共查询到20条相似文献,搜索用时 0 毫秒
1.
Justin R. Eastwood Michelle L. Hall Niki Teunissen Sjouke A. Kingma Nataly Hidalgo Aranzamendi Marie Fan Michael Roast Simon Verhulst Anne Peters 《Molecular ecology》2019,28(5):1127-1137
Poor conditions during early development can initiate trade‐offs that favour current survival at the expense of somatic maintenance and subsequently, future reproduction. However, the mechanisms that link early and late life‐history are largely unknown. Recently it has been suggested that telomeres, the nucleoprotein structures at the terminal end of chromosomes, could link early‐life conditions to lifespan and fitness. In wild purple‐crowned fairy‐wrens, we combined measurements of nestling telomere length (TL) with detailed life‐history data to investigate whether early‐life TL predicts fitness prospects. Our study differs from previous studies in the completeness of our fitness estimates in a highly philopatric population. The association between TL and survival was age‐dependent with early‐life TL having a positive effect on lifespan only among individuals that survived their first year. Early‐life TL was not associated with the probability or age of gaining a breeding position. Interestingly, early‐life TL was positively related to breeding duration, contribution to population growth and lifetime reproductive success because of their association with lifespan. Thus, early‐life TL, which reflects growth, accumulated early‐life stress and inherited TL, predicted fitness in birds that reached adulthood but not noticeably among fledglings. These findings suggest that a lack of investment in somatic maintenance during development particularly affects late life performance. This study demonstrates that factors in early‐life are related to fitness prospects through lifespan, and suggests that the study of telomeres may provide insight into the underlying physiological mechanisms linking early‐ and late‐life performance and trade‐offs across a lifetime. 相似文献
2.
Vanika Gupta Saudamini Venkatesan Martik Chatterjee Zeeshan A. Syed Vaishnavi Nivsarkar Nagaraj G. Prasad 《Evolution; international journal of organic evolution》2016,70(4):934-943
Maintenance and deployment of the immune system are costly and are hence predicted to trade‐off with other resource‐demanding traits, such as reproduction. We subjected this longstanding idea to test using laboratory experimental evolution approach. In the present study, replicate populations of Drosophila melanogaster were subjected to three selection regimes—I (Infection with Pseudomonas entomophila), S (Sham‐infection with MgSO4), and U (Unhandled Control). After 30 generations of selection flies from the I regime had evolved better survivorship upon infection with P. entomophila compared to flies from U and S regimes. However, contrary to expectations and previous reports, we did not find any evidence of trade‐offs between immunity and other life history related traits, such as longevity, fecundity, egg hatchability, or development time. After 45 generations of selection, the selection was relaxed for a set of populations. Even after 15 generations, the postinfection survivorship of populations under relaxed selection regime did not decline. We speculate that either there is a negligible cost to the evolved immune response or that trade‐offs occur on traits such as reproductive behavior or other immune mechanisms that we have not investigated in this study. Our research suggests that at least under certain conditions, life‐history trade‐offs might play little role in maintaining variation in immunity. 相似文献
3.
