Modes of carbon acquisition were consistent with the 13C-fractionation pattern observed and indicated a strong species-specific difference in leakage. These results suggest that photosynthesis in marine dinoflagellates is not limited by Ci even at high pH, which may occur during red tides in coastal waters.  相似文献   

12.
We studied the interactions of the CO(2)-concentrating mechanism and variable light in the filamentous cyanobacterium Leptolyngbya sp. CPCC 696 acclimated to low light (15 μmol m(-2) s(-1) PPFD) and low inorganic carbon (50 μM Ci). Mass spectrometric and polarographic analysis revealed that mediated CO(2) uptake along with both active Na(+)-independent and Na(+)-dependent HCO(3)(-) transport, likely through Na(+)/HCO(3)(-) symport, were employed to concentrate Ci internally. Combined transport of CO(2) and HCO(3)(-) required about 30 kJ mol(-1) of energy from photosynthetic electron transport to support an intracellular Ci accumulation 550-fold greater than the external Ci. Initially, Leptolyngbya rapidly induced oxygen evolution and Ci transport to reach 40-50% of maximum values by 50 μmol m(-2) s(-1) PPFD. Thereafter, photosynthesis and Ci transport increased gradually to saturation around 1,800 μmol m(-2) s(-1) PPFD. Leptolyngbya showed a low intrinsic susceptibility to photoinhibition of oxygen evolution up to PPFD of 3,000 μmol m(-2) s(-1). Intracellular Ci accumulation showed a lag under low light but then peaked at about 500 μmol photons m(-2) s(-1) and remained high thereafter. Ci influx was accompanied by a simultaneous, light-dependent, outward flux of CO(2) and by internal CO(2)/HCO(3)(-) cycling. The high-affinity and high-capacity CCM of Leptolyngbya responded dynamically to fluctuating PPFD and used excitation energy in excess of the needs of CO(2) fixation by increasing Ci transport, accumulation and Ci cycling. This capacity may allow Leptolyngbya to tolerate periodic exposure to excess high light by consuming electron equivalents and keeping PSII open.  相似文献   

13.
The cyanobacterium Synechocystis sp. strain PCC 6803 possesses two CO(2) uptake systems and two HCO(3)(-) transporters. We transformed a mutant impaired in CO(2) uptake and in cmpA-D encoding a HCO(3)(-)transporter with a transposon inactivation library, and we recovered mutants unable to take up HCO(3)(-) and grow in low CO(2) at pH 9.0. They are all tagged within slr1512 (designated sbtA). We show that SbtA-mediated transport is induced by low CO(2), requires Na(+), and plays the major role in HCO(3)(-) uptake in Synechocystis. Inactivation of slr1509 (homologous to ntpJ encoding a Na(+)/K(+)-translocating protein) abolished the ability of cells to grow at [Na(+)] higher than 100 mm and severely depressed the activity of the SbtA-mediated HCO(3)(-) transport. We propose that the SbtA-mediated HCO(3)(-) transport is driven by DeltamuNa(+) across the plasma membrane, which is disrupted by inactivating ntpJ. Phylogenetic analyses indicated that two types of sbtA exist in various cyanobacterial strains, all of which possess ntpJ. The sbtA gene is the first one identified as essential to Na(+)-dependent HCO(3)(-) transport in photosynthetic organisms and may play a crucial role in carbon acquisition when CO(2) supply is limited, or in Prochlorococcus strains that do not possess CO(2) uptake systems or Cmp-dependent HCO(3)(-) transport.  相似文献   

