首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Sexual conflict is increasingly recognized as a major force for evolutionary change and holds great potential for delineating variation in primate behavior and morphology. The goals of this review are to highlight the rapidly rising field of sexual conflict and the ongoing shift in our understanding of interactions between the sexes. We discuss the evidence for sexual conflict within the Order Primates, and assess how studies of primates have illuminated and can continue to increase our understanding of sexual conflict and sexual selection. Finally, we introduce a framework for understanding the behavioral, anatomical, and genetic expression of sexual conflict across primate mating systems and suggest directions for future research.  相似文献   

2.
  总被引:2,自引:0,他引:2  
Abstract Arnqvist (2004) raises some concerns with several of the points made by Pizzari and Snook (2003) on the study of sexually antagonistic coevolution (SAC) generated by sexual conflict, arguing that: (1) sexual conflict cannot be expressed in terms of average male and female fitness; (2) our criticism of current experimental approaches, particularly interpopulation crosses, is unjustified; and (3) the alternative experimental approach we proposed is problematic. Here we discuss and respond to these criticisms by: (1) clarifying that we can distinguish between SAC and mutualistic sexual coevolution by measuring changes in the average fitness of the reproducing subsamples of males and females of a population across generations, (2) maintaining that testing SAC using interpopulation crosses is undermined by the lack of a priori knowledge of what traits mediate SAC across isolated populations, and (3) reinforcing the advantages of our experimental approach to distinguish between sexually mutualistic and antagonistic selection.  相似文献   

3.
Because autosomal genes in sexually reproducing organisms spend on average half their time in each sex, and because the traits that they influence encounter different selection pressures in males and females, the evolutionary responses of one sex are constrained by processes occurring in the other sex. Although intralocus sexual conflict can restrict sexes from reaching their phenotypic optima, no direct evidence currently supports its operation in humans. Here, we show that the pattern of multivariate selection acting on human height, weight, blood pressure and glucose, total cholesterol, and age at first birth differs significantly between males and females, and that the angles between male and female linear (77.8 ± 20.5°) and nonlinear (99.1 ± 25.9°) selection gradients were closer to orthogonal than zero, confirming the presence of sexually antagonistic selection. We also found evidence for intralocus sexual conflict demonstrated by significant changes in the predicted male and female responses to selection of individual traits when cross-sex genetic covariances were included and a significant reduction in the angle between male- and female-predicted responses when cross-sex covariances were included (16.9 ± 15.7°), compared with when they were excluded (87.9 ± 31.6°). We conclude that intralocus sexual conflict constrains the joint evolutionary responses of the two sexes in a contemporary human population.  相似文献   

4.
    
The independent evolution of the sexes may often be constrained if male and female homologous traits share a similar genetic architecture. Thus, cross-sex genetic covariance is assumed to play a key role in the evolution of sexual dimorphism (SD) with consequent impacts on sexual selection, population dynamics, and speciation processes. We compiled cross-sex genetic correlations ( r MF) estimates from 114 sources to assess the extent to which the evolution of SD is typically constrained and test several specific hypotheses. First, we tested if r MF differed among trait types and especially between fitness components and other traits. We also tested the theoretical prediction of a negative relationship between r MF and SD based on the expectation that increases in SD should be facilitated by sex-specific genetic variance. We show that r MF is usually large and positive but that it is typically smaller for fitness components. This demonstrates that the evolution of SD is typically genetically constrained and that sex-specific selection coefficients may often be opposite in sign due to sub-optimal levels of SD. Most importantly, we confirm that sex-specific genetic variance is an important contributor to the evolution of SD by validating the prediction of a negative correlation between r MF and SD.  相似文献   

5.
    
