首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study is to identify changes in scattering with optical coherence tomography (OCT) and relate these measurements with mitochondrial changes during the initiation of apoptosis. Human retinal pigment epithelial cells were cultured and apoptosis was induced using 10% alcohol. Using the attenuation coefficient and backscattering, changes were measured during cell death in a cell‐pellet and monolayer respectively. To confirm apoptosis, fluorescent activated cell sorting was used. Mitochondrial activity during apoptosis was assessed using an oxidative stress assay and fluorescent confocal microscopy. Pelleted apoptotic cells measured with OCT showed a clear rise while untreated cells showed a very small increase in attenuation coefficient. Monolayered apoptotic cells displayed a distinct increase, while untreated cells showed a small increase in the backscattering. Apoptosis was confirmed by FACS experiments. Mitochondrial changes during the onset of apoptosis were also measured. The results demonstrate that apoptotic cell death could be monitored in real‐time by OCT. Changes in the scattering after induction of apoptosis are likely to be related to changes in the intracellular morphology. Oxidative stress‐induced mitochondrial swelling could be responsible for the initial increase, while cell blebbing and secondary necrosis subsequently for the observed decrease in scattering.

  相似文献   


2.
Cold atmospheric‐pressure plasmas have become of increasing importance in sterilization processes especially with the growing prevalence of multi‐resistant bacteria. Albeit the potential for technological application is obvious, much less is known about the molecular mechanisms underlying bacterial inactivation. X‐jet technology separates plasma‐generated reactive particles and photons, thus allowing the investigation of their individual and joint effects on DNA. Raman spectroscopy shows that particles and photons cause different modifications in DNA single and double strands. The treatment with the combination of particles and photons does not only result in cumulative, but in synergistic effects. Profilometry confirms that etching is a minor contributor to the observed DNA damage in vitro.

Schematics of DNA oligomer treatment with cold atmospheric‐pressure plasma.  相似文献   


3.
The secondary structure change of the Abeta peptide to beta‐sheet was proposed as an early event in Alzheimer's disease. The transition may be used for diagnostics of this disease in an early state. We present an Attenuated Total Reflection (ATR) sensor modified with a specific antibody to extract minute amounts of Abeta peptide out of a complex fluid. Thereby, the Abeta peptide secondary structure was determined in its physiological aqueous environment by FTIR‐difference‐spectroscopy. The presented results open the door for label‐free Alzheimer diagnostics in cerebrospinal fluid or blood. It can be extended to further neurodegenerative diseases.

An immunologic ATR‐FTIR sensor for Abeta peptide secondary structure analysis in complex fluids is presented.  相似文献   


4.
The healing process of superficial skin wounds treated with a blue‐LED haemostatic device is studied. Four mechanical abrasions are produced on the back of 10 Sprague Dawley rats: two are treated with the blue‐LED device, while the other two are left to naturally recover. Visual observations, non‐linear microscopic imaging, as well as histology and immunofluorescence analyses are performed 8 days after the treatment, demonstrating no adverse reactions neither thermal damages in both abraded areas and surrounding tissue. A faster healing process and a better‐recovered skin morphology are observed: the treated wounds show a reduced inflammatory response and a higher collagen content.

Blue LED induced photothermal effect on superficial abrasions.  相似文献   


5.
The understanding of transdermal substance penetration pathways remains an important field for the development of future topical drugs and cosmetics. Laser Doppler flowmetry is a well‐established method for evaluating cutaneous perfusion. In a study on 6 healthy male volunteers, we topically applied the vasoactive substance benzyl nicotinate on two test areas with open and obturated hair follicles and measured changes in the blood flow by Doppler flowmetry. Contrary to occluded follicles, the application onto the test area with open follicles led to a statistically significant perfusion increase within the first 5 minutes, emphasizing the importance of the follicular pathway for epidermal penetration.

