首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Orientation and dispersal to suitable habitat affects fitness in many animals, but the factors that govern these behaviors are poorly understood. In many turtle species, hatchlings must orient and disperse to suitable aquatic habitat immediately after emergence from subterranean nests. Thus, the location of nest sites relative to aquatic habitats ideally should be associated with the direction of hatchling dispersal. At our study site, painted turtles (Chrysemys picta) nest to the west (on an island) and east (on the mainland) of a wetland, which determines the direction that hatchlings must travel to reach suitable aquatic habitat. To determine if hatchling orientation is intrinsically influenced by the location where their mothers nest, we employed a two-part cross-fostering experiment in the field, whereby half the eggs laid in mainland nests were swapped with half the eggs laid in island nests. Moreover, because C. picta hatchlings overwinter inside their nests, we performed a second cross-fostering experiment to fully decouple the effects of (1) the maternally chosen nest location, (2) the embryonic developmental location, and (3) the overwinter location. We released hatchlings into a circular arena in the field and found that turtles generally dispersed in a westerly direction, regardless of the maternally chosen nest location and independent of the locations of embryonic development and overwintering. Although this westerly direction was towards suitable aquatic habitat, we could not distinguish whether naïve hatchling turtles (i) use environmental cues/stimuli to orient their movement, or (ii) have an intrinsic bias to orient west in the absence of stimuli. Nevertheless, these findings suggest that the orientation behavior of naïve hatchling turtles during terrestrial dispersal is not dependent upon the location of maternally-chosen nest sites.  相似文献   

2.
Invasive species may undergo rapid change as they invade. Native species persisting in invaded areas may also experience rapid change over this short timescale relative to native populations in uninvaded areas. We investigated the response of the native Achillea millefolium to soil from Holcus lanatus‐invaded and uninvaded areas, and we sought to determine whether differential responses between A. millefolium from invaded (invader experienced) and uninvaded (invader naïve) areas were mediated by soil community changes. Plants grown from seed from experienced and naïve areas responded differently to invaded and uninvaded soil with respect to germination time, biomass, and height. Overall, experienced plants grew faster and taller than their naïve counterparts. Naïve native plants showed negative feedbacks with their home soil and positive feedbacks with invaded soil; experienced plants were less responsive to soil differences. Our results suggest that native plants naïve to invasion may be more sensitive to soil communities than experienced plants, consistent with recent studies. While differences between naïve and experienced plants are transgenerational, our design cannot differentiate between differences that are genetically based, plastic, or both. Regardless, our results highlight the importance of seed source and population history in restoration, emphasizing the restoration potential of experienced seed sources.  相似文献   

3.
Sea turtles undertake long migrations in the open ocean, during which they rely at least partly on magnetic cues for navigation. In principle, sensitivity to polarized light might be an additional sensory capability that aids navigation. Furthermore, polarization sensitivity has been linked to ultraviolet (UV) light perception which is present in sea turtles. Here, we tested the ability of hatchling loggerheads (Caretta caretta) to maintain a swimming direction in the presence of broad-spectrum polarized light. At the start of each trial, hatchling turtles, with their magnetic sense temporarily impaired by magnets, successfully established a steady course towards a light-emitting diode (LED) light source while the polarized light field was present. When the LED was removed, however, hatchlings failed to maintain a steady swimming direction, even though the polarized light field remained. Our results have failed to provide evidence for polarized light perception in young sea turtles and suggest that alternative cues guide the initial migration offshore.  相似文献   

4.
The lady beetle Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae) is an important predator of aphids in agroecosystems. The inundative release of coccinellid beetles can be an effective biological control strategy. An understanding of how biological control agents perceive and use stimuli from host plants is the key to successfully implement commercially produced predators. Here, we studied the relative role of visual and volatile cues. Dual‐choice assays using foraging‐naïve and foraging‐experienced P. japonica adults were conducted using cotton plants [Gossypium hirsutum L. (Malvaceae)] with or without infestation by the cotton aphid, Aphis gossypii (Glover) (Hemiptera: Aphididae). Overall, experienced beetles were more attracted than naïve beetles toward cues associated with aphid‐infested plants. Experienced beetles were also more responsive to olfactory cues compared with naïve beetles. Both foraging‐naïve and ‐experienced lady beetles integrate olfactory and visual cues from plants infested with aphids, with an apparently greater reliance on olfactory cues. The results suggest that foraging experience may increase prey location in P. japonica.  相似文献   

