首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 370 毫秒
1.
Specificity of sweet-almond α-galactosidase   总被引:1,自引:0,他引:1  
1. The specificity of purified sweet-almond alpha-galactosidase has been investigated with 17 substrates. 2. Some of them exhibited inhibition at high substrate concentrations but others did not. Both substrate types were bound and hydrolysed at the same site on the enzyme. 3. The enzyme is specific for alpha-d-galactosides and beta-l-arabinosides. It did not hydrolyse beta-d-galactosides or alpha-d-glucosides. 4. Among galactosides the order of decreasing rates of enzymic hydrolysis was: aryl alpha-galactosides; sugars; alkyl alpha-galactosides. 5. All substituents in the aryl moiety of aryl alpha-galactosides enhanced V(max.), the electron-releasing (-sigma) groups being more effective than the electron-withdrawing (+sigma) groups. The substituent groups did not alter K(m) appreciably. 6. Implications of these results are discussed from a mechanistic viewpoint.  相似文献   

2.
《Phytochemistry》1986,25(8):1819-1821
α-Galactosidase from coconut endosperm was purified to homogeneity with a 490-fold increase in specific activity. The yield was 70%, and the specific activity was 24.5 units/mg protein. The purification procedure included extraction, acidification, ammonium sulphate fractionation and hydrophobic chromatography. The hydrophobic gel (Sepharose-4B-capranilide) had a capacity of 0.63 mg of α-galactosidase per ml of gel. Purified α-galactosidase was a glycoprotein with a carbohydrate content of 12%. The molar extinction coefficient was 8.7 x 104/M/cm.  相似文献   

3.
《Phytochemistry》1987,26(5):1299-1300
The effect ofpH on Km and Vmax values of coconut α-galactosidase indicates the involvement of two ionizing groups with pKa values of 3.5 and 6.5 in catalysis. Chemical modification has indicated the presence of two carboxyl groups, a tryptophan and a tyrosine, at or near the active site of α-galactosidase. Based on these facts a new mechanism of action for α-galactosidase is proposed in which the ionizing group with a pKa of 3.5 is a carboxyl group involved in stabilizing a carbonium ion intermediate and the ionizing group with a pKa of 6.5 is a carboxyl group perturbed due to the presence of a hydrophobic residues in its vicinity which donates a H+ ion in catalysis.  相似文献   

4.
《Phytochemistry》1986,25(11):2439-2443
α-Galactosidase from coconut kernel was inhibited by chemical modification of its tyrosine, tryptophan and carboxyl groups. Treatment with N-bromosuccinamide and tetranitromethane indicated that modification of one tryptophan and one tyrosine residue inhibited enzyme activity by 55 and 84%, respectively. Modification of carboxyl groups by carbodiimide indicated that inhibition was due to modification of two carboxyl groups. In the presence of the competitive inhibitor D-galactose, α-galactosidase was protected from inhibition by N-bromosuccinamide, tetranitromethane and carbodiimide. These results indicate that a tryptophan, tyrosine and two carboxyl groups are at or near the active site of α-galactosidase.  相似文献   

5.
Industrial application of α-galactosidase requires efficient methods to immobilize the enzyme, yielding a biocatalyst with high activity and stability compared to free enzyme. An α-galactosidase from tomato fruit was immobilized on galactose-containing polymeric beads. The immobilized enzyme exhibited an activity of 0.62 U/g of support and activity yield of 46%. The optimum pH and temperature for the activity of both free and immobilized enzymes were found as pH 4.0 and 37 °C, respectively. Immobilized α-galactosidase was more stable than free enzyme in the range of pH 4.0–6.0 and more than 85% of the initial activity was recovered. The decrease in reaction rate of the immobilized enzyme at temperatures above 37 °C was much slower than that of the free counterpart. The immobilized enzyme shows 53% activity at 60 °C while free enzyme decreases 33% at the same temperature. The immobilized enzyme retained 50% of its initial activity after 17 cycles of reuse at 37 °C. Under same storage conditions, the free enzyme lost about 71% of its initial activity over a period of 7 months, whereas the immobilized enzyme lost about only 47% of its initial activity over the same period. Operational stability of the immobilized enzyme was also studied and the operational half-life (t1/2 was determined as 6.72 h for p-nitrophenyl α-d-galactopyranoside (PNPG) as substrate. The kinetic parameters were determined by using PNPG as substrate. The Km and Vmax values were measured as 1.07 mM and 0.01 U/mg for free enzyme and 0.89 mM and 0.1 U/mg for immobilized enzyme, respectively. The synthesis of the galactose-containing polymeric beads and the enzyme immobilization procedure are very simple and also easy to carry out.  相似文献   