HOWARD P. RIESSEN 《Freshwater Biology》2012,57(7):1422-1433
1. Inducible defences are advantageous because they protect the prey while limiting associated fitness costs. The presence of these costs is an essential component of this conditional strategy, since their absence would favour constitutive (fixed) defences. In some cases, however, these costs have been difficult to measure because of complex interactions between the defences themselves, resultant life history changes and the organism’s environment. 2. The pond‐dwelling water flea, Daphnia pulex, forms defensive neck spines in response to kairomones released by predatory larvae of the phantom midge, Chaoborus. This predator–prey interaction and the formation of these inducible defences have been well studied, but costs associated with the development of neck spines remain unclear. In this study, I address this problem by analysing the effect of Chaoborus kairomones on the life history responses (and fitness costs associated with these responses) of two clones of D. pulex that are from the same pond population, but differ greatly in their degree of neck spine development. 3. Both D. pulex clones exhibited the same predator‐induced shifts in life history: larger size at birth, reduced juvenile growth rate (producing a smaller size at maturity), delayed reproduction and a reduction in the number of neonates produced after the first clutch. Relative fitness decreased significantly and to the same degree (c. 10% reduction in r) in each clone. This observed fitness cost was not directly related to the neck spines per se since the cost was the same in both clones, despite their considerable differences in neck spine development. Rather, it appears to be indirectly related to this antipredator morphology via a combination of delayed reproduction and a set of life history trade‐offs (decreased growth rate, decreased reproduction after the first clutch) for increased neonate body size, which is necessary for neck spines to be effective defences. This suite of induced responses is probably a result of local adaptation of these two D. pulex clones to their common pond environment. 4. Costs of inducible defences do not always entail direct allocation costs associated with forming and maintaining a defence, but may also involve indirect life history responses that are specific to particular environmental situations. This local adaptation would explain the highly variable life history responses observed among D. pulex clones from different pond environments. 相似文献
4.
Colin D. McClure Weihao Zhong Vicky L. Hunt Fiona M. Chapman Fiona V. Hill Nicholas K. Priest 《Evolution; international journal of organic evolution》2014,68(8):2225-2233
Many have argued that we may be able to extend life and improve human health through hormesis, the beneficial effects of low‐level toxins and other stressors. But, studies of hormesis in model systems have not yet established whether stress‐induced benefits are cost free, artifacts of inbreeding, or come with deleterious side effects. Here, we provide evidence that hormesis results in trade‐offs with immunity. We find that a single topical dose of dead spores of the entomopathogenic fungus, Metarhizium robertsii, increases the longevity of the fruit fly, Drosophila melanogaster, without significant decreases in fecundity. We find that hormetic benefits of pathogen challenge are greater in lines that lack key components of antifungal immunity (Dif and Turandot M). And, in outbred fly lines, we find that topical pathogen challenge enhances both survival and fecundity, but reduces ability to fight off live infections. The results provide evidence that hormesis is manifested by stress‐induced trade‐offs with immunity, not cost‐free benefits or artifacts of inbreeding. Our findings illuminate mechanisms underlying pathogen‐induced life‐history trade‐offs, and indicate that reduced immune function may be an ironic side effect of the “elixirs of life.” 相似文献
5.
We investigated life history trade-offs related to thermal tolerance in two sibling species, commonly referred to as the B and Q biotypes, of Bemisia tabaci. We focused on basal resistance to short unpredicted heat stress, which reflects the organism investment, during both optimal and stressful conditions, in insuring its survival. At 27 °C, the relative reproductive performance of B was seven-fold higher than Q. After short stress of 42 °C, these differences increased to 23-fold. A turnover took place after short stress of 43 and 45 °C, in which Q adults performed better. As the expression of the analysed Hsp70 and other stress-related genes was found to be higher in the Q species, our data likely reflects two different strategies for optimal performance. B lowers soma protection for achieving maximum reproduction ('direct inhibitory' trade-off model), whereas Q invests significant resources in being always 'ready' for a challenge. 相似文献
6.
The loss of parasitism in metazoan lineages is often seen as unlikely, but it has occurred in some lineages (e.g., leeches, lampreys). How and why parasitism is lost is aptly addressed by studying lampreys, because extant species include a range of feeding modes and parasitism has been lost repeatedly. An individual‐based model was developed to determine whether variations in survival and growth rates in the larval and juvenile stages could favour parasitic or nonparasitic strategies. A realization of the model for a Lampetra spp. population, a genus which includes parasitic and nonparasitic animals, indicated that both strategies could be successful. A different model realization of the nonparasitic species Lethenteron appendix also agreed with expectations, and only nonparasitic strategies were successful. Modelling anadromous Petromyzon marinus produced only parasitic animals, as expected, but suggested two different adult sizes should appear in the population, which has not been reported in the literature. Finally, a realization of an Ichthyomyzon castaneus population, known to be parasitic only, rarely selected for parasitism (c. 7% of model iterations), possibly because the population used to parameterize the model was unusual for the species. The results suggest that nonparasitic lineages in lampreys are common because parasitism, while offering better growth, also has lower survival. Additionally, nonparasitic species may be generated at different rates because growth and survival thresholds in the model favouring parasitism are close to observed estimates in some populations. Loss of parasitism can occur when life stages have different trade‐offs in growth and survivability. 相似文献
7.