5.
The loggerhead turtle (Caretta caretta) is an endangered marine reptile for whom assessing population health requires knowledge of demographic parameters such as individual growth rate. In Cape Verde, as within several populations, adult female loggerhead sea turtles show a size-related behavioral and trophic dichotomy. While smaller females are associated with oceanic habitats, larger females tend to feed in neritic habitats, which is reflected in their physiological condition and in their offspring. The ratio of RNA/DNA provides a measure of cellular protein synthesis capacity, which varies depending on changes in environmental conditions such as temperature and food availability. The purpose of this study was to evaluate the combined use of morphometric data and biochemical indices as predictors of the physiological condition of the females of distinct sizes and hatchlings during their nesting season and how temperature may influence the physiological condition on the offspring. Here we employed biochemical indices based on nucleic acid derived indices (standardized RNA/DNA ratio-sRD, RNA concentration and DNA concentration) in skin tissue as a potential predictor of recent growth rate in nesting females and hatchling loggerhead turtles. Our major findings were that the physiological condition of all nesting females (sRD) decreased during the nesting season, but that females associated with neritic habitats had a higher physiological condition than females associated with oceanic habitats. In addition, the amount of time required for a hatchling to right itself was negatively correlated with its physiological condition (sRD) and shaded nests produced hatchlings with lower sRD. Overall, our results showed that nucleic acid concentrations and ratios of RNA to DNA are an important tool as potential biomarkers of recent growth in marine turtles. Hence, as biochemical indices of instantaneous growth are likely temperature-, size- and age-dependent, the utility and validation of these indices on marine turtles stocks deserves further study.  相似文献   

6.
ABSTRACT We studied Blanding's turtle (Emydoidea blandingii) microhabitat in natural wetlands and wetlands constructed for the turtles in Dutchess County, New York, USA. Investigation of these topics can provide information on ways to increase the extent of Blanding's turtle habitat, improve its quality, and assure that conservation or restoration managers do not overlook key habitat characteristics. Microhabitat was determined by radiotracking individuals to their exact locations and recording habitat variables. Blanding's turtles were associated with shallow water depths (x̄ = 30 cm), muck substrates, and areas of abundant vegetation (total cover xM = 87%). Buttonbush (Cephalanthus occidentalis)had the greatest mean total cover (29%). In the constructed wetlands, Blanding's turtles were associated with significantly less cover and warmer water than in the natural wetlands. Blanding's turtles appeared to be using the constructed wetlands to bask and forage in the spring and early summer but moved to deeper wetlands in late summer when the constructed wetlands dried up or became too warm. For Blanding's turtles, new habitat should contain abundant emergent vegetation (including buttonbush in Dutchess County and other areas where the turtles are known to use buttonbush swamps), basking areas, muck, floating plant material, and submerged aquatic vegetation. Blanding's turtle's use of constructed wetlands highlights the value of a complex of connected wetland habitats in providing for the varied needs of the turtle.  相似文献   

7.
Invaders exert new selection pressures on the resident species, for example, through competition for resources or by using novel weapons. It has been shown that novel weapons aid invasion but it is unclear whether native species co‐occurring with invaders have adapted to tolerate these novel weapons. Those resident species which are able to adapt to new selective agents can co‐occur with an invader while others face a risk of local extinction. We ran a factorial common garden experiment to study whether a native plant species, Anthriscus sylvestris, has been able to evolve a greater tolerance to the allelochemicals exerted by the invader, Lupinus polyphyllus. Lupinus polyphyllus produces allelochemicals which potentially act as a novel, strong selective agent on A. sylvestris. We grew A. sylvestris seedlings collected from uninvaded (naïve) and invaded (experienced) sites growing alone and in competition with L. polyphyllus in pots filled with soil with and without activated carbon. Because activated carbon absorbs allelochemicals, its addition should improve especially naïve A. sylvestris performance in the presence of the invader. To distinguish the allelochemicals absorption and fertilizing effects of activated carbon, we grew plants also in a mixture of soil and fertilizer. A common garden experiment indicated that the performances of naïve and experienced A. sylvestris seedlings did not differ when grown with L. polyphyllus. The addition of activated carbon, which reduces interference by allelochemicals, did not induce differences in their performances although it had a positive effect on the aboveground biomass of A. sylvestris. Together, these results suggest that naïve and experienced A. sylvestris plants tolerated equally the invader L. polyphyllus and thus the tolerance has not occurred over the course of invasion.  相似文献   