  相似文献   


6.
Unintentional surgical damage to nerves is mainly due to poor visualization of nerve tissue relative to adjacent structures. Multispectral photoacoustic tomography can provide chemical information with specificity and ultrasonic spatial resolution with centimeter imaging depth, making it a potential tool for noninvasive neural imaging. To implement this label‐free imaging approach, a multispectral photoacoustic tomography platform was built. Imaging depth and spatial resolution were characterized. In vivo imaging of the femoral nerve that is 2 mm deep in a nude mouse was performed. Through multivariate curve resolution analysis, the femoral nerve was discriminated from the femoral artery and chemical maps of their spatial distributions were generated.

The femoral nerve was discriminated from the femoral artery by multivariate curve resolution analysis.  相似文献   


7.
A study of polarized light transport in scattering media exhibiting directional anisotropy or linear birefringence is presented in this paper. Novel theoretical and experimental methodologies for the quantification of birefringent alignment based on out‐of‐plane polarized light transport are presented here. A polarized Monte Carlo model and a polarimetric imaging system were devised to predict and measure the impact of birefringence on an impinging linearly polarized light beam. Ex‐vivo experiments conducted on bovine tendon, a biological sample consisting of highly packed type I collagen fibers with birefringent property, showed good agreement with the analytical results.

Top view geometry of the in‐plane ( a ) and the out‐of‐plane ( b ) detection. Letter C indicates the location of the detection arm.  相似文献   


8.
Mechanisms of renal autoregulation generate oscillations in arterial blood flow at several characteristic frequencies. Full‐field laser speckle flowmetry provides a real‐time imaging of superficial blood microcirculation. The possibility to detect changes in oscillatory dynamics is an important issue in biomedical applications. In this paper we show how laser power density affects quality of the recorded signal and improves detectability of temporal changes in microvascular perfusion.

  相似文献   


9.
Biological tissues are very strong light‐scattering media. As a consequence, current medical imaging devices do not allow deep optical imaging unless invasive techniques are used. Acousto‐optic imaging is a light‐ultrasound coupling technique that takes advantage of the ballistic propagation of ultrasound in biological tissues to access optical contrast with a millimeter resolution. We have developed a photorefractive‐crystal‐based system that performs self‐adaptive wavefront holography and works within the optical therapeutic window. As it works at an appropriate wavelength range for biological tissues imaging, it was tested on ex vivo liver samples containing tumors as a pre‐clinical study. Optical contrast was obtained even if acoustical one was not significant.

Ultrasound image (left) and acousto‐optic image (right) of a liver biopsy with tumors. Acousto‐optic imaging exhibits tumors that are not detected through ultrasound.  相似文献   


10.
Over the past years it had been demonstrated that multimodal imaging combining the nonlinear modalities coherent anti‐Stokes Raman scattering (CARS), two‐photon excited auto‐fluorescence (TPEF) and second harmonic generation (SHG) show a great potential for tissue diagnosis and tumor identification. To extend the applicability of this multimodal imaging approach for in‐vivo tissue screening of difficult to access body regions the development of suitable fiber optic probes is required. Here we report about a novel CARS imaging fiber probe consisting of 10,000 coherent light guiding elements preserving the spatial relationship between the entrance and the output of the fiber. Therefore the scanning procedure can be shifted from the distal to the proximal end of the fiber probe and no moving parts or driving current are required to realize in‐vivo CARS endoscopy.

Back scattered CARS image of rabbit aorta with plaques (white) using a laser scanning microscope and an imaging fiber.  相似文献   


11.
Risk of recurrence is a major problem in breast cancer management. Currently available prognostic markers have several disadvantages including low sensitivity and specificity, highlighting the need for new prognostic techniques. One of the candidate techniques is serum‐based Raman spectroscopy (RS). In this study, feasibility of using RS to distinguish ‘pre’ from ‘post’ breast tumor resection serum in rats was explored. Spectral analysis suggests change in proteins and amino acid profiles in ‘post’ compared to ‘pre‐surgical’ group. Principal‐Component‐Linear‐Discriminant‐Analysis shows 87% and 91% classification efficiency for ‘pre’ and ‘post‐surgical’ groups respectively. Thus, the study further supports efficacy of RS for theranostic applications.

