首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To characterize the metabolic regulatory response to interruption of the enterohepatic circulation of bile acids, we examined the effects of cholestyramine treatment on the rate-limiting steps in cholesterol biosynthesis (HMG-CoA reductase) and bile acid production (cholesterol 7 alpha-hydroxylase) as well as on the heparin-sensitive binding of low density lipoproteins (LDL) (reflecting LDL receptor expression) in human liver. Altogether, 18 normolipidemic patients with uncomplicated cholesterol gallstone disease were treated with cholestyramine (8 g b.i.d.) for 2-3 weeks prior to cholecystectomy, and another 34 cholesterol gallstone patients served as untreated controls. Cholestyramine treatment stimulated cholesterol 7 alpha-hydroxylase more than sixfold, and increased both HMG-CoA reductase activity (552 +/- 60 pmol/min per mg protein vs 103 +/- 9 pmol/min per mg protein) and LDL receptor expression (6.1 +/- 0.8 ng/mg protein; n = 6 vs 2.2 +/- 0.3 ng/mg protein; n = 7). Moreover, there was a good correlation between HMG-CoA reductase activity and LDL receptor binding (rs = +0.71; n = 13), suggesting a simultaneous stimulatory effect to compensate for the increased hepatic cholesterol catabolism due to bile acid depletion caused by cholestyramine. Further evidence for this assumption was the finding of a significant relationship between cholesterol 7 alpha-hydroxylase activity and both LDL receptor expression (rs = +0.77; n = 13) and HMG-CoA reductase activity (rs = +0.76; n = 46). We conclude that in human liver a parallel stimulation of cholesterol synthesis and LDL receptor expression occurs in response to stimulation of bile acid synthesis.  相似文献   

2.
Hepatic up-regulation of sterol carrier protein 2 (Scp2) in mice promotes hypersecretion of cholesterol into bile and gallstone formation in response to a lithogenic diet. We hypothesized that Scp2 deficiency may alter biliary lipid secretion and hepatic cholesterol metabolism. Male gallstone-susceptible C57BL/6 and C57BL/6(Scp2(-/-)) knockout mice were fed a standard chow or lithogenic diet. Hepatic biles were collected to determine biliary lipid secretion rates, bile flow, and bile salt pool size. Plasma lipoprotein distribution was investigated, and gene expression of cytosolic lipid-binding proteins, lipoprotein receptors, hepatic regulatory enzymes, and intestinal cholesterol absorption was measured. Compared with chow-fed wild-type animals, C57BL/6(Scp2(-/-)) mice had higher bile flow and lower bile salt secretion rates, decreased hepatic apolipoprotein expression, increased hepatic cholesterol synthesis, and up-regulation of liver fatty acid-binding protein. In addition, the bile salt pool size was reduced and intestinal cholesterol absorption was unaltered in C57BL/6(Scp2(-/-)) mice. When C57BL/6(Scp2(-/-)) mice were challenged with a lithogenic diet, a smaller increase of hepatic free cholesterol failed to suppress cholesterol synthesis and biliary cholesterol secretion increased to a much smaller extent than phospholipid and bile salt secretion. Scp2 deficiency did not prevent gallstone formation and may be compensated in part by hepatic up-regulation of liver fatty acid-binding protein. These results support a role of Scp2 in hepatic cholesterol metabolism, biliary lipid secretion, and intracellular cholesterol distribution.  相似文献   

3.
Male adult Wistar rats received daily, at 9 a.m. and 5 p.m., 10 micrograms of Zn-protamine glucagon for 21 days by subcutaneous injections. The blood glucose level was not significantly modified. Cholesterol and triacylglycerol levels were decreased by 40 and 70% in plasma but not in the liver. The rates of cholesterol turnover processes were determined in vivo with an isotope balance method. Internal secretion of cholesterol (13.8 +/- 0.5 mg/day per rat in control rats and 22.4 +/- 0.9 mg/day per rat in glucagon-treated rats) and cholesterol transformation into bile acids were strikingly increased by chronic administration of glucagon. Biliary secretion rates of bile acids measured by a wash-out method were increased by 139%, while the intestinal bile acid pool was not changed. The enterohepatic cycle number was increased from five per day in control rats to nine per day in glucagon-treated rats. An increased turnover rate of the exchangeable cholesterol would explain the hypocholesterolemic effect of glucagon.  相似文献   

