首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mixotrophic growth of the facultatively autotrophic acidophile Thiobacillus acidophilus on mixtures of glucose and thiosulfate or tetrathionate was studied in substrate-limited chemostat cultures. Growth yields in mixotrophic cultures were higher than the sum of the heterotrophic and autotrophic growth yields. Pulse experiments with thiosulfate indicated that tetrathionate is an intermediate during thiosulfate oxidation by cell suspensions of T. acidophilus. From mixotrophic growth studies, the energetic value of thiosulfate and tetrathionate redox equivalents was estimated to be 50% of that of redox equivalents derived from glucose oxidation. Ribulose 1,5-bisphosphate carboxylase (RuBPCase) activities in cell extracts and rates of sulfur compound oxidation by cell suspensions increased with increasing thiosulfate/glucose ratios in the influent medium of the mixotrophic cultures. Significant RuBPCase and sulfur compound-oxidizing activities were detected in heterotrophically grown T. acidophilus. Polyhedral inclusion bodies (carboxysomes) could be observed at low frequencies in thin sections of cells grown in heterotrophic, glucose-limited chemostat cultures. Highest RuBPCase activities and carboxysome abundancy were observed in cells from autotrophic, CO2-limited chemostat cultures. The maximum growth rate at which thiosulfate was still completely oxidized was increased when glucose was utilized simultaneously. This, together with the fact that even during heterotrophic growth the organism exhibited significant activities of enzymes involved in autotrophic metabolism, indicates that T. acidophilus is well adapted to a mixotrophic lifestyle. In this respect, T. acidophilus may have a competitive advantage over autotrophic acidophiles with respect to the sulfur compound oxidation in environments in which organic compounds are present.  相似文献   

2.
Thiosulfate was oxidized stoichiometrically to tetrathionate during growth on glucose byKlebsiella aerogenes, Bacillus globigii, B. megaterium, Pseudomonas putida, two strains each ofP. fluorescens andP. aeruginosa, and anAeromonas sp. A gram-negative, rod-shaped soil isolate, Pseudomonad Hw, converted thiosulfate to tetrathionate during growth on acetate. None of the organisms could use thiosulfate as sole energy source. The quantitative recovery of all the thiosulfate supplied to heterotrophic cultures either as tetrathionate alone or as tetrathionate and unused thiosulfate demonstrated that no oxidation to sulfate occurred with any of the strains tested. Two strains ofEscherichia coli did not oxidize thiosulfate. Thiosulfate oxidation in batch culture occurred at different stages of the growth cycle for different organisms:P. putida oxidized thiosulfate during lag and early exponential phase,K. aerogenes oxidized thiosulfate at all stages of growth, andB. megaterium andAeromonas oxidized thiosulfate during late exponential phase. The relative rates of oxidation byP. putida andK. aerogenes were apparently determined by different concentrations of thiosulfate oxidizing enzyme. Thiosulfate oxidation byP. aeruginosa grown in chemostat culture was inducible, since organisms pregrown on thiosulfate-containing media oxidized thiosulfate, but those pregrown on glucose only could not oxidize thiosulfate. Steady state growth yield ofP. aeruginosa in glucose-limited chemostat culture increased about 23% in the presence of 5–22 mM thiosulfate, with complete or partial concomitant oxidation to tetrathionate. The reasons for this stimulation are unclear. The results suggest that heterotrophic oxidation of thiosulfate to tetrathionate is widespread across several genera and may even stimulate bacterial growth in some organisms.  相似文献   

