首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
The evolutionary equilibrium hypothesis was proposed to explain variation in egg rejection rates among individual hosts (intra‐ and interspecific) of avian brood parasites. Hosts may sometimes mistakenly reject own eggs when they are not parasitized (i.e. make recognition errors). Such errors would incur fitness costs and could counter the evolution of host defences driven by costs of parasitism (i.e. creating equilibrium between acceptors and rejecters within particular host populations). In the present study, we report the disappearance of host eggs from nonparasitized nests in populations of seven actual and potential hosts of the common cuckoo Cuculus canorus. Based on these data, we calculate the magnitude of the balancing parasitism rate provided that all eggs lost are a result of recognition errors. Importantly, because eggs are known to disappear from nests for reasons other than erroneous host rejection, our data represent the maximum estimates of such costs. Nonetheless, the disappearance of eggs was a rare event and therefore incurred low costs compared to the high costs of parasitism. Hence, costs as a result of recognition errors are probably of minor importance with respect to opposing selective pressure for the evolution of egg rejection in these hosts. We cannot exclude the possibility that low or intermediate egg rejection rates in some host populations may be caused by spatiotemporal variation in the occurrence of parasitism and gene flow, creating a variable influence of opposing costs as a result of recognition errors and the costs of parasitism.  相似文献   

2.
The empirical foundation for sexual conflict theory is the data from many different taxa demonstrating that females are harmed while interacting with males. However, the interpretation of this keystone evidence has been challenged because females may more than counterbalance the direct costs of interacting with males by the indirect benefits of obtaining higher quality genes for their offspring. A quantification of this trade-off is critical to resolve the controversy and is presented here. A multi-generation fitness assay in the Drosophila melanogaster laboratory model system was used to quantify both the direct costs to females due to interactions with males and indirect benefits via sexy sons. We specifically focus on the interactions that occur between males and nonvirgin females. In the laboratory environment of our base population, females mate soon after eclosion and store sufficient sperm for their entire lifetime, yet males persistently court these nonvirgin females and frequently succeed in re-mating them. Females may benefit from these interactions despite direct costs to their lifetime fecundity if re-mating allows them to trade-up to mates of higher genetic quality and thereby secure indirect benefits for their offspring. We found that direct costs of interactions between males and nonvirgin females substantially exceeded indirect benefits through sexy sons. These data, in combination with past studies of the good genes route of indirect benefits, demonstrate that inter-sexual interactions drive sexually antagonistic co-evolution in this model system.  相似文献   

3.
4.
The evolution of resistance to parasites is fundamentally important to disease ecology, yet we remain unable to predict when and how resistance will evolve. This is largely due to the context‐dependent nature of host‐parasite interactions, as the benefit of resistance will depend on the abiotic and biotic environment. Through experimental evolution of the plant pathogenic bacterium Pseudomonas syringae and two lytic bacteriophages across two different environments (high‐nutrient media and the tomato leaf apoplast), we demonstrate that de novo evolution of resistance is negligible in planta despite high levels of resistance evolution in vitro. We find no evidence supporting the evolution of phage‐selected resistance in planta despite multiple passaging experiments, multiple assays for resistance, and high multiplicities of infection. Additionally, we find that phage‐resistant mutants (evolved in vitro) did not realize a fitness benefit over phage‐sensitive cells when grown in planta in the presence of phage, despite reduced growth of sensitive cells, evidence of phage replication in planta, and a large fitness benefit in the presence of phage observed in vitro. Thus, this context‐dependent benefit of phage resistance led to different evolutionary outcomes across environments. These results underscore the importance of studying the evolution of parasite resistance in ecologically relevant environments.  相似文献   

5.
Antagonistic host–parasite interactions are rarely considered from an ecological perspective of the parasite. We used a blood‐feeding ectoparasite of boreal cervids, the deer ked (Lipoptena cervi L., Hippoboscidae), to study host‐dependent variation in a parasite's ability to cope with an abiotic environment during the free‐living stage(s) in two allopatric Fennoscandian populations. We found that a strongly host‐specific deer ked population in eastern Fennoscandia, exploiting only moose (Alces alces), produced the largest offspring that were the most cold‐tolerant and emerged the earliest as adults, when compared with the western Fennoscandian population that exploited two hosts efficiently. Within the western population, however, offspring produced on roe deer (Capreolus capreolus) were significantly larger, more cold‐tolerant, and had higher survival than those produced on moose in the same area. We discuss potential causes for both host‐specific and geographical differences in off‐host performance: (1) maternal host directly affects the offspring survival prospects; (2) divergent co‐evolution with local main host(s) has shaped the parasite's life history; and/or (3) off‐host performance is shaped by adaptation to the local abiotic environment. In conclusion, this study increases our understanding of the evolution of host–parasite interactions by demonstrating how geographical differences in host exploitation may result in differences in survival prospects outside the host.  相似文献   