Reproductive traits differ between intralacustrine Arctic charr morphs. Here, we examine three sympatric lacustrine Arctic charr morphs with respect to fecundity, egg size and spawning time/site to assess reproductive investments and trade‐offs, and possible fitness consequences. The littoral omnivore morph (LO‐morph) utilizes the upper water for feeding and reproduction and spawn early in October. The large profundal piscivore morph (PP‐morph) and the small profundal benthivore morph (PB‐morph) utilize the profundal habitat for feeding and reproduction and spawn in December and November, respectively. Females from all morphs were sampled for fecundity and egg‐size analysis. There were large differences between the morphs. The PB‐morph had the lowest fecundity (mean = 45, SD = 13) and smallest egg size (mean = 3.2 mm, SD = 0.32 mm). In contrast, the PP‐morph had the highest fecundity (mean = 859.5, SD = 462) and the largest egg size (mean = 4.5 mm, SD = 0.46 mm), whereas the LO‐morph had intermediate fecundity (mean = 580, SD = 225) and egg size (mean = 4.3, SD = 0.24 mm). Fecundity increased with increasing body size within each morph. This was not the case for egg size, which was independent of body sizes within morph. Different adaptations to feeding and habitat utilization have apparently led to a difference in the trade‐off between fecundity and egg size among the three different morphs. 相似文献
8.
Jessica A. Leivesley Luc F. Bussire Josephine M. Pemberton Jill G. Pilkington Kenneth Wilson Adam D. Hayward 《Ecology letters》2019,22(8):1203-1213
A trade‐off between current and future fitness potentially explains variation in life‐history strategies. A proposed mechanism behind this is parasite‐mediated reproductive costs: individuals that allocate more resources to reproduction have fewer to allocate to defence against parasites, reducing future fitness. We examined how reproduction influenced faecal egg counts (FEC) of strongyle nematodes using data collected between 1989 and 2008 from a wild population of Soay sheep in the St. Kilda archipelago, Scotland (741 individuals). Increased reproduction was associated with increased FEC during the lambing season: females that gave birth, and particularly those that weaned a lamb, had higher FEC than females that failed to reproduce. Structural equation modelling revealed future reproductive costs: a positive effect of reproduction on spring FEC and a negative effect on summer body weight were negatively associated with overwinter survival. Overall, we provide evidence that parasite resistance and body weight are important mediators of survival costs of reproduction. 相似文献
9.
Emilie Snell‐Rood Rickey Cothran Anne Espeset Punidan Jeyasingh Sarah Hobbie Nathan I. Morehouse 《Evolutionary Applications》2015,8(7):635-649
Variation in life‐history traits can have major impacts on the ecological and evolutionary responses of populations to environmental change. Life‐history variation often results from trade‐offs that arise because individuals have a limited pool of resources to allocate among traits. However, human activities are increasing the availability of many once‐limited resources, such as nitrogen and phosphorus, with potentially major implications for the expression and evolution of life‐history trade‐offs. In this review, we synthesize contemporary life history and sexual selection literature with current research on ecosystem nutrient cycling to highlight novel opportunities presented by anthropogenic environmental change for investigating life‐history trait development and evolution. Specifically, we review four areas where nutrition plays a pivotal role in life‐history evolution and explore possible implications in the face of rapid, human‐induced change in nutrient availability. For example, increases in the availability of nutrients may relax historical life‐history trade‐offs and reduce the honesty of signaling systems. We argue that ecosystems experiencing anthropogenic nutrient inputs present a powerful yet underexplored arena for testing novel and longstanding questions in organismal life‐history evolution. 相似文献
10.