3.
Xanthobacter tagetidis grew as a chemolithotrophic autotroph on thiosulfate and other inorganic sulfur compounds, as a heterotroph on thiophene-2-carboxylic acid, acetic acid and α-ketoglutaric acid, and as a mixotroph on thiosulfate in combination with thiophene-2-carboxylic acid and/or acetic acid. Autotrophic growth on one-carbon organosulfur compounds, and intermediates in their oxidation are also reported. Thiosulfate enhanced the growth yields in mixotrophic cultures, presumably by acting as a supplementary energy source, since ribulose bisphosphate carboxylase was only active in thiosulfate-grown cells and was not detected in mixotrophic cultures using thiosulfate with thiophene-2-carboxylic acid. Bacteria grown on thiophene-2-carboxylic acid also oxidized sulfide, thiosulfate and tetrathionate, indicating these as possible sulfur intermediates in thiophene-2-carboxylic acid degradation. Thiosulfate and tetrathionate were oxidized completely to sulfate and, consequently, did not accumulate as products of thiophene-2-carboxylic acid oxidation in growing cultures. K m and V max values for the oxidation of thiosulfate, tetrathionate or sulfide were 13 μM and 83 nmol O2 min–1 (mg dry wt.)–1, respectively; thiosulfate and tetrathionate became autoinhibitory at concentrations above 100 μM. The true growth yield (Ymax) on thiophene-2-carboxylic acid was estimated from chemostat cultures (at dilution rates of 0.034–0.094 h–1) to be 112.2 g mol–1, with a maintenance coefficient (m) of 0.3 mmol thiophene-2-carboxylic acid (g dry wt.)–1 h–1, and the maximum specific growth rate (μmax) was 0.116 h–1. Growth in chemostat culture at a dilution rate of 0.041 h–1 indicated growth yields [g dry wt. (mol substrate)–1] of 8.1 g (mol thiosulfate)–1, 60.9 g (mol thiophene-2-carboxylic acid)–1, and 17.5 g (mol acetic acid)–1, with additive yields for growth on mixtures of these substrates. At a dilution rate of 0.034 h–1, yields of 57.8 g (mol α-ketoglutaric acid)–1 and 60.7 g (mol thiophene-2-carboxylic acid)–1 indicated some additional energy conservation from oxidation of the thiophene-sulfur. SDS-PAGE of cell-free preparations indicated a polypeptide (M r, 21.0 kDa) specific to growth on thiophene-2-carboxylic acid for which no function can yet be ascribed: no metabolism of thiophene-2-carboxylic acid by cell-free extracts was detected. It was shown that X. tagetidis exhibits a remarkable degree of metabolic versatility and is representative of facultatively methylotrophic and chemolithotrophic autotrophs that contribute significantly to the turnover of simple inorganic and organic sulfur compounds (including substituted thiophenes) in the natural environment. Received: 1 July 1997 / Accepted: 3 November 1997  相似文献   

4.
A new pathway of dimethylsulfide (DMS) metabolism was identified in a novel species of Gammaproteobacteria, Methylophaga thiooxidans sp. nov., in which tetrathionate (S4O62?) was the end‐product of DMS oxidation. Inhibitor evidence indicated that DMS degradation was initiated by demethylation, catalysed by a corrinoid demethylase. Thiosulfate was an intermediate, which was oxidized to tetrathionate by a cytochrome‐linked thiosulfate dehydrogenase. Thiosulfate oxidation was coupled to ATP synthesis, and M. thiooxidans could also use exogenous thiosulfate as an energy source during chemolithoheterotrophic growth on DMS or methanol. Cultures grown on a variety of substrates oxidized thiosulfate, indicating that thiosulfate oxidation was constitutive. The observations have relevance to interactions among sulfur‐metabolizing bacteria in the marine environment. The production of tetrathionate from an organosulfur precursor is previously undocumented and represents a potential step in the biogeochemical sulfur cycle, providing a ‘shunt’ across the cycle.  相似文献   

5.
The SoxXAYZB(CD)2‐mediated pathway of bacterial sulfur‐chemolithotrophy explains the oxidation of thiosulfate, sulfide, sulfur and sulfite but not tetrathionate. Advenella kashmirensis, which oxidizes tetrathionate to sulfate, besides forming it as an intermediate during thiosulfate oxidation, possesses a soxCDYZAXOB operon. Knock‐out mutations proved that only SoxBCD is involved in A. kashmirensis tetrathionate oxidation, whereas thiosulfate‐to‐tetrathionate conversion is Sox independent. Expression of two glutathione metabolism‐related proteins increased under chemolithotrophic conditions, as compared to the chemoorganotrophic one. Substrate‐dependent oxygen consumption pattern of whole cells, and sulfur‐oxidizing enzyme activities of cell‐free extracts, measured in the presence/absence of thiol inhibitors/glutathione, corroborated glutathione involvement in tetrathionate oxidation. Furthermore, proteome analyses detected a sulfite:acceptor oxidoreductase (SorAB) exclusively under chemolithotrophic conditions, while expression of a methanol dehydrogenase (XoxF) homolog, subsequently named thiol dehydrotransferase (ThdT), was found to increase 3‐ and 10‐fold during thiosulfate‐to‐tetrathionate conversion and tetrathionate oxidation respectively. A thdT knock‐out mutant did not oxidize tetrathionate but converted half of the supplied 40 mM S‐thiosulfate to tetrathionate. Knock‐out of another thiosulfate dehydrogenase (tsdA) gene proved that both ThdT and TsdA individually converted ~ 20 mM S‐thiosulfate to tetrathionate. The overexpressed and isolated ThdT protein exhibited PQQ‐dependent thiosulfate dehydrogenation, whereas its PQQ‐independent thiol transfer activity involving tetrathionate and glutathione potentially produced a glutathione:sulfodisulfane adduct and sulfite. SoxBCD and SorAB were hypothesized to oxidize the aforesaid adduct and sulfite respectively.  相似文献   