14.
CO(2) entry into Synechococcus sp. PCC7942 cells was drastically inhibited by the water channel blocker p-chloromercuriphenylsulfonic acid suggesting that CO(2) uptake is, for the most part, passive via aquaporins with subsequent energy-dependent conversion to HCO3(-). Dependence of CO(2) uptake on photosynthetic electron transport via photosystem I (PSI) was confirmed by experiments with electron transport inhibitors, electron donors and acceptors, and a mutant lacking PSI activity. CO(2) uptake was drastically inhibited by the uncouplers carbonyl cyanide m-chlorophenylhydrazone (CCCP) and ammonia but substantially less so by the inhibitors of ATP formation arsenate and N, N,-dicyclohexylcarbodiimide (DCCD). Thus a DeltamuH(+) generated by photosynthetic PSI electron transport apparently serves as the direct source of energy for CO(2) uptake. Under low light intensity, the rate of CO(2) uptake by a high-CO(2)-requiring mutant of Synechococcus sp. PCC7942, at a CO(2) concentration below its threshold for CO(2) fixation, was higher than that of the wild type. At saturating light intensity, net CO(2) uptake was similar in the wild type and in the mutant IL-3 suggesting common limitation by the rate of conversion of CO(2) to HCO3(-). These findings are consistent with a model postulating that electron transport-dependent formation of alkaline domains on the thylakoid membrane energizes intracellular conversion of CO(2) to HCO3(-).  相似文献   

15.
Symbiotic cnidarians absorb inorganic carbon from seawater to supply intracellular dinoflagellates with CO(2) for their photosynthesis. To determine the mechanism of inorganic carbon transport by animal cells, we used plasma membrane vesicles prepared from ectodermal cells isolated from tentacles of the sea anemone, Anemonia viridis. H(14)CO(-)(3) uptake in the presence of an outward NaCl gradient or inward H(+) gradient, showed no evidence for a Cl(-)- or H(+)- driven HCO(-)(3) transport. H(14)CO(-)(3) and (36)Cl(-) uptakes were stimulated by a positive inside-membrane diffusion potential, suggesting the presence of HCO(-)(3) and Cl(-) conductances. A carbonic anhydrase (CA) activity was measured on plasma membrane (4%) and in the cytoplasm of the ectodermal cells (96%) and was sensitive to acetazolamide (IC(50) = 20 nM) and ethoxyzolamide (IC(50) = 2.5 nM). A strong DIDS-sensitive H(+)-ATPase activity was observed (IC(50) = 14 microM). This activity was also highly sensitive to vanadate and allyl isothiocyanate, two inhibitors of P-type H(+)-ATPases. Present data suggest that HCO(-)(3) absorption by ectodermal cells is carried out by H(+) secretion by H(+)-ATPase, resulting in the formation of carbonic acid in the surrounding seawater, which is quickly dehydrated into CO(2) by a membrane-bound CA. CO(2) then diffuses passively into the cell where it is hydrated in HCO(-)(3) by a cytosolic CA.  相似文献   

16.
Although the catalytic activity of Rubisco increases with temperature, the low affinity of the enzyme for CO2 and its dual nature as an oxygenase limit the possible increase in net photosynthesis with temperature. For cotton, comparisons of measured rates of net photosynthesis with predicted rates that take into account limitations imposed by the kinetic properties of Rubisco indicate that direct inhibition of photosynthesis occurs at temperatures higher than about 30°C. Inhibition of photosynthesis by moderate heat stress (i.e. 30–42°C) is generally attributed to reduced rates of RuBP regeneration caused by disruption of electron transport activity, and specifically inactivation of the oxygen evolving enzymes of photosystem II. However, measurements of chlorophyll fluorescence and metabolite levels at air-levels of CO2 indicate that electron transport activity is not limiting at temperatures that inhibit CO2 fixation. Instead, recent evidence shows that inhibition of net photosynthesis correlates with a decrease in the activation state of Rubisco in both C3 and C4 plants and that this decrease in the amount of active Rubisco can fully account for the temperature response of net photosynthesis. Biochemically, the decrease in Rubisco activation can be attributed to: (1) more rapid de-activation of Rubisco caused by a faster rate of dead-end product formation; and (2) slower re-activation of Rubisco by activase. The net result is that as temperature increases activase becomes less effective in keeping Rubisco catalytically competent. In this opinionated review, we discuss how these processes limit photosynthetic performance under moderate heat stress.  相似文献   