Algae hold promise as a source of biofuel. Yet, the manner in which algae are most efficiently propagated and harvested is different from that used in traditional agriculture. In theory, algae can be grown in continuous culture and harvested frequently to maintain high yields with a short turnaround time. However, the maintenance of the population in a state of continuous growth will likely impose selection for fast growth, possibly opposing the maintenance of lipid stores desirable for fuel. Any harvesting that removes a subset of the population and leaves the survivors to establish the next generation may quickly select traits that escape harvesting. An understanding of these problems should help identify methods for retarding the evolution and enhancing biofuel production. 相似文献
11.
Most larval drosophilids eat the microorganisms that develop in rotting fruit, a relatively protein‐rich resource. By contrast, the spotted‐wing Drosophila suzukii Matsumara (Diptera: Drosophilidae) uniquely develops in ripening fruit, a protein‐poor, carbohydrate‐rich resource. This shift in larval nutritional niche has led to D. suzukii being a significant agricultural pest in the U.S.A. and Europe. Although occupying a new niche may benefit a species by reducing competition, adaptation in host use may generate trade‐offs affecting fitness. To test the hypothesis that fitness trade‐offs will change with adaptation to novel larval diets, D. suzukii larval development on either a diet of a fresh, ripe blueberry (a natural host) or standard artificial Drosophila media (protein‐rich) is compared and the effect of diet on development time from egg to adult, adult body size and male wing spot area, and female fecundity is assessed. Larval development time differs, with larvae on the blueberry emerging as adults earlier than those on the artificial medium, although other fitness measures do not vary between the two diets. In addition, the faster development time on a blueberry does not trade off with body size as expected, although early fecundity is delayed in females that develop on blueberries. Thus, adaptation to a novel larval diet environment does not come at a cost to the ability to develop in protein‐rich resources. 相似文献
12.
Kyle M. Benowitz Ashley U. Amukamara Elizabeth C. Mckinney Allen J. Moore 《Ecological Entomology》2019,44(1):11-16
1. Burying beetles (Nicrophorus spp.) provide an excellent model system to test predictions about the relationships between environment, life‐history and behaviour. All species in the genus display similar natural histories, breeding on vertebrate carcasses and providing parental care to developing offspring. However, variations in other aspects of species' ecologies provide a rich framework to examine the evolution of parental behaviours and other traits. 2. One little‐studied species, N. sayi, breeds in substantially colder temperatures than its congeners, creating a potentially harsh environment for offspring. Here, we examined the timing of reproductive and developmental events in this species, and also investigated the effects of removing parents on offspring performance. 3. We find that development is not only extremely slow in this species, but it is also delayed even in comparison to other burying beetles reared at similar temperatures. However, the presence of parents reduces the time that offspring take to leave the carcass. This decrease in development time does not appear to result in a trade‐off with mortality or body size. 4. From these results, we suggest that very slow development may be advantageous when living in a particularly cold environment. Additionally, one role of extended parental care may be to assist offspring in dealing with these harsh conditions, and to mitigate the potentially negative consequences of adopting such a slow life‐history strategy. 相似文献
13.
Kaczmarczyk AN Kopp A 《BioEssays : news and reviews in molecular, cellular and developmental biology》2011,33(1):5-12
We suggest that the commonly observed trade-offs between early- and late-life reproduction may be mediated by genetic variation in germline stem cell maintenance. Stem cell biology provides a natural framework and experimental methods for understanding the mechanistic basis of life-history evolution. At the same time, natural variation in life-history strategies can serve as a powerful tool for identifying the genes and molecular pathways involved in the maintenance of stem cells in aging adults. We illustrate the connections between life-history and stem cells with examples drawn primarily from Drosophila melanogaster and Caenorhabditis elegans, and suggest a number of testable hypotheses and avenues for future investigation that can be addressed with existing models and tools. 相似文献
14.