4.
Ileal resection causes malabsorption of bile acid; the increased load of bile acids in the colon induces increased secretion of salt and water and hence diarrhoea. A study was carried out to test the effect of an enterocoated cholestyramine tablet designed to disintegrate in the colon and sequester the bile acids there, thereby minimising diarrhoea induced by bile acids while having no effect on malabsorption of bile acid and jejunal fat absorption. The study comprised 14 patients who had undergone ileal resection of 40-150 cm for Crohn''s disease. A double blind crossover trial was performed with placebo and cholestyramine enterocoated with cellulose acetate phthalate. During treatment with cholestyramine the daily faecal output decreased, the number of defecations each week decreased, and the intestinal transit time increased. Acceptability of the tablets was high, in contrast with general clinical experience with cholestyramine powder. No change was observed in the total faecal output of bile acids or fat. Cholestyramine tablets caused a reduction in diarrhoea without noticeably interfering with the metabolism of fat or bile acid.  相似文献   

5.
Patients with heterozygous familial hypercholesterolemia (n = 12) were treated either with pravastatin, a specific inhibitor of HMG-CoA reductase, or cholestyramine, followed by a period of combined treatment with both drugs. Initially, these patients had increased serum levels of low density lipoprotein (LDL) cholesterol (8.77 +/- 0.48 mmol/l; SEM), lathosterol (5.32 +/- 0.60 mg/l), and ubiquinone (0.76 +/- 0.09 mg/l), while the serum dolichol concentration was in the normal range. Cholestyramine treatment (n = 6) decreased the levels of LDL cholesterol (-32%) and increased lathosterol (+125%), but did not change dolichol or ubiquinone levels in a significant manner. Pravastatin treatment (n = 6) decreased LDL cholesterol (-27%), lathosterol (-46%), and ubiquinone (-29%). In this case, the amount of dolichol in serum also showed a small but statistically insignificant decrease (-16%) after 12 weeks of treatment. Combined treatment with cholestyramine and pravastatin (n = 6) resulted in changes that were similar to, but less pronounced than, those observed during pravastatin treatment alone. In no case was the ratio between ubiquinone and LDL cholesterol reduced. Possible effects on hepatic cholesterol, ubiquinone, and dolichol concentrations were studied in untreated (n = 2), cholestyramine-treated (n = 2), and pravastatin-treated (n = 4) gallstone patients and no consistent changes could be observed. The results indicate that treatment with pravastatin in familial hypercholesterolemia decreases serum ubiquinone levels in proportion to the reduction in LDL cholesterol.  相似文献   

6.
Squalene, a key intermediate of cholesterol synthesis, is present especially in olive oil. Regulation of cholesterol metabolism by dietary squalene in man is unknown, even though olive oil users in Mediterranean areas have low serum cholesterol levels. We have investigated absorption and serum levels of squalene and cholesterol and cholesterol synthesis with the sterol balance technique and serum levels of cholesterol precursors in humans during squalene feeding (900 mg/d for 7-30 days). The results were compared with those during cholestyramine treatment. Fecal analysis suggested that about 60% of dietary squalene was absorbed. Serum squalene levels were increased 17 times, but serum triglyceride and cholesterol contents were unchanged. The squalene feeding significantly (P less than 0.05) increased serum levels of free (1.7-2.3 times) and esterified (1.9-2.4 times) methyl sterol contents, while elevations of free and esterified delta 8-cholesterol and lathosterol levels were inconsistent. Cholestyramine treatment modestly augmented free methyl sterol levels (1.3-1.7 times), less consistently than those of esterified ones, while, in contrast to the squalene feeding, serum contents of free and esterified delta 8-cholesterol and lathosterol were dramatically increased (3.3-8 times). Neither of the treatments significantly affected serum plant sterol and cholestanol levels. The squalene feeding had no consistent effect on absorption efficiency of cholesterol, but significantly increased (paired t-test, P less than 0.05) the fecal excretions of cholesterol and its nonpolar derivatives coprostanol, epicoprostanol, and coprostanone (655 +/- 83 SE to 856 +/- 146 mg/d) and bile acids (212 +/- 24 to 255 +/- 24 mg/d), indicating an increase of cholesterol synthesis by about 50%. We suggest that a substantial amount of dietary squalene is absorbed and converted to cholesterol in humans, but this squalene-induced increase in synthesis is not associated with consistent increases of serum cholesterol levels. The clearly increased serum contents of esterified methyl sterols may reflect stimulated tissue acyl CoA: cholesterol acyltransferase (ACAT, EC 2.3.1.26) activity during squalene feeding as these sterols are not esterified in serum.  相似文献   