Elaborate sexually selected ornaments and armaments are costly but increase the reproductive success of their bearers (usually males). It has been postulated that high-quality males can invest disproportionately more in such traits, making those traits honest signals of genetic quality. However, genes associated with such traits may have sexually antagonistic effects on fitness. Here, using a bulb mite Rhizoglyphus robini, a species in which a distinct dimorphism exists between males in the expression of a sexually selected weapon, we compare inbreeding and gender load between lines derived from armed fighters and unarmed scramblers. After four generations of sib-mating, inbreeding depression for female fitness was significantly lower in fighter-derived lines compared to scrambler-derived lines, suggesting that fighter males had significantly higher genetic quality. However, outbred females from fighter-derived lines had significantly lower fitness compared to outbred females from scrambler-derived lines, demonstrating significant gender load associated with the presence of a sexually selected male weapon. Our results imply that under outbreeding, genetic benefits of mating with bearers of elaborate sexually selected traits might be swamped by the costs of decreased fitness of female progeny due to sexually antagonistic effects.  相似文献   

6.
    
Because homologous traits of males and females are likely to have a common genetic basis, sex-specific selection (often resulting from sexual selection on one sex) may generate an evolutionary tug-of-war known as intralocus sexual conflict, which will constrain the adaptive divergence of the sexes. Theory suggests that intralocus sexual conflict can be mitigated through reduction of the intersexual genetic correlation (rMF), predicting negative covariation between rMF and sexual dimorphism. In addition, recent work showed that selection should favor reduced expression of alleles inherited from the opposite-sex parent (intersexual inheritance) in traits subject to intralocus sexual conflict. For traits under sexual selection in males, this should be manifested either in reduced maternal heritability or, when conflict is severe, in reduced heritability through the opposite-sex parent in offspring of both sexes. However, because we do not know how far these hypothesized evolutionary responses can actually proceed, the importance of intralocus sexual conflict as a long-term constraint on adaptive evolution remains unclear. In this study, we investigated the genetic architecture of sexual and nonsexual morphological traits in Prochyliza xanthostoma. The lowest rMF and greatest dimorphism were exhibited by two sexual traits (head length and antenna length) and, among all traits, the degree of sexual dimorphism was correlated negatively with rMF. Moreover, sexual traits exhibited reduced maternal heritabilities, and the most strongly dimorphic sexual trait (antenna length) was heritable only through the same-sex parent in offspring of both sexes. Our results support theory and suggest that intralocus sexual conflict can be resolved substantially by genomic adaptation. Further work is required to identify the proximate mechanisms underlying these patterns.  相似文献   

7.
    
Understanding the maintenance of genetic variation in the face of selection remains a key issue in evolutionary biology. One potential mechanism for the maintenance of genetic variation is opposing selection during the diploid and haploid stages of biphasic life cycles universal among eukaryotic sexual organisms. If haploid and diploid gene expression both occur, selection can act in each phase, potentially in opposing directions. In addition, sex-specific selection during haploid phases is likely simply because male and female gametophytes/gametes tend to have contrasting life histories. We explored the potential for the maintenance of a stable polymorphism under ploidally antagonistic as well as sex-specific selection. Furthermore, we examined the role of the chromosomal location of alleles (autosomal or sex-linked). Our analyses show that the most permissible conditions for the maintenance of polymorphism occur under negative ploidy-by-sex interactions, where stronger selection for an allele in female than male diploids is coupled with weaker selection against the allele in female than male haploids. Such ploidy-by-sex interactions also promote allele frequency differences between the sexes. With constant fitness, ploidally antagonistic selection can maintain stable polymorphisms for autosomal and X-linked genes but not for Y-linked genes. We discuss the implications of our results and outline a number of biological settings where the scenarios modeled may apply.  相似文献   