Stephanie S. Porter Kevin J. Rice 《Evolution; international journal of organic evolution》2013,67(2):599-608
Specialization and concomitant trade‐offs are assumed to underlie the non‐neutral coexistence of lineages. Trade‐offs across heterogeneous environments can promote diversity by preventing competitive exclusion. However, the importance of trade‐offs in maintaining diversity in natural microbial assemblages is unclear, as trade‐offs are frequently not detected in artificial evolution experiments. Stressful conditions associated with patches of heavy‐metal enriched serpentine soils provide excellent opportunities for examining how heterogeneity may foster genetic diversity. Using a spatially replicated design, we demonstrate that rhizobium bacteria symbiotic with legumes inhabiting contrasting serpentine and nonserpentine soils exhibit a trade‐off between a genotype's nickel tolerance and its ability to replicate rapidly. Furthermore, we detected adaptive divergence in rhizobial assemblages across soil type heterogeneity at multiple sites, suggesting that this trade‐off may promote the coexistence of phenotypically distinct bacterial lineages. Trade‐offs and adaptive divergence may be important factors maintaining the tremendous diversity within natural assemblages of bacteria. 相似文献
15.
1. It was determined if the predatory midge Corethrella appendiculata Grabham imposes a fitness cost in a native mosquito, Ochlerotatus triseriatus Say, and an invasive mosquito, Aedes albopictus Skuse. The hypothesis that decreased activity of immature prey in the presence of predator cues is associated with life history costs through all life cycle stages was tested. 2. In experiment 1, individual larvae of O. triseriatus or A. albopictus were raised in the presence or absence of predation cues at two resource levels. Prey were video recorded to detect behavioural responses and to measure development time, size at emergence, and adult longevity. In experiment 2, prey populations were reared in similar environments and the frequency of predator cue additions was varied. 3. Only O. triseriatus reduced its activity in the presence of predation cues. Predation cues were associated with longer immature development times and shorter adult life spans in O. triseriatus, whereas in A. albopictus, the cues were associated with a larger size of emerging adults. 4. In the present study, it was found that behavioural modifications during the larval stage can affect mosquitoes through multiple stages of their complex life cycle. The species‐specific behavioural differences are probably attributable to the longer evolutionary history O. triseriatus has with predators, relative to the invasive A. albopictus. 相似文献
16.
Catherine L. Debban Sara Okum Kathleen E. Pieper Ariana Wilson Regina S. Baucom 《Ecology and evolution》2015,5(22):5284-5294
Fitness costs are frequently invoked to explain the presence of genetic variation underlying plant defense across many types of damaging agents. Despite the expectation that costs of resistance are prevalent, however, they have been difficult to detect in nature. To examine the potential that resistance confers a fitness cost, we examined the survival and fitness of genetic lines of the common morning glory, Ipomoea purpurea, that diverged in the level of resistance to the herbicide glyphosate. We planted a large field experiment and assessed survival following herbicide application as well as fitness of the divergent selection lines in the absence of the herbicide. We found that genetic lines selected for increased resistance exhibited lower death compared to control and susceptible lines in the presence of the herbicide, but no evidence that resistant lines produced fewer seeds in the absence of herbicide. However, susceptible lines produced more viable seeds than resistant or control lines, providing some evidence of a fitness cost in terms of seed germination, and thus potential empirical support for the expectation of trait trade‐offs as a consequence of adaptation to novel environments. 相似文献
17.