6.
In the oxidation of thiosulfate at pH 4.5 tetrathionate was formed as an intermediate, and the thiosulfate-oxidizing enzyme was active in acidic pH range in contrast to the enzyme of T. thioparus and Thiobacillus X.

Phosphate did not seem to affect the oxidation of thiosulfate but rather affect the conversion of tetrathionate. In the absence of phosphate, tetrathionate, which was produced from thiosulfate oxidation, seemed to accumulate without undergoing further conversion.

Quantitative oxidation of tetrathionate to sulfate was achieved with freshly harvested cells of T. thiooxidans; pH optimum for the oxidation of tetrathionate by the washed cells was 2~3, and the activity fell markedly at pH above 3.5.

Tetrathionate might be enzymatically dismuted to pentathionate and trithionate under anaerobic conditions with crude extracts of T. thiooxidans; pH optimum for the reaction was about 2.7 and the activity fell strikingly at pH 4.7. The formed trithionate might be further hydrolyzed to thiosulfate and sulfate.  相似文献   

7.
Thiobacillus tepidarius, isolated from the hot springs at Bath, Avon, UK, grew optimally at 43–45°C and pH 6.0–7.5 on thiosulphate or tetrathionate. In batch culture, thiosulphate was oxidized stoichiometrically to tetrathionate, with a rise in pH. The tetrathionate was then oxidized to sulphate, supporting growth and producing a fall in pH to a minimum of ph 4.8. The organism contained high levels of thiosulphate-oxidizing enzyme, rhodanese and ribulose bisphosphate carboxylase. It was obligately chemolithotrophic and autotrophic. In chemostat culture, T. tepidarius grew autotrophically with the following sole energy-substrates: sulphide, thiosulphate, trithionate, tetrathionate, hexathionate or heptathionate. Thiocyanate, dithionate and sulphite were not used as sole substrates, although sulphite enhanced growth yields in the presence of thiosulphate. Maximum specific growth rate on tetrathionate was 0.44 h-1. True growth yields (Y max) and maintenance coefficients (m) were calculated for sulphide, thiosulphate, trithionate and tetrathionate and observed yields at a single fixed dilution rate compared with those on hexathionate and heptathionate. Mean values for Y max, determined from measurements of absorbance, dry wt, total organic carbon and cell protein, were similar for sulphide, thiosulphate and trithionate (10.9 g dry wt/mol substrate) as expected from their equivalent oxygen consumption for oxidation. Y max for tetrathionate (20.5) and the relative Y o values (as g dry wt/g atom oxygen consumed) for thiosulphate and all four polythionates indicated that substrate level phosphorylation did not contribute significantly to energy conservation. These Y max values were 40–70% higher than any of those previously reported for obligately aerobic thiobacilli. Mean values for m were 6.7 mmol substrate oxidized/g dry wt·h for sulphide, thiosulphate and trithionate, and 2.6 for tetrathionate.Abbreviation PIPES Piperazine-N,N-bis(ethane sulphonic acid)  相似文献   