8.
After emerging from underground nests, sea turtle hatchlings migrate through the surf zone and out to the open ocean. During this migration, both waves and water currents can disrupt hatchling orientation by unpredictably rotating the turtles away from their migratory headings. In addition, waves cause turtles to roll and pitch, temporarily impeding forward swimming by forcing the hatchlings into steeply inclined positions. To maintain seaward orientation and remain upright in the water column, hatchlings must continuously compensate for such displacements. As a first step toward determining how this is achieved, we studied the responses of loggerhead (Caretta caretta L.) sea turtle hatchlings to rotational displacements involving yaw, roll, and pitch. Hatchlings responded to rotations in the horizontal plane (yaw) by extending the rear flipper on the side opposite the direction of rotation. Thus, the flipper presumably acts as a rudder to help turn the turtle back toward its original heading. Turtles responded to rotations in the roll plane with stereotypic movements of the front flippers that act to right the hatchlings with respect to gravity. Finally, hatchlings responded to rotations in the pitch plane with movements of the hind flippers that appear likely to curtail or counteract the pitching motion. Thus, the results of these experiments imply that young sea turtles emerge from their nests possessing a suite of stereotypic behavioral responses that function to counteract rotational displacements, enable the animals to maintain equilibrium, and facilitate efficient movement toward the open sea.  相似文献   

9.
Overwintering habits of hatchling Blanding's turtles (Emydoidea blandingii) are unknown. To determine whether these turtles are able to survive winter in aquatic habitats, we submerged hatchlings in normoxic (155 mmHg Po2) and hypoxic (6 mmHg Po2) water at 4 degrees C, recording survival times and measuring changes in key physiological variables. For comparison, we simultaneously studied hatchling softshell (Apalone spinifera) and snapping (Chelydra serpentina) turtles, which are known to overwinter in aquatic habitats. In normoxic water, C. serpentina and A. spinifera survived to the termination of the experiment (76 and 77 d, respectively). Approximately one-third of the E. blandingii died during 75 d of normoxic submergence, but the cause of mortality was unclear. In hypoxic water, average survival times were 6 d for A. spinifera, 13 d for E. blandingii, and 19 d for C. serpentina. Mortality during hypoxic submergence was probably caused by metabolic acidosis, which resulted from accumulated lactate. Unlike the case with adult turtles, our hatchlings did not increase plasma calcium and magnesium, nor did they sequester lactate within the shell. Our results suggest that hatchling E. blandingii are not particularly well suited to hibernation in hypoxic aquatic habitats.  相似文献   

10.
During their natal dispersal hatchling sea turtles depart their nest, beach and inshore areas quickly to move into offshore developmental habitat using their finite energy stores. Patterns of fuel use and endocrine responses that could facilitate hatchling sea turtle dispersal activity are poorly understood. This study, examined aspects of intermediary metabolism by measuring plasma fuel use and an endocrine response of hatchling green turtles (Chelonia mydas) during terrestrial and aquatic activity coinciding with natal dispersal. Specifically, we measured plasma concentrations of glucose, non-esterised free fatty acids and protein to gauge the contributions of carbohydrate, lipid and protein metabolism for fuelling natal dispersal. In addition, we measured plasma levels of the steroid hormone corticosterone (CORT) a hormone implicated in regulating a number of metabolic events associated with migration and energy use in vertebrates. During terrestrial activity, hatchlings ascended through the sand from their nests and exhibited significant increases in plasma CORT and lactate indicating intense periods of anaerobic activity. During swimming, all plasma metabolites, with the exception of plasma protein, peaked between 1 and 4 h post-beginning swimming activity. Plasma CORT peaked at between 3 and 5 h of swimming activity. These plasma concentrations are consistent with intensive activity inducing catabolism of carbohydrate, lipid and protein stores to support prolonged activity. These results are similar to other vertebrates and suggest a relatively uniform cascade of physiological processes during such arduous migratory events.  相似文献   