7.
Hepatic free cholesterol levels are influenced by cholesterol synthesis and ester formation, which, in turn, might regulate cholesterol secretion into bile and plasma. We manipulated the rates of hepatic cholesterol synthesis and esterification and measured biliary and very low density lipoprotein (VLDL) cholesterol secretion, and bile acid synthesis. Mevalonate decreased HMG CoA reductase by 80%, increased acyl coenzyme A: cholesterol acyltransferase (ACAT) by 60% and increased [3H]oleate incorporation into microsomal and VLDL cholesteryl esters by 174% and 122%, respectively. Microsomal and biliary free cholesterol remained constant at the expense of increased microsomal and VLDL cholesteryl ester content. Mevalonate did not change bile acid synthesis. 25-OH cholesterol decreased HMG-CoA reductase by 39%, increased ACAT by 24%, but did not effect 7 alpha-hydroxylase. 25-OH cholesterol increased [3H]oleate in microsomal and VLDL cholesterol esters by 71% and 120%. Biliary cholesterol decreased by 40% and VLDL cholesteryl esters increased by 83%. A small and unsustained decrease in bile acid synthesis (14CO2 release) occurred after 25-OH cholesterol. After orotic acid feeding, HMG-CoA reductase increased 352%, and [3H]oleate in microsomal and VLDL cholesteryl esters decreased by 43% and 89%. Orotic acid decreased all VLDL components including free cholesterol (68%) and cholesteryl esters (55%), and increased biliary cholesterol by 160%. No change in bile acid synthesis occurred. Hepatic cholesterol synthesis and esterification appear to regulate a cholesterol pool available for both biliary and VLDL secretion. Changing cholesterol synthesis and esterification did not alter bile acid synthesis, suggesting that either this common bile/VLDL secretory pool is functionally distinct from the cholesterol pool used for bile salt synthesis, or that free cholesterol availability in this precursor pool is not a major determinant of bile acid synthesis.  相似文献   

8.
To study the effect of cholecystectomy on the regulation of classic and alternative bile acid syntheses, gallbladder-intact (n = 20) and cholecystectomized (n = 20) New Zealand White rabbits were fed either chow or chow with 2% cholesterol (3 g/day). After 10 days, bile fistulas were constructed in half of each rabbit group to recover and measure the bile acid pool and biliary bile acid flux. After cholesterol feeding, the bile acid pool size increased from 268 +/- 55 to 444 +/- 77 mg (P < 0.01) with a 2-fold rise in the biliary bile acid flux in intact rabbits but did not expand the bile acid pool (270 +/- 77 vs. 276 +/- 62 mg), nor did the biliary bile acid flux increase in cholecystectomized rabbits. Ileal apical sodium-dependent bile acid transporter protein increased 46% from 93 +/- 6 to 136 +/- 23 units/mg (P < 0.01) in the intact rabbits but did not change in cholecystectomized rabbits (104 +/- 14 vs. 99 +/- 19 units/mg) after cholesterol feeding. Cholesterol 7alpha-hydroxylase activity was inhibited 59% (P < 0.001) while cholesterol 27-hydroxylase activity rose 83% (P < 0.05) after cholesterol feeding in the intact rabbits but neither enzyme activity changed significantly in cholesterol-fed cholecystectomized rabbits. Fecal bile acid outputs reflecting bile acid synthesis increased significantly in the intact but not in the cholecystectomized rabbits fed cholesterol.Removal of the gallbladder prevented expansion of the bile acid pool after cholesterol feeding as seen in intact rabbits because ileal bile acid transport did not increase. As a result, cholesterol 7alpha-hydroxylase was not inhibited.  相似文献   