  相似文献   


12.
An in vitro study of morphological alterations between sound dental structure and artificially induced white spot lesions in human teeth, was performed through the loss of fluorescence by Quantitative Light‐Induced Fluorescence (QLF) and the alterations of the light attenuation coefficient by Optical Coherence Tomography (OCT). To analyze the OCT images using a commercially available system, a special algorithm was applied, whereas the QLF images were analyzed using the software available in the commercial system employed. When analyzing the sound region against white spot lesions region by QLF, a reduction in the fluorescence intensity was observed, whilst an increase of light attenuation by the OCT system occurred. Comparison of the percentage of alteration between optical properties of sound and artificial enamel caries regions showed that OCT processed images through the attenuation of light enhanced the tooth optical alterations more than fluorescence detected by QLF System.

QLF versus OCT imaging of enamel caries: a photonics assessment  相似文献   


13.
Raman spectral imaging is gaining more and more attention in biological studies because of its label‐free characteristic. However, the discrimination of overlapping chemical contrasts has been a major challenge. In this study, we introduce an optical method to simultaneously obtain two orthogonally polarized Raman images from a single scan of the sample. We demonstrate how this technique can improve the quality and quantity of the hyperspectral Raman dataset and how the technique is expected to further extend the horizons of Raman spectral imaging in biological studies by providing more detailed chemical information.

The dual‐polarization Raman images of a HeLa cell.  相似文献   


14.
We report the enhancement in imaging performance of a spectral‐domain optical coherence microscope (OCM) in turbid media by incorporating an optical parametric amplifier (OPA). The OPA provides a high level of optical gain to the sample arm, thereby improving the signal‐to‐noise ratio of the OCM by a factor of up to 15 dB. A unique nonlinear confocal gate is automatically formed in the OPA, which enables selective amplification of singly scattered (ballistic) photons against the multiply‐scattered light background. Simultaneous enhancement in both imaging depth and spatial resolution in imaging microstructures in highly light‐scattering media are demonstrated with the combined OPA‐OCM setup.

Typical OCM inteferograms (left) and images (right) without and with OPA.  相似文献   


15.
Mouse model of nitric oxide deficiency, induced by prolonged treatment with NG‐nitro‐L‐arginine methyl ester (L‐NAME) was used for infrared spectroscopy (FTIR) analysis of plasma. L‐NAME leads to increased peripheral resistance and systemic hypertension. Classification of spectral response was by principal component analysis (PCA) and linear discriminant analysis (LDA). PCA allowed to separate each animal group showing that FTIR spectra are sensitive to development of NO‐deficiency on contrary to blood pressure values indicating hypertension. Globally, the most pronounced spectral alternations were observed in the second and third week of L‐NAME treatment indicating that infrared signature of blood plasma can serve as indicator of early and late stages of the disease. The PLS‐DA method provided >95% classification accuracy. Spectral features characteristic for L‐NAME treatment were mainly associated with an elevated level of proteins accompanied by a decrease of a tyrosine content and changes in lipids/phospholipid concentration. In our work we discuss these changes for which statistically significant differences (p < 0.05 – 0.005) were observed between spectra collected for each time‐point of the L‐NAME treatment versus control subjects. We demonstrated for the first time that NO‐deficiency and hypertension resulted in changes in biochemical profile of plasma that was detected by FTIR spectroscopy.

  相似文献   


16.
We report the development of an intravascular magnetomotive optical coherence tomography (IV‐MM‐OCT) system used with targeted protein microspheres to detect early‐stage atherosclerotic fatty streaks/plaques. Magnetic microspheres (MSs) were injected in vivo in rabbits, and after 30 minutes of in vivo circulation, excised ex vivo rabbit aorta samples specimens were then imaged ex vivo with our prototype IV‐MM‐OCT system. The alternating magnetic field gradient was provided by a unique pair of external custom‐built electromagnetic coils that modulated the targeted magnetic MSs. The results showed a statistically significant MM‐OCT signal from the aorta samples specimens injected with targeted MSs.