8.
Because the magnitude of selection can vary between sexes and in space and time, sexually antagonistic selection is difficult to demonstrate. In a Swiss population of barn owls (Tyto alba), a heritable eumelanic colour trait (size of black spots on ventral feathers) was positively selected with respect to yearling survival only in females. It remains unclear whether the absence of negative selection in males is typical in this species. To tackle this issue indirectly, we measured the size of black spots in 1733 skin specimens collected by museums from 1816 to 2001 in seven European countries and in the Middle-East. The temporal change in spot size was sex- and country-specific. In males, spots became smaller particularly in three countries (Middle-East, Italy and Switzerland). In females, the size of spots increased significantly in two countries (UK and Spain) and decreased in two others (Germany and Switzerland). Because migration and phenotypic plasticity cannot explain these results, selection is the most likely cause. The weaker temporal change in spot size in females than males may be because of the combined effect of strong genetic correlation between the sexes and stronger negative selection in males than positive selection in females. We thus suggest that in the barn owl, spot size (or genetically correlated traits) is sexually antagonistically selected and that its pattern of selection may account for the maintenance of its variation and sexual dimorphism.  相似文献   

9.
    
Male and female genital morphology varies widely across many taxa, and even among populations. Disentangling potential sources of selection on genital morphology is problematic because each sex is predicted to respond to adaptations in the other due to reproductive conflicts of interest. To test how variation in this sexual conflict trait relates to variation in genital morphology we used our previously developed artificial selection lines for high and low repeated mating rates. We selected for high and low repeated mating rates using monogamous pairings to eliminate contemporaneous female choice and male–male competition. Male and female genital shape responded rapidly to selection on repeated mating rate. High and low mating rate lines diverged from control lines after only 10 generations of selection. We also detected significant patterns of male and female genital shape coevolution among selection regimes. We argue that because our selection lines differ in sexual conflict, these results support the hypothesis that sexually antagonistic coevolution can drive the rapid divergence of genital morphology. The greatest divergence in morphology corresponded with lines in which the resolution of sexual conflict over mating rate was biased in favor of male interests.  相似文献   

10.
11.
The sexual conflict hypothesis predicts that males evolve traits that exploit the higher parental investment of females, which generates selection for females to counter-evolve resistance. In Drosophila melanogaster it is now established that males harm females and that there is genetic variation among males for the degree of this harm. Genetic variation among females for resistance to harm from males, and the corresponding strength of selection on this variation, however, have not been quantified previously. Here we carryout a genome-wide screen for female resistance to harm from males. We estimate that the cost of interactions with males depresses lifetime fecundity of females by 15% (95% CI: 8.2-22.0), that genetic variation for female resistance constitutes 17% of total genetic variation for female adult fitness, and that propensity to remate in response to persistent male courtship is a major factor contributing to genetic variation for female resistance.  相似文献   

12.
    
Males and females share much of their genome, and as a result, intralocus sexual conflict is generated when selection on a shared trait differs between the sexes. This conflict can be partially or entirely resolved via the evolution of sex‐specific genetic variation that allows each sex to approach, or possibly achieve, its optimum phenotype, thereby generating sexual dimorphism. However, shared genetic variation between the sexes can impose constraints on the independent expression of a shared trait in males and females, hindering the evolution of sexual dimorphism. Here, we examine genetic constraints on the evolution of sexual dimorphism in Drosophila melanogaster cuticular hydrocarbon (CHC) expression. We use the extended G matrix, which includes the between‐sex genetic covariances that constitute the B matrix, to compare genetic constraints on two sets of CHC traits that differ in the extent of their sexual dimorphism. We find significant genetic constraints on the evolution of further dimorphism in the least dimorphic traits, but no such constraints for the most dimorphic traits. We also show that the genetic constraints on the least dimorphic CHCs are asymmetrical between the sexes. Our results suggest that there is evidence both for resolved and ongoing sexual conflict in D. melanogaster CHC profiles.  相似文献   