9.
The relationship of microsomal cholesterol and phospholipid fatty acid composition to the activities of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and acyl-CoA: cholesterol acyltransferase was investigated in male, female virgin and pregnant rats when hepatic cholesterogenesis was stimulated by cholestyramine. Cholestyramine increased HMG-CoA reductase activity in both sexes but had no effect on microsomal free cholesterol level or acyl-CoA: cholesterol acyltransferase activity. The data suggest that during cholestyramine treatment high rates of bile acid synthesis are supported by preferential channelling of cholesterol into this pathway, whilst the substrate pool and activity of acyl-CoA:cholesterol acyltransferase are maintained unaltered. The lack of a consistent relationship among enzyme activities and microsomal lipid composition infers that HMG-CoA reductase and acyl-CoA:cholesterol acyltransferase are regulated in vivo by independent mechanisms which are unlikely to involve modulation by the physical properties of the microsomal lipid.  相似文献   

10.
Contraceptive steroids increase cholesterol in bile: mechanisms of action   总被引:4,自引:0,他引:4  
Contraceptive steroids increase the risk of acquiring cholesterol gallstones. The factors responsible include an increase in cholesterol saturation of bile and an increase in rate of secretion of cholesterol into bile. The goal of this study was to investigate the mechanism(s) of these increases in biliary cholesterol. During the use of contraceptive steroids, cholesterol saturation of gallbladder bile and the amount of cholesterol secreted per mole of bile acid increased (P less than 0.05 and P less than 0.02, respectively). Cholesterol absorption, cholesterol synthesis, chylomicron remnant clearance, and the concentration of plasma and lipoprotein lipids were not altered by contraceptive steroids. Despite this apparent lack of effect, important correlations were present during steroid use. LDL (low density lipoprotein) cholesterol increased as dietary cholesterol increased (r = 0.58, P less than 0.025). Cholesterol synthesis correlated directly with VLDL cholesterol concentration (r = 0.64, P less than 0.01), biliary cholesterol secretion (r = 0.68, P less than 0.01) and with molar percent cholesterol in bile (r = 0.49, P = 0.06). Chylomicron remnant clearance also correlated with cholesterol secretion (r = 0.85, P less than 0.001). As either remnant uptake or synthesis increased, the effect of the other source of hepatic cholesterol on biliary cholesterol secretion diminished. These relationships were not observed in the same subjects when they were not taking the hormones. The findings suggest that both newly synthesized and dietary cholesterol contribute to the cholesterol secreted in bile. This is consistent with the hypothesis that cholesterol for secretion into bile and VLDL is derived from a common metabolic pool of free cholesterol. It is proposed that contraceptive steroids exert their effect on biliary cholesterol by increasing cholesterol entering the pool and/or by inhibiting hepatic ACAT (acylcoenzyme A:cholesterol acyltransferase) activity, a known effect of progesterone, so that an increase in free cholesterol entering the pool leads to an increase in output.  相似文献   