17.
Six mutants (B1 to B6) that grew poorly in air on BG11 agar plates buffered at pH 8.0 were rescued after mutations were introduced into ndhB of wild-type (WT) Synechocystis sp. strain PCC 6803. In these mutants and a mutant (M55) lacking ndhB, CO(2) uptake was much more strongly inhibited than HCO(3)(-) uptake, i.e., the activities of CO(2) and HCO(3)(-) uptake in B1 were 9 and 85% of those in the WT, respectively. Most of the mutants grew very slowly or did not grow at all at pH 6.5 or 7.0 in air, and their ability to grow under these conditions was correlated with CO(2) uptake capacity. Detailed studies of B1 and M55 indicated that the mutants grew as fast as the WT in liquid at pH 8.0 under air, although they grew poorly on agar plates. The contribution of CO(2) uptake appears to be larger on solid medium. Five mutants were constructed by inactivating each of the five ndhD genes in Synechocystis sp. strain PCC 6803. The mutant lacking ndhD3 grew much more slowly than the WT at pH 6.5 under 50 ppm CO(2), although other ndhD mutants grew like the WT under these conditions and showed low affinity for CO(2) uptake. These results indicated the presence of multiple NAD(P)H dehydrogenase type I complexes with specific roles.  相似文献   

18.
Marama bean, Tylosema esculentum, is a tuberous legume native to the Kalahari region of Southern Africa where it grows under high temperatures (typical daily max 37 degrees C during growing season) and radiation (frequently in excess of 2000 micromol m(-2) s(-1)) in sandy soils with low rainfall. These conditions might be expected to select for increased water-use efficiency of photosynthesis. However, marama was found to give similar leaf photosynthetic rates to other C3 plants for a given internal leaf CO2 concentration and Rubisco content. Under conditions of increasing drought, no increase in water-use efficiency of photosynthesis was observed, but stomata closed early and preceded any change in leaf water potential. The possibility of subtle adaptations of photosynthetic characteristics to its natural environment were investigated at the level of Rubisco kinetics. The specificity factor of marama Rubisco was slightly lower than that of wheat, but the apparent Km for CO2 in air (Km') was about 20% lower than that of wheat. This is consistent with better adaptation for efficient photosynthesis at high temperatures in marama compared to wheat, although the net benefit is predicted to be very small (<0.5% at 35 degrees C). The sequence of marama rbcL gene shows 27 deduced amino acid residue differences from that for wheat, and the possibility that one or more of these cause the difference in Rubisco Km' is discussed.  相似文献   

19.
The acclimation of C(4) photosynthesis to low temperature was studied in the montane grass Muhlenbergia montana in order to evaluate inherent limitations in the C(4) photosynthetic pathway following chilling. Plants were grown in growth cabinets at 26 degrees C days, but at night temperatures of either 16 degrees C (the control treatment), 4 degrees C for at least 28 nights (the cold-acclimated treatment), or 1 night (the cold-stress treatment). Below a measurement temperature of 25 degrees C, little difference in the thermal response of the net CO(2) assimilation rate (A) was observed between the control and cold-acclimated treatment. By contrast, above 30 degrees C, A in the cold-acclimated treatment was 10% greater than in the control treatment. The temperature responses of Rubisco activity and net CO(2) assimilation rate were similar below 22 degrees C, indicating high metabolic control of Rubisco over the rate of photosynthesis at cool temperatures. Analysis of the response of A to intercellular CO(2) level further supported a major limiting role for Rubisco below 20 degrees C. As temperature declined, the CO(2) saturated plateau of A exhibited large reductions, while the initial slope of the CO(2) response was little affected. This type of response is consistent with a Rubisco limitation, rather than limitations in PEP carboxylase capacity. Stomatal limitations at low temperature were not apparent because photosynthesis was CO(2) saturated below 23 degrees C at air levels of CO(2). In contrast to the response of photosynthesis to temperature and CO(2) in plants acclimated for 4 weeks to low night temperature, plants exposed to 4 degrees C for one night showed substantial reduction in photosynthetic capacity at temperatures above 20 degrees C. Because these reductions were at both high and low CO(2), enzymes associated with the C(4) carbon cycle were implicated as the major mechanisms for the chilling inhibition. These results demonstrate that C(4) plants from climates with low temperature during the growing season can fully acclimate to cold stress given sufficient time. This acclimation appears to involve reversal of injury to the C(4) cycle following initial exposure to low temperature. By contrast, carbon gain at low temperatures generally appears to be constrained by the carboxylation capacity of Rubisco, regardless of acclimation time. The inability to overcome the Rubisco limitation at low temperature may be an inherent limitation restricting C(4) photosynthetic performance in cooler climates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号