6.
The amino acid and sugar composition of the enzyme protein, the effect of urea, sodium dodecyl sulphate and Concanavalin A on the purified -galactosidase (EC 3.2.1.22) from the moldCephalosporium acremonium has been studied. The results obtained by gas liquid chromatography indicated the presence ofN-acetylglucosamine, mannose, galactose andN-acetylneuramic acid in the molar proportions 27311. The presence of two types of Asn-linked oligosaccharide structures in the enzyme molecule is assumed. The -galactosidase liberates (1–3), (1–4) and (1–6)-linkedd-galactose units from various synthetic and natural substrates which have been tested. The effects of pH, substrate concentration and temperature on the catalytic activity of the enzyme are described. The purified -galactosidase also exhibited a lectin activity with an affinity towards glucose, and to some extent mannose.Abbreviations p-NPG p-nitrophenyl--d-galactopyranoside - 4-MUG 4-methylumbelliferyl--d-galactopyranoside - HU hemagglutinin unit - PBS phosphate buffered saline - SDS sodium dodecyl sulphate - ConA Concanavalin A - WGA wheat germ agglutinin - LCA Lens culinaris agglutinin - PHA phytohemagglutinin fromPhaseolus vulgaris  相似文献   

7.
Purification and physical properties of sweet-almond α-galactosidase   总被引:1,自引:1,他引:0  
1. α-Galactosidase from sweet almonds was purified about 2000-fold through eight steps. 2. The enzyme preparation was free from other related enzymes known to occur in sweet almonds, and behaved as a homogeneous protein on filtration through Sephadex G-75. 3. A molecular weight of about 33000 was determined from the gel-filtration data. 4. The ultraviolet-absorption spectrum and thermal inactivation of the enzyme are described. 5. The purified enzyme hydrolysed p-nitrophenyl α-d-galactoside at a much faster rate than melibiose. 6. The pH optimum was at 5·5–5·7. 7. Besides hydrolysis, it also catalysed transfer of galactosyl residues, chain elongation of melibiose and the synthesis of oligosaccharides from galactose.  相似文献   

8.
A genomic library of Bifidobacterium adolescentis was constructed in Escherichia coli and a gene encoding an -galactosidase was isolated. The identified open reading frame showed high similarity and identity with bacterial -galactosidases, which belong to Family 36 of the glycosyl hydrolases. For the purification of the enzyme from the medium a single chromatography step was sufficient. The yield of the recombinant enzyme was 100 times higher than from B. adolescentis itself. In addition to hydrolytic activity the -galactosidase showed transglycosylation activity and can be used for the production of -galacto-oligosaccharides.  相似文献   

9.
An α-galactosidase for raffinose synthesis by a reverse hydrolysis reaction was searched from intracellular of endophytic fungi. About 500 strains were screened, one strain was selected and identified as Paraphaeosphaeria sp. Partially purified α-galactosidase (1 U/ml in the reaction mixture), 100 g/L galactose, and 500 g/L sucrose at 60 °C for 48 h resulted in synthesis of 13.3 g/L raffinose and 4.6 g/L planteose at a ratio of about 3:1. The data suggest that α-galactosidase was able to synthesize raffinose at a ratio higher than that of α-galactosidases derived from other fungi.  相似文献   