11.
In this study, young growing swine were made hypercholesterolemic (~300 mg/dl) by feeding milk and eggs for 7 wk. They were then divided into three groups (untreated, clofibrate-treated, and cholestyramine-treated), and the diet was continued for an additional 3-4 wk. A cholesterol balance study was carried out in the terminal week. When the swine were killed, the total carcass content of cholesterol was determined, as well as contents of individual tissues. Both drugs caused a 50% reduction in serum cholesterol levels. The total carcass cholesterol contents were significantly lower in both treatment groups than in the untreated group. The difference was due largely to lower concentrations in the plasma and in bulk tissues. [4-(14)C] Cholesterol was fed 7 days before the animals were killed, and specific activities of cholesterol in individual tissues were determined terminally. These gave a broad spectrum of values in tissues (excluding central nervous system) ranging rather evenly from 33% of plasma specific activity in the aorta to 100% in some tissues. The balance data suggest that cholestyramine reduces the enterohepatic bile acid pool and cholesterol absorption but increases fecal output of bile acids and total body cholesterol synthesis. The balance data, limited to the terminal week, give no indication of the mode of action of clofibrate. Even synthesis was not significantly lower than in the untreated swine.  相似文献   

12.
We explored the influence of the hydrophilic-hydrophobic balance of a series of natural bile acids on cholesterol absorption in the mouse. Male C57L/J mice were fed standard chow or chow supplemented with 0.5% cholic; chenodeoxycholic; deoxycholic; dehydrocholic; hyocholic; hyodeoxycholic; alpha-, beta-, or omega-muricholic; ursocholic; or ursodeoxycholic acids for 7 days. Biliary bile salts were measured by reverse-phase HPLC, and hydrophobicity indices were estimated by Heuman's method. Cholesterol absorption efficiency was determined by a plasma dual-isotope ratio method. In mice fed chow, natural proportions of tauro-beta-muricholate (42 +/- 6%) and taurocholate (50 +/- 7%) with a hydrophobicity index of -0.35 +/- 0.04 produced cholesterol absorption of 37 +/- 5%. Because bacterial and especially hepatic biotransformations of specific bile acids occurred, hydrophobicity indices of the resultant bile salt pools differed from fed bile acids. We observed a significant positive correlation between hydrophobicity indices of the bile salt pool and percent cholesterol absorption. The principal mechanism whereby hydrophilic bile acids inhibit cholesterol absorption appears to be diminution of intraluminal micellar cholesterol solubilization. Gene expression of intestinal sterol efflux transporters Abcg5 and Abcg8 was upregulated by feeding cholic acid but not by hydrophilic beta-muricholic acid nor by hydrophobic deoxycholic acid. We conclude that the hydrophobicity of the bile salt pool predicts the effects of individual fed bile acids on intestinal cholesterol absorption. Natural alpha- and beta-muricholic acids are the most powerful inhibitors of cholesterol absorption in mice and might act as potent cholesterol-lowering agents for prevention of cholesterol deposition diseases in humans.  相似文献   

13.
Interindividual and interstrain variations in cholesterol absorption efficiency occur in humans and animals. We investigated physiological biliary and small intestinal factors that might determine variations in cholesterol absorption efficiency among inbred mouse strains. We found that there were significant differences in cholesterol absorption efficiency measured by plasma, fecal, and lymphatic methods: <25% in AKR/J, C3H/J, and A/J strains; 25-30% in SJL/J, DBA/2J, BALB/cJ, SWR/J, and SM/J strains; and 31-40% in C57L/J, C57BL/6J, FVB/J, and 129/SvJ strains. In (AKRxC57L)F1 mice, the cholesterol absorption efficiency (31 +/- 6%) mimicked that of the C57L parent (37 +/- 5%) and was significantly higher than in AKR mice (24 +/- 4%). Although biliary bile salt compositions and small intestinal transit times were similar, C57L mice displayed significantly greater bile salt secretion rates and pool sizes than AKR mice. In examining lymphatic cholesterol transport in the setting of a chronic biliary fistula, C57L mice displayed significantly higher cholesterol absorption rates compared with AKR mice. Because biliary and intestinal transit factors were accounted for, we conclude that genetic variations at the enterocyte level determine differences in murine cholesterol absorption efficiency, with high cholesterol absorption likely to be a dominant trait. This study provides baseline information for identifying candidate genes that regulate intestinal cholesterol absorption at the cellular level.  相似文献   