8.
Factors Affecting Oxidation of Thiosalts by Thiobacilli   总被引:1,自引:1,他引:0       下载免费PDF全文
The effects of temperature, initial pH, and the concentrations of ammonium, phosphate, and heavy metals on the oxidation of thiosalts by an authentic strain of Thiobacillus thiooxidans (ATCC 8085) and by a mixed culture isolated from a base metal-processing mill effluent pond were studied. The optimum temperature was 30°C and the optimum initial pH was 3.75 for both cultures using thiosulfate and for the mixed culture using tetrathionate. T. thiooxidans ATCC 8085 did not oxidize tetrathionate. For a thiosalt concentration of 2,000 ppm (2,000 mg/liter), maximal rates of destruction occurred at concentrations of ammonium ion above 2 mg/liter and in the presence of 1 mg of phosphate per liter. Under optimal conditions, the rate of thiosulfate oxidation by the pure culture was 55 ± 3 mg/liter per h; the mixed culture oxidized thiosulfate at the rate of 40 ± 1 mg/liter per h and tetrathionate at the rate of 50 ± 2 mg/liter per h. Metal ions caused normal inhibition kinetics in the oxidation of thiosulfate by T. thiooxidans ATCC 8085. Ki values were calculated for cadmium (16 mg/liter), copper (0.46 mg/liter), lead (2 mg/liter), silver (3.1 mg/liter), and zinc (33 mg/liter). Only a slight additive effect was apparent in the presence of all of these metal ions. The mixed culture of thiosalt-oxidizing bacteria was less sensitive to heavy metal inhibition; the order of inhibition of thiosulfate oxidation was Cd < Zn < Pb < Ag < Cu, and that of tetrathionate oxidation was Zn < Cd < Pb < Ag < Cu.  相似文献   

9.
The growth of Thiobacillus (T.) intermedius strain K12 and Thiobacillus versutus strain DSM 582 on thiosulfate and tetrathionate was studied combining on-line measurements of metabolic activity and sulfur compound analysis. Most results indicate that T. intermedius oxidized thiosulfate via tetrathionate to sulfate. Concomittantly, sulfur compound intermediates like triand pentathionate were detectable. The formation is probably the result of highly reactive sulfane monosulfonic acids. The formation of tetrathionate allows the cells to buffer temporarily the proton excretion from sulfuric acid production. With T. versutus intermediate sulfur compounds were not detectable, however, sulfur was detectable. The possibility of a thiosulfate oxidation via dithionate, S2O inf6 sup2- , is discussed. The on-line measurement of metabolic activity by microcalorimetry enabled us to detect that cells of T. intermedius adhere to surfaces and produce a biofilm by a metabolic process whereas those of T. versutus fail to do so. The importance of the finding is discussed.  相似文献   

10.
Mason  Julie  Kelly  Don P. 《Archives of microbiology》1988,149(4):317-323
Thiobacillus acidophilus can grow in batch and chemostat culture as a heterotroph on glucose, a chemolithoautotroph on tetrathionate and CO2, or as a mixotroph. Mixotrophically it obtains energy from the simultaneous oxidation of tetrathionate and glucose, and carbon from both glucose and CO2. Mixotrophic cultures contain lower activities of ribulose 1,5-bisphosphate carboxylase and exhibit lower specific rates of tetrathionate oxidation than do autotrophic cultures. Mixotrophic cultures with low concentrations of glucose have growth rates that are intermediate between slow autotrophic growth and fast heterotrophic growth. Slightly more glucose-carbon is assimilated by mixotrophic cultures than by heterotrophic ones provided with the same concentrations of glucose. Mixotrophic yield in the chemostat is also slightly greater than predicted from autotrophic and heterotrophic yields. These observations indicate that there is preferential assimilation of glucose, at the expense of energy from tetrathionate oxidation, during mixotrophy, resulting in an overall energy saving that produces enhanced growth yield. These observations are relevant to understanding the regulatory behaviour of T. acidophilus in its acidic, mineral-leaching habitats.  相似文献   

11.
During autotrophic growth, cells of Thiobacillus A 2 retained a considerable capacity to oxidize various organic energy sources. Heterotrophically grown cultures, on the other hand, were completely devoid of the capacity to fix CO2 via the Calvin cycle and to generate energy from thiosulfate. During transitions from organic media to inorganic thiosulfate-containing media in the chemostat, a long lag-phase was observed before energy generation, CO2 fixation and, consequenctly, measurable growth occurred. This lag-phase was practically abolished if substrates were presentm at very low concentrations in the thiosulfate mineral medium which could be used as an energy source. The same result was obtained when the cells contained reserve material at the moment of the transition. During transitions from thiosulfate-limited growth to starvation, the -thiosulfate and the capacity to fix CO2 decreased very slowly, after an initial short (± 4 h) increase of both enzyme systems. In contrast, these two metabolic functions were inactivated relatively rapidly in the presence of an oxidizable organic carbon and energy source. This process of inactivation was instantaneously stopped and reversed into rapid enzyme synthesis upon replacement of the organic substrate by thiosulfate.  相似文献   