11.
We performed an experiment at a field site in north-central Nebraska to assess the role of the nest environment in inducing variation in bone mineral content in hatchling painted turtles Chrysemys picta (Schneider 1783). The contents of several newly constructed nests were manipulated by reciprocal transplant, after which the eggs were allowed to incubate for 8 wk under natural conditions. The nests were then excavated, and the eggs were brought into the laboratory to complete incubation and hatch under standard conditions of temperature and moisture. The hatchlings were killed, and their carcasses and residual yolks were analyzed separately for calcium and phosphorus. More of the random variation in carcass calcium and phosphorus was related to the nest in which eggs incubated (37% and 42%, respectively) than was associated with the clutch of origin (21% and 37%). Moreover, hatchlings from some nests contained substantially more calcium and phosphorus than did hatchlings from other nests, both in terms of the absolute amounts of the elements in their carcasses (pointing to variation in body size) and in terms of the concentrations of those elements (pointing to variation in bone density). The amounts of calcium and phosphorus in carcasses of hatchlings were positively correlated with changes in mass of their eggs during the 8 wk that the eggs incubated in nests in the field, thereby indicating that the influence of the nest environment on developing embryos probably was mediated by water exchanges experienced by the eggs. These findings indicate that developmental plasticity underlies a major fraction of the variation in mineral content of hatchling painted turtles emerging from nests in the field. Phenotypic variation attributable to plasticity consequently needs to be addressed in models for life-history evolution of painted turtles and other chelonians producing eggs with soft, flexible shells.  相似文献   

12.
Numerous semiochemicals have been isolated from several species of astigmatid mites with various identified or unidentified functions. Alarm pheromonal activity is widespread with neryl formate and neral, being the most common compounds eliciting alarm response in conspecifics. The cosmopolitan astigmatid mite Suidasia medanensis (= S. pontifica) Oudemans (Acari: Suidasidae) has been reported to use neral as an alarm pheromone, but neral can also act as an allomone towards predators of oribatid mites. Suidasia medanensis can be utilised as a factitious prey for mass‐rearing of the phytoseiid predatory mite Amblyseius (= Typhlodromips) swirskii (Athias‐Henriot) (Acari: Phytoseiidae), which is used for biological control of insect and mite pests in protected crops. This study investigated the potential defence properties of the S. medanensis volatiles against A. swirskii, comparing the repellency to pollen‐reared (naïve) vs. S. medanensis‐reared (experienced) predators using a synthetic blend of the isomers neral and geranial (1:1) as a model compound. In a repellency bioassay, the synthetic blend elicited a significant repellence to A. swirskii with no difference between naïve and experienced predators. During capture success studies, S. medanensis under repeated attack could release sufficient quantities of the defence volatile to deter 1–5 attacks from A. swirskii, whereas hexane‐treated S. medanensis artificially depleted of volatiles were significantly more vulnerable to an attack. This is the first report of an astigmatid defence volatile with repellent activity to a phytoseiid mite and the starting point to understanding semiochemical interactions in any current or novel factitious predator‐prey mass‐rearing system.  相似文献   

13.
Communal nesting lizards may be vulnerable to climate warming, particularly if air temperatures regulate nest temperatures. In southeastern Australia, velvet geckos Oedura lesueurii lay eggs communally inside rock crevices. We investigated whether increases in air temperatures could elevate nest temperatures, and if so, how this could influence hatching phenotypes, survival, and population dynamics. In natural nests, maximum daily air temperature influenced mean and maximum daily nest temperatures, implying that nest temperatures will increase under climate warming. To determine whether hotter nests influence hatchling phenotypes, we incubated eggs under two fluctuating temperature regimes to mimic current ‘cold’ nests (mean = 23.2 °C, range 10–33 °C) and future ‘hot’ nests (27.0 °C, 14–37 °C). ‘Hot’ incubation temperatures produced smaller hatchlings than did cold temperature incubation. We released individually marked hatchlings into the wild in 2014 and 2015, and monitored their survival over 10 months. In 2014 and 2015, hot‐incubated hatchlings had higher annual mortality (99%, 97%) than cold‐incubated (11%, 58%) or wild‐born hatchlings (78%, 22%). To determine future trajectories of velvet gecko populations under climate warming, we ran population viability analyses in Vortex and varied annual rates of hatchling mortality within the range 78– 96%. Hatchling mortality strongly influenced the probability of extinction and the mean time to extinction. When hatchling mortality was >86%, populations had a higher probability of extinction (PE: range 0.52– 1.0) with mean times to extinction of 18–44 years. Whether future changes in hatchling survival translate into reduced population viability will depend on the ability of females to modify their nest‐site choices. Over the period 1992–2015, females used the same communal nests annually, suggesting that there may be little plasticity in maternal nest‐site selection. The impacts of climate change may therefore be especially severe on communal nesting species, particularly if such species occupy thermally challenging environments.  相似文献   