14.
Nuclear receptors are involved in regulating the expression of cholesterol 7alpha-hydroxylase (CYP7A1), however, their roles in the up-regulation of CYP7A1 by cholestyramine (CSR) are still unclear. In the present study, male Wistar rats were divided into four groups and fed [high sucrose + 10% lard diet] (H), [H + 3% CSR diet] (H + CSR), [H + 0.5% cholesterol + 0.25% sodium cholate diet] (C), or [C + 3% CSR diet] (C + CSR) for 2 weeks. Cholestyramine decreased serum and liver cholesterol levels significantly in rats fed C-based diets, but had no effect on these parameters in rats fed H-based diets. Cholestyramine raised hepatic levels of CYP7A1 mRNA and activity in both groups. The gene expression of hepatic ATP-binding cassettes A1 and G5, regulated by liver X receptor (LXR), were unchanged and down-regulated by cholestyramine, respectively. The mRNA levels of the hepatic ATP-binding cassette B11 and short heterodimer partner (SHP), regulated by farnesoid X receptor (FXR), were not changed by cholestyramine. C-based diets, which contained cholesterol and cholic acid, increased SHP mRNA levels compared to H-based diets. Consequently, in rats fed the C+CSR diet, hepatic FXR was activated by dietary bile acids, but the hepatic CYP7A1 mRNA level was increased 16-fold compared to that in rats fed an H diet. These results suggest that cholestyramine up-regulates the expression of CYP7A1 independently via LXR- or FXR-mediated pathways in rats.  相似文献   

15.
Bile acids are synthesized via the classic pathway initiated by cholesterol 7alpha-hydroxylase (CYP7A1), and via alternate pathways, one of which is initiated by sterol 27-hydroxylase (CYP27). These studies used mice lacking cholesterol 7alpha-hydroxylase (Cyp7a1(-/-)) to establish whether the loss of the classic pathway affected cholesterol homeostasis differently in males and females, and to determine if the rate of bile acid synthesis via alternate pathways was responsive to changes in the enterohepatic flux of cholesterol and bile acids. In both the Cyp7a1(-/-) males and females, the basal rate of bile acid synthesis was only half of that in matching Cyp7a1(+/+) animals. Although bile acid pool size contracted markedly in all the Cyp7a1(-/-) mice, the female Cyp7a1(-/-) mice maintained a larger, more cholic acid-rich pool than their male counterparts. Intestinal cholesterol absorption in the Cyp7a1(-/-) males fell from 46% to 3%, and in the matching females from 58% to 17%. Bile acid synthesis in Cyp7a1(+/+) males and females was increased 2-fold by cholesterol feeding, and 4-fold by cholestyramine treatment, but was not changed in matching Cyp7a1(-/-) mice by either of these manipulations. In the Cyp7a1(-/-) mice fed cholesterol, hepatic cholesterol concentrations increased only marginally in the males, but rose almost 3-fold in the females. CYP7A1 activity and mRNA levels were greater in females than in males, and were increased by cholesterol feeding in both sexes. CYP27 activity and mRNA levels did not vary as a function of CYP7A1 genotype, gender, or dietary cholesterol intake. We conclude that in the mouse the rate of bile acid synthesis via alternative pathways is unresponsive to changes in the enterohepatic flux of cholesterol and bile acid, and that factors governing gender-related differences in bile acid synthesis, pool size, and pool composition play an important role in determining the impact of CYP7A1 deficiency on cholesterol homeostasis in this species.  相似文献   