10.
The thermophilic fungus,Humicola sp isolated from soil, secreted extracellular -galactosidase in a medium cotaining wheat bran extract and yeast extract. Maximum enzyme production was found in a medium containing 5% wheat bran extract as a carbon source and 0.5% beef extract as a carbon and nitrogen source. Enzyme secretion was strongly inhibited by the presence of Cu2+, Ni2+ and Hg2+ (1mM) in the fermentation medium. Production of enzyme under stationary conditions resulted in 10-fold higher activity than under shaking conditions. The temperature range for production of the enzyme was 37° C to 55°C, with maximum activity (5.54 U ml–1) at 45°C. Optimum pH and temperature for enzyme activity were 5.0 and 60° C respectively. One hundred per cent of the original activity was retained after heating the enzyme at 60°C for 1 h. At 5mM Hg2+ strongly inhibited enzyme activity. TheK m andV max forp-nitrophenyl--d-galactopyranoside were 60M and 33.6 mol min–1 mg–1, respectively, while for raffinose those values were 10.52 mM and 1.8 mol min–1 mg–1, respectively.  相似文献   

11.
Bifidobacterium adolescentis, a gram-positive saccharolytic bacterium found in the human colon, can, alongside other bacteria, utilise stachyose in vitro thanks to the production of an α-galactosidase. The enzyme was purified from the cell-free extract of Bi. adolescentis DSM 20083T. It was found to act with retention of configuration (α→α), releasing α-galactose from p-nitrophenyl galactoside. This hydrolysis probably operates with a double-displacement mechanism, and is consistent with the observed glycosyltransferase activity. As α-galactosides are interesting substrates for bifidobacteria, we focused on the production of new types of α-galactosides using the transgalactosylation activity of Bi. adolescentisα-galactosides. Starting from melibiose, raffinose and stachyose oligosaccharides could be formed. The transferase activity was highest at pH 7 and 40 °C. Starting from 300 mM melibiose a maximum yield of 33% oligosaccharides was obtained. The oligosaccharides formed from melibiose were purified by size-exclusion chromatography and their structure was elucidated by NMR spectroscopy in combination with enzymatic degradation and sugar linkage analysis. The trisaccharide α-d-Galp-(1 → 6)-α-d-Galp-(1 → 6)-d-Glcp and tetrasaccharide α-d-Galp-(1 → 6)-α-d-Galp-(1 → 6)-α-d-Galp-(1 → 6)-d-Glcp were identified, and this indicates that the transgalactosylation to melibiose occurred selectively at the C-6 hydroxyl group of the galactosyl residue. The trisaccaride α-d-Galp-(1 → 6)-α-d-Galp-(1 → 6)-d-Glcp formed could be utilised by various intestinal bacteria, including various bifidobacteria, and might be an interesting pre- and synbiotic substrate. Received: 15 March 1999 / Received revision: 8 June 1999 / Accepted: 11 June 1999  相似文献   

12.
A plant -galactosidase gene was inserted in the expression vector pGKV259. The resulting plasmid pGAL2 consisted of the replication functions of the broad-host-range lactococcal plasmid pWV01, the lactococcal promoter P59, and the DNA sequences encoding the -amylase signal sequence from Bacillus amyloliquefaciens and the mature part of the -galactosidase from Cyamopsis tetragonoloba (guar). Lactococcus cells of strain MG1363 harbouring this vector produced the plant -galactosidase and secreted the enzyme efficiently as judged by Western blotting and activity assays. Expression levels of up to 4.3 mg extracellular -galactosidase g (dry weight) of biomass–1 were achieved in standard laboratory batch cultures. The -galactosidase produced by Lactococcus was active on the chromogenic substrate 5-bromo-4-chloro-3-indolyl -d-galactopyranoside, the trisaccharide raffinose and on the galactomannan substrate, guar gum.  相似文献   

13.
The α-galactosidase A activity from fibroblasts of five Fabry patients and five controls has been separated from α-galactosidase B through small DEAE-cellulose columns and in some experiments by treatment of the fibroblast extracts with Sepharose coupled to anti-α-galactosidase B antibodies. By these independent methods, it has been shown that there is a residual α-galactosidase A in Fabry's disease, which is immunologically similar to the α-galactosidase A from the controls. The α-galactosidase A from all of the patients and controls has the same apparent Km value for the synthetic substrate 4-methylumbelliferyl-α-galactoside. Four out of five patients have a thermostable α-galactosidase A, while the fifth has a thermolabile enzyme like that from the controls. The amount of immunologically active α-galactosidase A seems to be decreased in the patients tested.  相似文献   