12.
Four eubacterial strains able to grow on carbon disulfide (CS2) as sole energy substrate were isolated from soil and leaves of the CS2-producing tree Quercus lobata. Three of the isolates (strains KS1, KS2, and KL1) were gram-negative, facultatively methylotrophic, and heterotrophic, and capable of growth on a wide range of inorganic and organic sulfur compounds. Biochemical and physiological properties differed slightly among the three strains, but all are proposed to be novel thiobacillus species. Growth yields on CS2 in batch and chemostat culture ranged from 3.3 g dry wt/mol CS2 (batch) to a maximum growth yield (Ymax) of 11.1 g dry wt/mol (chemostat). Chemostat data for two of the strains growing, autotrophically on thiosulfate gave Ymax values of 7.4 and 7.1 g dry wt/mol, which fall within the range observed with thiobacilli. The three new Thiobacillus strains had DNA containing 39.8 (KS2), 47.8 (KS1), and 50.5 (KL1) mol% G+C. All three were unusual in being able to grow not only on thiosulfate (aerobically or with denitrification), but also on CS2, carbonyl sulfide and methylated sulfides as sole energy substrates, and one was unique in being able to grow also on substituted thiophenes. They are the first organisms described to be capable, of anaerobic growth with denitrification on CS2. The fourth isolate (strain KL2) was gram-positive non-motile and nonspore-forming, with 39.0 mol% G+C. It had a restricted range of sulfur-containing growth substrates, could not grow methylotrophically or on autotrophic substrates other than CS2, and is not yet classifiable These organisms extend the range of eubacteria known to be capable of CS2 breakdown and demonstrate that several types of facultatively chemolithotrophic bacteria, able to grow exclusively on CS2, are associated with a CS2-producing plant.  相似文献   

13.
A novel, extremely halophilic, neutrophilic archaeon was isolated from a mixed sediment sample from different hypersaline lakes in Kulunda steppe (Altai, Russia) at 4 M NaCl with acetate and thiosulfate as substrates. The enrichment culture developed in two phases. During the first phase, a rapid growth of heterotrophic, red-colored, polymorphic rods occurred with the concomitant oxidation of thiosulfate to tetrathionate. The latter was subsequently oxidized to sulfate during a second, slower phase by extremely halophilic, chemolithoautotrophic bacteria belonging to the gamma subdivision of the Proteobacteria. The archaeal strain HG 1 was isolated from the first phase of the enrichment culture using acetate as substrate. It was able to oxidize thiosulfate to tetrathionate during heterotrophic growth with acetate—a property not yet demonstrated for any of the known haloarchaea. The presence of tetrathionate synthase, the enzyme responsible for thiosulfate oxidation, was detected in strain HG 1. The activity was associated with membranes and depended specifically on Cl, in contrast to the similar activity in extremely halophilic sulfur-oxidizing Gammaproteobacteria from the same enrichment, which was soluble and demanded both Na+ and Cl . Strain HG 1 was identified as a member of the genus Natronorubrum.  相似文献   

14.
Rhodopseudomonas globiformis is able to assimilate both sulfur moieties of thiosulfate. During growth on 35S-labelled thiosulfate the amino acids cysteine, homocysteine and methionine were labelled. The bulk of thiosulfate, however, was oxidized to tetrathionate and accumulated in the medium. A thiosulfate: acceptor oxidoreductase was partially purified and characterized. The enzyme oxidized thiosulfate to tetrathionate in the presence of ferricyanide. A c-type cytochrome isolated from this organism was reduced by this enzyme.  相似文献   