Heightened temperature increases the development rate of mosquitoes. However, in Aedes aegypti (Diptera: Culicidae), the larvae of which commonly experience limited access to food in urban habitats, temperature effects on adult production may also be influenced by changes in the capacity of larvae to survive without food. We carried out experiments to investigate the effects of temperatures increasing at intervals of 2 °C from 20 °C to 30 °C on the growth, maturation rate and longevity of optimally fed larvae placed in starvation. Overall, both growth rate and starvation resistance were lower in the first three larval instars (L1-L3) compared with L4, in which growth of >75% occurred. Although increasing the temperature reduced the duration of each instar, it had a U-shaped impact in terms of the effect of initial growth on starvation resistance, which increased from L1 to L2 at 20 °C and 30 °C, remained constant at 22 °C and 28 °C, and decreased at 24 °C and 26 °C. Growth from L2 to L3 significantly increased starvation resistance only from 26 °C to 30 °C. Increased temperature (>22 °C) consistently reduced starvation resistance in L1. In L2-L4, increments of 2 °C decreased starvation resistance between 20 °C and 24 °C, but had weaker and instar-specific effects at >24 °C. These data show that starvation resistance in Ae. aegypti depends on both instar and temperature, indicating a trade-off between increased development rate and reduced starvation survival of early-instar larvae, particularly in the lower and middle temperatures of the dengue-endemic range of 20-30 °C. We suggest that anabolic and catabolic processes in larvae have distinct temperature dependencies, which may ultimately cause temperature to modify the density regulation of Ae. aegypti populations. 相似文献
18.
Zahida Sultanova Roberto García‐Roa Pau Carazo 《Journal of evolutionary biology》2020,33(8):1086-1096
Disentangling the relationship between age and reproduction is central to understand life‐history evolution, and recent evidence shows that considering condition‐dependent mortality is a crucial piece of this puzzle. For example, nonrandom mortality of ‘low‐condition’ individuals can lead to an increase in average lifespan. However, selective disappearance of such low‐condition individuals may also affect reproductive senescence at the population level due to trade‐offs between physiological functions related to survival/lifespan and the maintenance of reproductive functions. Here, we address the idea that condition‐dependent extrinsic mortality (i.e. simulated predation) may increase the age‐related decline in male reproductive success and with it the potential for sexual conflict, by comparing reproductive ageing in Drosophila melanogaster male/female cohorts exposed (or not) to condition‐dependent simulated predation across time. Although female reproductive senescence was not affected by predation, male reproductive senescence was considerably higher under predation, due mainly to an accelerated decline in offspring viability of ‘surviving’ males with age. This sex‐specific effect suggests that condition‐dependent extrinsic mortality can exacerbate survival‐reproduction trade‐offs in males, which are typically under stronger condition‐dependent selection than females. Interestingly, condition‐dependent extrinsic mortality did not affect mating success, hinting that accelerated reproductive senescence is due to a decrease in male post‐copulatory fitness components. Our results support the recent proposal that male ageing can be an important source of sexual conflict, further suggesting this effect could be exacerbated under more natural conditions. 相似文献
19.
An individual's or a population's fitness is the result of a large number of interacting life history traits and the environment. Little information is available on the phenotypic correlations among fitness components and fitness itself, especially outside of Drosophila melanogaster. We also lack detailed information on trade-offs among life history traits. Here we present the relationship between adult progeny production and eight components of fitness, as well as some observed trade-offs between life history traits in the housefly (Musca domestica). We briefly discuss some of the ramifications of these relationships. 相似文献
20.
T. Vogwill A. C. Comfort V. Furió R. C. MacLean 《Journal of evolutionary biology》2016,29(6):1223-1233
Bacterial persistence represents a simple of phenotypic heterogeneity, whereby a proportion of cells in an isogenic bacterial population can survive exposure to lethal stresses such as antibiotics. In contrast, genetically based antibiotic resistance allows for continued growth in the presence of antibiotics. It is unclear, however, whether resistance and persistence are complementary or alternative evolutionary adaptations to antibiotics. Here, we investigate the co‐evolution of resistance and persistence across the genus Pseudomonas using comparative methods that correct for phylogenetic nonindependence. We find that strains of Pseudomonas vary extensively in both their intrinsic resistance to antibiotics (ciprofloxacin and rifampicin) and persistence following exposure to these antibiotics. Crucially, we find that persistence correlates positively to antibiotic resistance across strains. However, we find that different genes control resistance and persistence implying that they are independent traits. Specifically, we find that the number of type II toxin–antitoxin systems (TAs) in the genome of a strain is correlated to persistence, but not resistance. Our study shows that persistence and antibiotic resistance are complementary, but independent, evolutionary adaptations to stress and it highlights the key role played by TAs in the evolution of persistence. 相似文献