13.
Morphological traits involved in male-female sexual interactions, such as male genitalia, often show rapid divergent evolution. This widespread evolutionary pattern could result from sustained sexually antagonistic coevolution, or from other types of selection such as female choice or selection for species isolation. I reviewed the extensive but under-utilized taxonomic literature on a selected subset of insects, in which male-female conflict has apparently resulted in antagonistic coevolution in males and females. I checked the sexual morphology of groups comprising 500-1000 species in six orders for three evolutionary trends predicted by the sexually antagonistic coevolution hypothesis: males with species-specific differences and elaborate morphology in structures that grasp or perforate females in sexual contexts; corresponding female structures with apparently coevolved species-specific morphology; and potentially defensive designs of female morphology. The expectation was that the predictions were especially likely to be fulfilled in these groups. A largely qualitative overview revealed several surprising patterns: sexually antagonistic coevolution is associated with frequent, relatively weak species-specific differences in males, but male designs are usually relatively simple and conservative (in contrast to the diverse and elaborate designs common in male structures specialized to contact and hold females in other species, and also in weapons such as horns and pincers used in intra-specific battles); coevolutionary divergence of females is not common; and defensive female divergence is very uncommon. No cases were found of female defensive devices that can be facultatively deployed. Coevolutionary morphological races may have occurred between males and females of some bugs with traumatic insemination, but apparently as a result of female attempts to control fertilization, rather than to reduce the physical damage and infections resulting from insertion of the male's hypodermic genitalia. In sum, the sexually antagonistic coevolution that probably occurs in these groups has generally not resulted in rapid, sustained evolutionary divergence in male and female external sexual morphology. Several limitations of this study, and directions for further analyses are discussed.  相似文献   

14.
Theoretical analyses of selection on mutations affecting female responsiveness to male traits suggested that sexually antagonistic selection and traditional female choice are not exclusive alternatives. They can act simultaneously on the same female traits, and can either reinforce or act against each other. These analyses do not yield theoretical predictions regarding the relative frequency and importance of the two types of selection on female responsiveness, as the balance between them is affected by complex factors, including the frequency distribution of male traits, and the mechanisms of male action. Male–female interactions differ from many other evolutionary interactions involving potential evolutionary conflict, in that male and female genomes are irretrievably mixed in their offspring, thus increasing the possibility of indirect payoffs to one participant from the traits of its partner.  相似文献   

15.
    
Intralocus sexual conflict (IASC) arises when fitness optima for a shared trait differ between the sexes; such conflict may help maintain genetic variation within populations. Sex‐limited expression of sexually antagonistic traits may help resolve the conflict, but the extent of this resolution remains a subject of debate. In species with alternative male reproductive tactics, unresolved conflict should manifest more in a more sexually dimorphic male phenotype. We tested this prediction in the bulb mite (Rhizoglyphus robini), a species in which aggressive fighters coexist with benign scramblers. To do this, we established replicated lines in which we increased the proportion of each of the alternative male morphs using artificial selection. After approximately 40 generations, the proportion of fighters and scramblers stabilized at >0.9 in fighter‐ and scrambler‐selected lines, respectively. We then measured several female fitness components. As predicted by IASC theory, female fecundity and longevity were lower in lines selected for fighters and higher in lines selected for scramblers. This finding indicates that sexually selected phenotypes are associated with an ontogenetic conflict that is not easily resolved. Furthermore, we suggest that IASC may be an important mechanism contributing to the maintenance of genetic variation in the expression of alternative reproductive tactics.  相似文献   

16.
The evolution of female mate choice, broadly defined to include any female behaviour or morphology which biases matings towards certain male phenotypes, is traditionally thought to result from direct or indirect benefits which females acquire when mating with preferred males. In contrast, new models have shown that female mate choice can be generated by sexual conflict, where preferred males may cause a fitness depression in females. Several studies have shown that female Drosophila melanogaster bias matings towards large males. Here, we use male size as a proxy for male attractiveness and test how female fitness is affected by reproducing with large or small males, under two different male densities. Females housed with large males had reduced lifespan and aged at an accelerated rate compared with females housed with small males, and increased male density depressed female fitness further. These fitness differences were due to effects on several different fitness components. Female fitness covaried negatively with male courtship rate, which suggests a cost of courtship. Mating rate increased with male size, whereas female fitness peaked at an intermediate mating rate. Our results suggest that female mate choice in D. melanogaster is, at least in part, a by-product of sexual conflict over the mating rate.  相似文献   