14.
The putative α-galactosidase gene HvSF11 of barley, previously shown to be expressed during dark induced senescence, is expressed in the growing/elongating zone of primary foliage leaves of barley. The amino acid sequence deduced from the full length HvSF11 cDNA contains a hydrophobic signal sequence at the N-terminus. Phylogenetic relationship of the HvSF11 encoded barley α-galactosidase to other α-galactosidases revealed high homology with the α-galactosidase encoded by the gene At5g08370 from Arabidopsis thaliana. We have isolated two independent heterozygous At5g08370 T-DNA insertion mutants from Arabidopsis thaliana, both of which have a higher number of rosette leaves with a curly surface leaf morphology and delayed flowering time in comparison to wildtype plants. Localization of the Arabidopsis α-galactosidase protein via GUS-tag revealed that the protein is associated with the cell wall. This result was confirmed by immunological detection of the orthologous barley protein in a protein fraction derived from cell walls of barley leaves. It is concluded that the α-galactosidase proteins from barley and Arabidopsis might fulfill an important role in leaf development by functioning in cell wall loosening and cell wall expansion.
  相似文献   

15.
P. M. Dey  S. Naik  J. B. Pridham 《Planta》1986,167(1):114-118
-Galactosidase II2 (MW 43 390) from resting Vicia faba L. seeds had been shown to possess d-glucose/d-mannose-specific lectin activity. Inhibition studies with monosaccharides and an examination of the effects of heat and pH on the catalytic and lectin activities of the enzyme indicate that the enzyme substrate and the lectin haptens bind at different sites on the protein. d-Mannosebinding has been investigated by equilibrium dialysis and spectrophotometrically. Both methods yield Ka values of approx. 3·103 M-1 for the interaction and there would appear to be two mannosebinding sites per molecule of enzyme protein. The lectin properties of V. faba -galactosidase II2 have been discussed in relation to both V. faba lectin (favin) and other legume -galactosidases.Abbreviations con A concanavalin A - CM-cellulose carboxymethyl cellulose - MW molecular weight - PNPG p-nitrophenyl -d-galactoside - SDS sodium dodecyl sulphate - PAGE polyacrylamide-gel electrophoresis  相似文献   

16.
Cell suspension culture Amsonia tabernaemontana Walt. were permeabilized by Tween 80 and immobilized by glutaraldehyde. The highest α-galactosidase activity was at pH 5.3 and temperature 70 °C. The hydrolysis of substrate was linear for 3 h reaching 70 - 75 % conversion. The cells characterized by high enzyme activity and stability in long-term storage showed convenient physico-mechanical properties (physical protection from shear forces and easy separation of product from biocatalysts). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
α-Galactosidase from tomato has been immobilized on Sepabead EC-EA and Sepabead EC-HA, which were activated with ethylendiamino and hexamethylenediamino groups, respectively. Two strategy was used for the covalent immobilization of α-galactosidase on the aminated Sepabeads: covalent immobilization of enzyme on glutaraldehyde activated support and cross-linking of the adsorbed enzymes on to the support with glutaraldehyde. By using these two methods, all the immobilized enzymes retained very high activity and the stability of the enzyme was also improved. The obtained results showed that, the most stable immobilized α-galactosidase was obtained with the second strategy. The immobilized enzymes were characterized with respect to free counterpart. Some parameters effecting to the enzyme activity and stability were also analyzed. The optimum temperature and pH were found as 60 °C and pH 5.5 for all immobilized enzymes, respectively. All the immobilized α-galactosidases were more thermostable than the free enzyme at 50 °C. The stabilities of the Sepabead EC-EA and EC-HA adsorbed enzymes treated with glutaraldehyde compared to the stability of the free enzyme were a factor of 6 for Sepabead EC-EA and 5.3 for Sepabead EC-HA. Both the free and immobilized enzymes were very stable between pH 3.0 and 6.0 and more than 85% of the initial activities were recovered. Under the identical storage conditions the free enzyme lost its initial activity more quickly than the immobilized enzymes at the same period of time. The immobilized α-galactosidase seems to fulfill the requirements for different industrial applications.  相似文献   