15.
Ribulose-1,5-bisphosphate carboxylase (RuBPCase) has been quantified by immunological methods in Thiobacillus neapolitanus cultivated under various growth conditions in the chemostat at a fixed dilution rate of 0.07 h-1. RuBPCase was a major protein in T. neapolitanus accounting for a maximum of 17% of the total protein during CO2 limitation and for a minimum of 4% during either ammonium- or thiosulfate limitation in the presence of 5% CO2 (v/v) in the gasphase. The soluble RuBPCase (i.e. in the cytosol) and the particulate RuBPCase (i.e. in the carboxysomes) were shown to be immunologically identical. The intracellular distribution of RuBPCase protein between carboxysomes and cytosol was quantified by rocket immunoelectrophoresis. The particulate RuBPCase content, which correlated with the volume density of carboxysomes, was minimal during ammonium limitation (1.3% of the total protein) and maximal during CO2 limitation (6.8% of the total protein). A protein storage function of carboxysomes is doubtful since nitrogen starvation did not result in degradation of particulate RuBPCase within 24 h. Proteolysis of RuBPCase was not detected. Carboxysomes, on the other hand, were degraded rapidly (50% within 1 h) after change-over from CO2 limitation to thiosulfate limitation with excess CO2. Particulate RuBPCase protein became soluble during this degradation of carboxysomes, but this did not result in an increase in soluble RuBPCase activity. Modification of RuBPCase resulting in a lower true specific activity was suggested to explain this phenomenon. The true specific activity was very similar for soluble and particulate RuBPCase during various steady state growth conditions (about 700 nmol/min·mg RuBPCase protein), with the exception of CO2-limited growth when the true specific activity of the soluble RuBPCase was extremely low (260 nmol/min ·mg protein). When chemostat cultures of T. neapolitanus were exposed to different oxygen tensions, neither the intracellular distribution of RuBPCase nor the content of RuBPCase were affected. Short-term labelling experiments showed that during CO2 limitation, when carboxysomes were most abundant, CO2 is fixed via the Calvin cycle. The data are assessed in terms of possible functions of carboxysomes.Abbreviations RuBPCase ribulose-1,5-bisphosphate carboxylase - PEP phosphoenolpyruvate - RIE rocket immunoelectrophoresis - CIE crossed immunoelectrophoresis  相似文献   

16.
Capacity for lithotrophic growth coupled to oxidation of reduced sulfur compounds was revealed in an Azospirillum strain, A. thiophilum BV-S T . Oxygen concentration in the medium was the major factor determining the type of energy metabolism (organotrophic or lithotrophic) in the presence of thiosulfate. Under aerobic conditions, metabolism of A. thiophilum BV-ST was organoheterotrophic, with thiosulfate oxidation to tetrathionate resulting from the interaction with reactive oxygen species, mostly H2O2, which was formed in the electron transport chain in the course of oxidation of organic electron donors. Under microaerobic conditions (2 mg/L O2 in liquid medium), A. thiophilum BV-ST carried out lithoheterotrophic (mixotrophic) metabolism; enzymes of the dissimilatory type of sulfur metabolism were responsible for thiosulfate oxidation to tetrathionate and sulfate. Two enzyme systems were found in the cells: thiosulfate dehydrogenase, which catalyzes incomplete oxidation of thiosulfate to tetrathionate and the thiosulfate-oxidizing Sox enzyme complex, which is involved in complete oxidation of thiosulfate to sulfate. The genetic determinant of a Sox complex component in A. thiophilum BV-ST was revealed. The soxB gene was found, and its expression under microaerobic conditions was observed to increase 32-fold compared to aerobic cultivation.  相似文献   

17.
All of fourteen sulfate-reducing bacteria tested were able to carry out aerobic respiration with at least one of the following electron donors: H2, lactate, pyruvate, formate, acetate, butyrate, ethanol, sulfide, thiosulfate, sulfite. Generally, we did not obtain growth with O2 as electron acceptor. The bacteria were microaerophilic, since the respiration rates increased with decreasing O2 concentrations or ceased after repeated O2 additions. The amounts of O2 consumed indicated that the organic substrates were oxidized incompletely to acetate; only Desulfobacter postgatei oxidized acetate with O2 completely to CO2. Many of the strains oxidized sulfite (completely to sulfate) or sulfide (incompletely, except Desulfobulbus propionicus); thiosulfate was oxidized only by strains of Desulfovibrio desulfuricans; trithionate and tetrathionate were not oxidized by any of the strains. With Desulfovibrio desulfuricans CSN and Desulfobulbus propionicus the oxidation of inorganic sulfur compounds was characterized in detail. D. desulfuricans formed sulfate during oxidation of sulfite, thiosulfate or elemental sulfur prepared from polysulfide. D. propionicus oxidized sulfite and sulfide to sulfate, and elemental sulfur mainly to thiosulfate. A novel pathway that couples the sulfur and nitrogen cycles was detected: D. desulfuricans and (only with nitrite) D. propionicus were able to completely oxidize sulfide coupled to the reduction of nitrate or nitrite to ammonia. Cell-free extracts of both strains did not oxidize sulfide or thiosulfate, but formed ATP during oxidation of sulfite (37 nmol per 100 nmol sulfite). This, and the effects of AMP, pyrophosphate and molybdate on sulfite oxidation, suggested that sulfate is formed via the (reversed) sulfate activation pathway (involving APS reductase and ATP sulfurylase). Thiosulfate oxidation with O2 probably required a reductive first step, since it was obtained only with energized intact cells.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - APS adenosine phosphosulfate or adenylyl sulfate  相似文献   