Representative magnetomotive signal (green) using targeted and non‐targeted magnetomotive microspheres in atherosclerotic diseased rabbit aortas.  相似文献   


17.
Oxygen delivery and metabolism represent key factors for organ function in health and disease. We describe the optical key characteristics of a technique to comprehensively measure oxygen tension (PO2) in myocardium, using oxygen‐dependent quenching of phosphorescence and delayed fluorescence of porphyrins, by means of Monte Carlo simulations and ex vivo experiments. Oxyphor G2 (microvascular PO2) was excited at 442 nm and 632 nm and protoporphyrin IX (mitochondrial PO2) at 510 nm. This resulted in catchment depths of 161 (86) µm, 350 (307) µm and 262 (255) µm respectively, as estimated by Monte Carlo simulations and ex vivo experiments (brackets). The feasibility to detect changes in oxygenation within separate anatomical compartments is demonstrated in rat heart in vivo.

Schematic of ex vivo measurements.  相似文献   


18.
Barrett's oesophagus is a condition characterized by a change in the lining of the oesophagus that markedly increases the risk of adenocarcinoma. We demonstrate the first site‐matched application of Brillouin microscopy, Raman microscopy and FTIR micro‐spectroscopic imaging to ex‐vivo epithelial tissue – Barrett's oesophagus. The mechanical and chemical characters of the epithelium were assessed in histological sections from a patient subjected to endoscopic oesophageal biopsy. Previous studies have shown that both these properties change within the oesophageal wall, owing to the presence of distinct cellular and extracellular constituents which are putatively affected by oesophageal cancer. Brillouin microscopy enables maps of elasticity of the epithelium to be obtained, whilst Raman and FTIR imaging provide ’chemical images' without the need for labelling or staining. This site‐matched approach provides a valuable platform for investigating the structure, biomechanics and composition of complex heterogeneous systems. A combined Brillouin‐Raman device has potential for in‐vivo diagnosis of pathology.

First application of site‐matched micro Brillouin, Raman and FTIR spectroscopic imaging to epithelial tissue in Barrett's oesophagus  相似文献   


19.
This study proposes Fourier Transform Infrared (FTIR) spectroscopy as a more sensitive, rapid, non‐destructive and operator‐independent analytical diagnostic method for bladder cancer recurrence from bladder wash than other routinely used urine cytology and cystoscopy methods. A total of 136 patients were recruited. FTIR spectroscopic experiments were carried out as a blind study, the classification results of which were then compared with those of cytology and cystoscopy. Firstly, 71 samples (n = 37; bladder cancer and n = 34; control) were studied with transmittance FTIR spectroscopy. After achieving successful differentiation of the groups, to develop a more rapid diagnostic tool and check the reproducibility of the results, the work was continued with different samples (n = 65 as n = 44; bladder cancer and n = 21; control), using the reflection mode (ATR) of FTIR spectroscopy by a different operator. The results revealed significant alterations in moleculer content in the cancer group. Based on the spectral differences, using transmittance FTIR spectroscopy coupled with chemometrics, the diseased group was successfully differentiated from the control. When only carcinoma group was taken into consideration a sensitivity value of 100% was achieved. Similar results were also obtained by ATR‐FTIR spectroscopy. This study shows the power of infrared spectroscopy in the diagnosis of bladder cancer.

  相似文献   


20.
We combined cross‐polarization optical coherence tomography (CP OCT) and non‐linear microscopy based on second harmonic generation (SHG) and two‐photon‐excited fluorescence (2PEF) to assess collagen and elastin fibers and other vascular structures in the development of atherosclerosis, including identification of vulnerable plaques, which remains an important clinical problem and imaging application. CP OCT's ability to visualize tissue birefringence and cross‐scattering adds new information about the microstructure and composition of the plaque. However its interpretation can be ambiguous, because backscattering contrast may have a similar appearance to the birefringence related fringes. Our results represent a step towards minimally invasive characterization and monitoring of different stages of atherosclerosis, including vulnerable plaques. CP OCT image of intimal thickening in the human coronary artery. The dark stripe in the cross‐polarization channel (arrow) is a polarization fringe related to the phase retardation between two eigen polarization states. It is histologically located in the area of the lipid pool, however this stripe is a polarization artifact, rather than direct visualization of the lipid pool.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号