16.
Cholesterol exists within the hepatocyte as free cholesterol and cholesteryl ester. The proportion of intrahepatic cholesterol in the free or ester forms is governed in part by the rate of cholesteryl ester formation by acyl-coenzyme A:cholesterol acyltransferase (ACAT) and cholesteryl ester hydrolysis by neutral cholesterol ester (CE) hydrolase. In other cell types both ACAT and CE hydrolase activities are regulated in response to changes in the need for cellular free cholesterol. In rats, we performed a variety of experimental manipulations in order to vary the need for hepatic free cholesterol and to examine what effect, if any, this had on the enzymes that govern cholesteryl ester metabolism. Administration of a 20-mg bolus of lipoprotein cholesterol or a diet supplemented with 2% cholesterol resulted in an increase in microsomal cholesteryl ester content with little change in microsomal free cholesterol. This was accomplished by an increase in cholesteryl esterification as measured by ACAT but no change in CE hydrolase activity. An increased need for hepatic free cholesterol was experimentally induced by intravenous bile salt infusion or cholestyramine (3%) added to the diet. ACAT activity was decreased with both experimental manipulations compared to controls, while CE hydrolase activity did not change. Microsomal cholesteryl ester content decreased significantly with little change in microsomal free cholesterol content. Addition of exogenous liposomal cholesterol to liver microsomes from cholestyramine-fed and control rats resulted in a 784 +/- 38% increase in ACAT activity. Nevertheless, the decrease in ACAT activity with cholestyramine feeding was maintained. These studies allowed us to conclude that changes in hepatic free cholesterol needs are met in part by regulation of the rate of cholesterol esterification by ACAT without a change in the rate of cholesteryl ester hydrolysis by CE hydrolase.  相似文献   

17.
Hepatic cholesterol metabolism in cholesterol gallstone disease   总被引:3,自引:0,他引:3  
Hepatic cholesterol metabolism was examined in 27 Swedish patients with cholesterol gallstone disease and in 13 patients free of gallstones operated for roentgenographically suspect polyps in the gallbladder. All 40 patients underwent cholecystectomy, and a liver biopsy and gallbladder bile were obtained at surgery. The cholesterol saturation of gallbladder bile was significantly higher in patients with gallstones compared to the gallstone-free controls (131 +/- 13 vs. 75 +/- 5%, P less than 0.001). Microsomal 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity, governing cholesterol synthesis, did not differ between gallstone and gallstone-free patients (104 +/- 11 vs. and 109 +/- 22 pmol/min per mg protein, respectively). The activity of cholesterol 7 alpha-hydroxylase, catalyzing the catabolism of cholesterol to bile acids, was not significantly decreased in gallstone patients (6.2 +/- 1.1 vs. 8.0 +/- 2.0 pmol/min per mg protein). The capacity to esterify cholesterol, judged by the activity of acyl coenzyme A:cholesterol acyltransferase (ACAT), was similar in gallstone and gallstone-free patients (5.4 +/- 0.4 vs. 6.7 +/- 1.1 pmol/min per mg protein). In the presence of exogenous cholesterol, ACAT activity increased by more than fourfold in both groups. No correlation was found between the saturation of gallbladder bile and any of the mentioned enzyme activities in gallstone patients. It is concluded that distinct abnormalities in cholesterol metabolizing enzymes are not of major importance for development of gallstones in Swedish patients with cholesterol gallstone disease. The results support the contention that the etiology of cholesterol gallstones is multifactorial.  相似文献   

18.
The relationship between gastroduodenal motility and bile reflux was studied in normal rats and in rats subjected to hemorrhage and blood reinfusion. Bile secretion decreased from 5.3 +/- 0.4 to 4.1 +/- 0.5 microL/(min.100 g rat) (p less than 0.05) during the hypovolemic stress and recovered after blood reinfusion. Gastric bile salt content was low (0.1 +/- 0.03 mumol/(h.100 g rat] during control period and hemorrhage but increased to 0.7 +/- 0.12 mumol/(h.100 g rat) (p less than 0.001) during the 3 h following blood replacement. Marked gastric and duodenal retention of polyethylene glycol was observed immediately after hypovolemia with the former being evident even after 3 h following blood reinfusion, while duodenal emptying recovered rapidly after reinfusion. The frequency of gastric contraction remained unchanged during hemorrhage but decreased after 90 min following blood replacement, whereas the frequency of duodenal contraction abruptly decreased during hemorrhage and recovered after reinfusion. Both gastric and duodenal contractile pressure was significantly decreased during hemorrhage. After reinfusion, the former remained suppressed while the latter was fully recovered within 1 h. Thus, a significant duodenogastric bile reflux observed after reinfusion was due to a higher duodenal contractile pressure, and the uncoordinated gastroduodenal motility with the duodenal motility fully recovered soon after reinfusion while that of the stomach remained suppressed.  相似文献   