18.
Studies on thiobacillus denitrificans   总被引:1,自引:0,他引:1  
Summary Experiments with T. denitrificans have shown that this bacterium cannot develop in media devoid of ammonium salts, and that iron is required for growth. Pure cultures have been isolated by means of a modified medium which permits rapid growth in serial transfers. The organism has been characterized as an obligatory chemoautotroph which can oxidize a number of inorganic sulfur compounds (elementary sulfur, thiosulfate, tetrathionate) either aerobically with O2, or anaerobically with nitrate as oxidant.Nitrite was found to be highly toxic to the nitrate-reducing enzyme system; concentrations as low as 3.5 · 10-4 m inhibit denitrification in the presence of sulfur about 40%. In the presence of thiosulfate, nitrite is rapidly decomposed to NO; this gas can subsequently be used as an oxidant, and is reduced to N2. The formation of NO depends on the presence of both thiosulfate and nitrite.With resting cell suspensions CO2 assimilation has been established; the assimilation products are not merely carboxylation products, as demonstrated in experiments with C14O2.  相似文献   

19.
Thiobacillus tepidarius (type strain) was grown in microaerophilic conditions, on tetrathionate, thiosulfate or crystalline So. The rates of tetrathionate, thiosulfate, elemental sulfur (So) and sulfite oxidation of the different cultures were measured respirometrically, using exponentially growing cells, with an oxygen electrode. Cells growing on the three different sulfur compounds retain thiosulfate-, tetrathionate, and So-oxidizing activities (SOA), but lack respiratory sulfite-oxidizing activity. The SOA for all the cultures was almost totally inhibited by 50 M myxothiazol, an inhibitor of the quinone-cytochrome b region, and by 10 M of the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP). Tetrathionate- and thiosulfate-oxidizing activities were moderately and weakly inhibited by 50 M totally inhibited (>95%) all respiratory activities. This study suggests that electrons released by So oxidation enter the respiratory chain in the quinone-cytochrome b region.Abbreviation SOA sulfur-oxidizing activity  相似文献   

20.
Thiothrix has been shown for the first time to be able to grow chemolithoautotrophically with thiosulphate or carbon disulphide as sole energy substrate. Thiosulphate served as the growth-limiting substrate for Thiothrix ramosa in chemostat culture. Maximum growth yield (Ymax) from yields at growth rates between 0.029–0.075 h-1 was 4.0 g protein/mol thiosulphate oxidized. The key enzyme of the Calvin cycle, ribulose 1,5-bisphosphate carboxylase, was present in these cells, as were rhodanese, adenylyl sulphate (APS) reductase and sulphur-oxidizing enzyme. Thiosulphate-grown cells oxidized thiosulphate, sulphide, tetrathionate and carbon disulphide. Oxidation kinetics for sulphide, thiosulphate and tetrathionate were biphasic: oxygen consumption during the fast first phase of oxidation indicated oxidation of sulphide, and the sulphane moieties of thiosulphate and tetrathionate, to elemental sulphur, before further oxidation to sulphate. Kinetic constants for these four substrates were determined. T. ramosa also grew mixotrophically in batch culture on lactate with a number of organic sulphur compounds: carbon disulphide, methanethiol and diethyl sulphide. Substituted thiophenes were also used as sole substrates. The metabolic versatility of T. ramosa is thus much greater than previously realised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号