17.
Sexual conflict has been predicted to drive reproductive isolation by generating arbitrary but rapid coevolutionary changes in reproductive traits among allopatric populations. A testable prediction of this proposal is that allopatric populations experiencing different levels of sexual conflict should exhibit different levels of reproductive isolation. We tested this prediction using experimentally evolved populations of the promiscuous Drosophila pseudoobscura. We manipulated sexual conflict by enforcing either monogamy, maintaining natural levels of promiscuity, or elevating promiscuity. Within each treatment, we carried out sympatric and allopatric crosses using replicated populations and examined pre-zygotic (number of mating pairs, mating speed and copulation duration) and post-zygotic (hybrid inviability and sterility) indicators of reproductive isolation. After 50 generations of selection, none of the measures conformed to predictions of sexual conflict driving reproductive isolation. Our results cannot be explained by lack of genetic variation or weak selection and suggest that sexual conflict may not be a widespread engine of speciation.  相似文献   

18.
D Punzalan  M Delcourt  H D Rundle 《Heredity》2014,112(2):143-148
Sexually antagonistic genetic variation can pose limits to the independent evolution and adaptation of the sexes. The extent of sexually antagonistic variation is reflected in the intersex genetic correlation for fitness (rwFM). Previous estimates of this correlation have been mostly limited to populations in environments to which they are already well adapted, making it difficult to gauge the importance of sexually antagonistic genetic variance during the early stages of adaptation, such as that occurring following abrupt environmental change or upon the colonization of new habitat. Here we assayed male and female lifetime fitness in a population of Drosophila serrata in four novel laboratory environments. We found that rwFM varied significantly across environments, with point estimates ranging from positive to negative values of considerable magnitude. We also found that the variability among estimates was because, at least in part, of significant differences among environments in the genetic variances of both male and female fitness, with no evidence of any significant changes in the intersex covariance itself, although standard errors of these estimates were large. Our results illustrate the unpredictable nature of rwFM in novel environments and suggest that, although sexually antagonistic genetic variance can be pronounced in some novel environments, it may have little effect in constraining the early stages of adaptation in others.  相似文献   

19.
The empirical foundation for sexual conflict theory is the data from many different taxa demonstrating that females are harmed while interacting with males. However, the interpretation of this keystone evidence has been challenged because females may more than counterbalance the direct costs of interacting with males by the indirect benefits of obtaining higher quality genes for their offspring. A quantification of this trade-off is critical to resolve the controversy and is presented here. A multi-generation fitness assay in the Drosophila melanogaster laboratory model system was used to quantify both the direct costs to females due to interactions with males and indirect benefits via sexy sons. We specifically focus on the interactions that occur between males and nonvirgin females. In the laboratory environment of our base population, females mate soon after eclosion and store sufficient sperm for their entire lifetime, yet males persistently court these nonvirgin females and frequently succeed in re-mating them. Females may benefit from these interactions despite direct costs to their lifetime fecundity if re-mating allows them to trade-up to mates of higher genetic quality and thereby secure indirect benefits for their offspring. We found that direct costs of interactions between males and nonvirgin females substantially exceeded indirect benefits through sexy sons. These data, in combination with past studies of the good genes route of indirect benefits, demonstrate that inter-sexual interactions drive sexually antagonistic co-evolution in this model system.  相似文献   

20.
Mating systems have a profound influence on the probability of conflict occurring between the sexes. Promiscuity is predicted to generate sexual conflict, thereby driving the evolution of male traits that harm females, whereas monogamy is expected to foster reproductive cooperation, thus rendering such traits redundant. We tested these predictions using experimentally evolved Drosophila pseudoobscura subject to different mating systems. Female survival was not influenced by the mating system treatment of her partner. However, females continuously housed with males evolving under elevated opportunities for female promiscuity produced fewer total progeny, but a relatively greater number of progeny early in their lives, than females housed with males evolving under obligate monogamy. We also found that promiscuous males courted females more frequently than monogamous males. Variation in male courtship frequency and progeny production patterns among treatments reinforces the critical importance of mating system variation for sexual conflict, during both pre‐ and post‐copulatory interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号