14.
Similarity of dispersal behavior among siblings is common invertebrates. However, little is known about the factors (genetic,prenatal, postnatal) generating this similarity. Here we analyzedpotential influences on the dispersal patterns of multiple familiesof hatchling fence lizards, Sceloporus occidentalis. We capturednear-term females from the field, incubated their eggs in thelaboratory, measured various traits of the hatchlings and dams,and then released the hatchlings at a number of sites in nature.We recaptured hatchlings 5–6 weeks later and measuredthe direct distance to the release site. Because we treatedhatchlings (from eggs to release) randomly with respect to sibship,we eliminated the possibility that any observed sibling similarityin dispersal is merely an artifact of common postnatal influences.To analyze dispersal, we developed a new method that does notmake an arbitrary choice of a threshold distance separatingdispersers from nondispersers. We found a significant familyeffect on dispersal. We suspect that this family effect originatesfrom genetic influences rather than from prenatal ones. Indeed,hatchling dispersal was remarkably unrelated to numerous traits(of clutches, mothers, or hatchlings) that might reflect prenataleffects. However, we did find that males were more likely todisperse than females, as predicted for polygynous species.Finally, characteristics of the release site did not appearto influence dispersal.  相似文献   

15.
Predation is a pervasive selective agent shaping a prey's behaviour, morphology and life history. To survive, prey animals have to respond adaptively to predation threats and this can be achieved through learned predator recognition. Cultural transmission of predator recognition is likely a widespread means of learning in social animals, including mammals, birds and fishes. However, no studies have investigated the cultural transmission of predator recognition in amphibians. In our study, we examined whether naïve woodfrog (Rana sylvatica) tadpoles can acquire the recognition of the odour of a predatory tiger salamander (Ambystoma tigrinum) from experienced conspecifics. After conditioning some tutors to recognize salamander odour, we paired naïve observer tadpoles with either a salamander‐naïve or salamander‐experienced tutor and exposed the pairs to either salamander odour or a water control. Observers were subsequently tested alone for a response to salamander odour. We found that when given salamander odour, observer tadpoles that were paired with a salamander‐experienced tutor successfully learned to recognize the salamander odour as a threat, whereas the observers paired with salamander‐naïve tutors did not. Likewise, tadpoles exposed to the water control did not learn to recognize the salamander regardless of whether they were paired with a naïve or experienced tutor. This is the first study demonstrating cultural transmission of predator recognition in an amphibian species.  相似文献   

16.
The forests of southeastern Amazonia are highly threatened by disturbances such as fragmentation, understory fires, and extreme climatic events. Large‐bodied frugivores such as the lowland tapir (Tapirus terrestris) have the potential to offset this process, supporting natural forest regeneration by dispersing a variety of seeds over long distances to disturbed forests. However, we know little about their effectiveness as seed dispersers in degraded forest landscapes. Here, we investigate the seed dispersal function of lowland tapirs in Amazonian forests subject to a range of human (fire and fragmentation) and natural (extreme droughts and windstorms) disturbances, using a combination of field observations, camera traps, and light detection and ranging (LiDAR) data. Tapirs travel and defecate more often in degraded forests, dispersing much more seeds in these areas [9,822 seeds per ha/year (CI95% = 9,106; 11,838)] than in undisturbed forests [2,950 seeds per ha/year (CI95% = 2,961; 3,771)]. By effectively dispersing seeds across disturbed forests, tapirs may contribute to natural forest regeneration—the cheapest and usually the most feasible way to achieve large‐scale restoration of tropical forests. Through the dispersal of large‐seeded species that eventually become large trees, such frugivores also contribute indirectly to maintaining forest carbon stocks. These functions may be critical in helping tropical countries to achieve their goals to maintain and restore biodiversity and its ecosystem services. Ultimately, preserving these animals along with their habitats may help in the process of natural recovery of degraded forests throughout the tropics. Abstract in Portuguese is available with online material.  相似文献   