19.
Cholesterol, despite its poor solubility in aqueous solutions, exchanges efficiently between membranes. Movement of cholesterol between different subcellular membranes in the hepatocyte is necessary for assembly of lipoproteins, biliary cholesterol secretion, and bile acid synthesis. Factors which initiate and facilitate transfer of cholesterol between different membranes in the hepatocyte are incompletely understood. It is known that cholesterol secretion into the bile is linked to bile salt secretion. In the present study, we investigated the effects of bile salts of different physicochemical properties at submicellar concentrations (150- 600 microM) on the transfer of [14C]cholesterol from hepatocytes, or crude hepatocellular membranes (donors), to rat high density lipoproteins (acceptor). Bile salts included taurine conjugates of ursodeoxycholic acid (TUDCA), hyodeoxycholic acid (THDCA), cholic acid (TCA), chenodeoxycholic acid (TCDCA), and deoxycholic acid (TDCA). High density lipoprotein (HDL) was separated from hepatocellular membranes and the transfer of [14C]cholesterol from the membranes to HDL was quantitatively determined. In the absence of HDL, [14C]cholesterol remained confined to the membrane fraction. Following addition of HDL, [4-14C]cholesterol in the HDL fraction increased linearly over time. Addition of hydrophilic bile salts (TUDCA and THDCA) increased transfer of [4-14C]cholesterol to HDL only minimally. By contrast, more hydrophobic bile salts stimulated transfer of labeled cholesterol to HDL, and their potency increased in order of increasing hydrophobicity (TCA less than TCDCA less than TDCA). Both for single bile salts and mixtures of bile salts at a total bile salt concentration of 0.30 mM, the rate of cholesterol transfer exhibited a strong linear correlation with a bile salt monomeric hydrophobicity index (r = 0.95; P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We investigated the effect of ileal bile acid transport on the regulation of classic and alternative bile acid synthesis in cholesterol-fed rats and rabbits. Bile acid pool sizes, fecal bile acid outputs (synthesis rates), and the activities of cholesterol 7alpha-hydroxylase (classic bile acid synthesis) and cholesterol 27-hydroxylase (alternative bile acid synthesis) were related to ileal bile acid transporter expression (ileal apical sodium-dependent bile acid transporter, ASBT). Plasma cholesterol levels rose 2.1-times in rats (98 +/- 19 mg/dl) and 31-times (986 +/- 188 mg/dl) in rabbits. The bile acid pool size remained constant (55 +/- 17 mg vs. 61 +/- 18 mg) in rats but doubled (254 +/- 46 to 533 +/- 53 mg) in rabbits. ASBT protein expression did not change in rats but rose 31% (P < 0.05) in rabbits. Fecal bile acid outputs that reflected bile acid synthesis increased 2- and 2.4-times (P < 0.05) in cholesterol-fed rats and rabbits, respectively. Cholesterol 7alpha-hydroxylase activity rose 33% (24 +/- 2.4 vs. 18 +/- 1.6 pmol/mg/min, P < 0.01) and mRNA levels increased 50% (P < 0.01) in rats but decreased 68% and 79%, respectively, in cholesterol-fed rabbits. Cholesterol 27-hydroxylase activity remained unchanged in rats but rose 62% (P < 0.05) in rabbits. Classic bile acid synthesis (cholesterol 7alpha-hydroxylase) was inhibited in rabbits because an enlarged bile acid pool developed from enhanced ileal bile acid transport. In contrast, in rats, cholesterol 7alpha-hydroxylase was stimulated but the bile acid pool did not enlarge because ASBT did not change. Therefore, although bile acid synthesis was increased via different pathways in rats and rabbits, enhanced ileal bile acid transport was critical for enlarging the bile acid pool size that exerted feedback regulation on cholesterol 7alpha-hydroxylase in rabbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号