18.
The recombinant AglB produced by Pichia pastoris exhibited substrate inhibition behavior for the hydrolysis of p-nitrophenyl α-galactoside, whereas it hydrolyzed the natural substrates, including galactomanno-oligosaccharides and raffinose family oligosaccharides, according to the Michaelian kinetics. These contrasting kinetic behaviors can be attributed to the difference in the dissociation constant of second substrate from the enzyme and/or to the ability of the leaving group of the substrates. The enzyme displays the grater kcat/Km values for hydrolysis of the branched α-galactoside in galactomanno-oligosaccharides than that of raffinose and stachyose. A sequence comparison suggested that AglB had a shallow active-site pocket, and it can allow to hydrolyze the branched α-galactosides, but not linear raffinose family oligosaccharides.  相似文献   

19.
《Phytochemistry》1986,25(5):1035-1041
The nature of the glucose/mannose specific lectin activity of α-galactosidase I from Vicia faba seeds has been examined. Gel filtration in the presence of high concentrations of glucose and SDS-PAGE failed to detect favin, a classical lectin which also occurs in the seed. A comparison of the haemagglutinating activities of the α-galactosidases from Vigna radiata and V. faba seeds strongly suggests that the catalytic site of the Vigna enzyme is also responsible for its agglutinating activity and that the catalytic and lectin sites are at different loci in the case of V. faba α-galactosidase I. The latter conclusion is supported by an investigation of the effects of glucose, mannose and galactose on the catalytic and lectin activities and by results obtained by demetallization of the V. faba enzyme. A single galactose-binding site and two mannose binding sites per subunit of enzyme I were detected by the method of equilibrium dialysis and the association constants for these monosaccharides measured. Mannose did not appear to affect the binding of galactose to the enzyme or vice versa. The removal of glycan chains from α-galactosidase I with endo-β-N-acetylglucosaminidase H released an active dimeric form of α-galactosidase. The possible involvement of lectin-glycoprotein interactions in the stabilization of the tetrameric form of the enzyme is considered.  相似文献   

20.
Summary Effects of -galactosidase (from green coffee beans) digestion on lectin staining were examined in formalin-fixed, paraffin-embedded human pancreatic tissues from individuals of blood-group B and AB. Digestion with the enzyme resulted in almost complete loss of Griffonia simplicifolia agglutinin I-B4(GSAI-B4) staining in the acinar cells with concomitant appearance of Ulex europaeus agglutinin-I(UEA-I) staining in the corresponding cells. In addition, reactivity with soybean agglutinin(SBA) was also imparted by the enzyme digestion in GSAI-B4 positive acinar cells. -Galactosidase digestion following -galactosidase digestion neither reduced the reactivity with SBA nor induced the reactivity with Griffonia simplicifolia agglutinin-II(GSA-II) in GSAI-B4 positive cells, while in UEA-I positive cells, both reduction of SBA reactivity and appearance of GSA-II reactivity occurred after simple -galactosidase digestion as well as sequential digestion with - and -galactosidase. However, when -l-fucosidase digestion procedure was inserted between - and -galactosidase digestion, UEA-I staining imparted by -galactosidase digestion was markedly decreased in intensity and GSA-II reactivity was appeared in GSAI-B4 positive acinar cells. Furthermore, after sequential digestion with -galactosidase and fucosidase, reactivity with peanut agglutinin(PNA) was revealed in GSAI-B4 positive acinar cells as well as UEA-I positive cells in secretors. In non-secretors, strong PNA staining was usually observed in the acinar cells throughout the glands without enzyme digestion. These results confirmed that the -galactosidase induced GSA-II reactivity and the fucosidase induced PNA reactivity are due to precursors of different kinds of blood-group determinants and suggest that at least two kinds of B antigen determinants, i.e. Gal(1-3)[Fuc(1-2)]Gal(1-3,4)GlcNac and Gal(1-3)-[Fuc(1-2)]Gal(1-3)GalNAc are produced in GSAI-B4 positive acinar cells. The synthesis of the latter type of B antigen is assumed to be controlled under the secretory gene in human pancreas.Abbreviation GalNAc N-acetyl-d-galactosamine - Gal d-galactose - GlcNAc N-acetyl-d-glucosamine - Fuc l-fucose - NeuNAc N-acetylneuraminic acid (sialic acid)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号