17.
Dispersal is a critical process that has profound influence on ecological and evolutionary processes. Many proximate factors influence natal dispersal, but it is currently unclear whether the conditions experienced during incubation play an important role. We manipulated incubation temperature and used mark–recapture of released hatchlings to test this hypothesis. We tested this hypothesis on the prairie lizard (Sceloporus consobrinus) using two experimental islands in a local reservoir. Incubation conditions influenced some aspects of hatchling morphology, but had little influence on the probability of dispersal. As generally predicted for a polygynous species, males were more likely to disperse than females; however, the growth rate of dispersing vs. resident individuals varied depending on sex. Dispersive male lizards did not grow faster than resident males, whereas female dispersers grew significantly slower than resident females. Although our study was not specifically designed to test for differential costs of dispersal for males and females, this pattern is consistent with recent research demonstrating sex‐specific fitness costs of dispersal.  相似文献   

18.
Anthropogenic habitat disturbance has potential consequences for ant communities. However, there is limited information on the effects of ant responses on associated ecological processes such as seed dispersal. We investigated the effect of disturbance on the abundance, richness, and composition of ant communities and the resulting seed‐dispersal services for a herbaceous myrmecochore, Corydalis giraldii (Papaveraceae), in an undisturbed habitat (forest understory), moderately disturbed habitat (abandoned arable field), and highly disturbed habitat (road verge) on Qinling Mountains, China. In total, we recorded 13 ant species, and five out of these were observed to transport seeds. The community composition of dispersers was significantly different amongst habitats. The richness of the dispersers did not differ among the habitats, but their total abundance varied significantly across habitats and was 21% lower in the road verge than in the abandoned arable fields. The major seed‐dispersing ant species in both the forest understory and the abandoned arable field were large‐bodied (Myrmica sp. and Formica fusca, respectively), whereas the major seed‐dispersing ants found in the road verge were the small‐bodied Lasius alienus. This difference resulted in lower seed removal rates and dispersal distances in the road verge than in the other two habitats. The different dispersal patterns were attributed primarily to differences in dispersing ant abundance and identity, most likely in response to habitats with different degree of anthropogenic disturbance. The possible influence of disturbance on the ecological specialization of ant‐seed dispersal interaction is also discussed.  相似文献   

19.
This research is the first published study to report a relationship between climate variables and plastron growth increments of turtles, in this case the endangered Nova Scotia Blanding's turtle (Emydoidea blandingii). We used techniques and software common to the discipline of dendrochronology to successfully cross‐date our growth increment data series, to detrend and average our series of 80 immature Blanding's turtles into one common chronology, and to seek correlations between the chronology and environmental temperature and precipitation variables. Our cross‐dated chronology had a series intercorrelation of 0.441 (above 99% confidence interval), an average mean sensitivity of 0.293, and an average unfiltered autocorrelation of 0.377. Our master chronology represented increments from 1975 to 2007 (33 years), with index values ranging from a low of 0.688 in 2006 to a high of 1.303 in 1977. Univariate climate response function analysis on mean monthly air temperature and precipitation values revealed a positive correlation with the previous year's May temperature and current year's August temperature; a negative correlation with the previous year's October temperature; and no significant correlation with precipitation. These techniques for determining growth increment response to environmental variables should be applicable to other turtle species and merit further exploration.  相似文献   

20.
Temperature is one of most the important environmental factors that affect the ontogenesis of organisms. In this study, we incubated Chinese soft‐shelled turtle eggs at 28°C (control temperature, C treatment), a temperature with a 16°C cold shock and a 36°C heat shock twice per week (S treatment) or a ramp‐programmed temperature of 29 ± 9°C (with 12 hr (+) and 12 hr (?) every day) (F treatment). The incubation period, hatching success, hatchling weight, and locomotor performance were significantly different between the controls and the different heat treatment groups. The pathogen challenge results illustrated that hatchlings from the S treatment group were more resistant to bacterial infection, whereas hatchlings from the F treatment group were more vulnerable. We used RNA‐seq quantification analysis to identify differentially expressed genes (DEGs) of hatchlings in the S treatment group. Based on the functional annotation results for the DEGs, 9 genes were chosen to verify the RNA‐seq results. The background expression of DEGs was also analyzed for the three treatments, as was the regulation of the pathogen challenge. The results showed that 8 DEGs were related to the immune response after pathogen challenge and that temperature was an important factor in differential regulation of the immunity pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号