6.
Aim Parasites with global distributions and wide host spectra provide excellent models for exploring the factors that drive parasite diversification. Here, we tested the relative force of host and geography in shaping population structure of a widely distributed and common ectoparasite of colonial seabirds, the tick Ixodes uriae. Location Two natural geographic replicates of the system: numerous seabird colonies of the North Pacific and North Atlantic Ocean basins. Methods Using eight microsatellite markers and tick samples from a suite of multi‐specific seabird colonies, we examined tick population structure in the North Pacific and compare patterns of diversity and structure to those in the Atlantic basin. Analyses included population genetic estimations of diversity and population differentiation, exploratory multivariate analyses, and Bayesian clustering approaches. These different analyses explicitly took into account both the geographic distance among colonies and host use by the tick. Results Overall, little geographic structure was observed among Pacific tick populations. However, host‐related genetic differentiation was evident, but was variable among host types and lower than in the North Atlantic. Main conclusions Tick population structure is concordant with the genetic structure observed in seabird host species within each ocean basin, where seabird populations tend to be less structured in the North Pacific than in the North Atlantic. Reduced tick genetic structure in the North Pacific suggests that host movement among colonies, and thus tick dispersal, is higher in this region. In addition to information on parasite diversity and gene flow, our findings raise interesting questions about the subtle ways that host behaviour, distribution and phylogeographic history shape the genetics of associated parasites across geographic landscapes.  相似文献   

7.
Phenotypic plasticity is an important mechanism for populations to respond to fluctuating environments, yet may be insufficient to adapt to a directionally changing environment. To study whether plasticity can evolve under current climate change, we quantified selection and genetic variation in both the elevation (RNE) and slope (RNS) of the breeding time reaction norm in a long‐term (1973–2016) study population of great tits (Parus major). The optimal RNE (the caterpillar biomass peak date regressed against the temperature used as cue by great tits) changed over time, whereas the optimal RNS did not. Concordantly, we found strong directional selection on RNE, but not RNS, of egg‐laying date in the second third of the study period; this selection subsequently waned, potentially due to increased between‐year variability in optimal laying dates. We found individual and additive genetic variation in RNE but, contrary to previous studies on our population, not in RNS. The predicted and observed evolutionary change in RNE was, however, marginal, due to low heritability and the sex limitation of laying date. We conclude that adaptation to climate change can only occur via micro‐evolution of RNE, but this will necessarily be slow and potentially hampered by increased variability in phenotypic optima.  相似文献   

8.
Population declines and extinctions of amphibians have been attributed to the chytrid fungus Batrachochytrium dendrobatidis (Bd), especially one globally emerging recombinant lineage (‘Bd‐GPL’). We used PCR assays that target the ribosomal internal transcribed spacer region (ITS) of Bd to determine the prevalence and genetic diversity of Bd in South Korea, where Bd is widely distributed but is not known to cause morbidity or mortality in wild populations. We isolated Korean Bd strains from native amphibians with low infection loads and compared them to known worldwide Bd strains using 19 polymorphic SNP and microsatellite loci. Bd prevalence ranged between 12.5 and 48.0%, in 11 of 17 native Korean species, and 24.7% in the introduced bullfrog Lithobates catesbeianus. Based on ITS sequence variation, 47 of the 50 identified Korean haplotypes formed a group closely associated with a native Brazilian Bd lineage, separated from the Bd‐GPL lineage. However, multilocus genotyping of three Korean Bd isolates revealed strong divergence from both Bd‐GPL and the native Brazilian Bd lineages. Thus, the ITS region resolves genotypes that diverge from Bd‐GPL but otherwise generates ambiguous phylogenies. Our results point to the presence of highly diversified endemic strains of Bd across Asian amphibian species. The rarity of Bd‐GPL‐associated haplotypes suggests that either this lineage was introduced into Korea only recently or Bd‐GPL has been outcompeted by native Bd strains. Our results highlight the need to consider possible complex interactions among native Bd lineages, Bd‐GPL and their associated amphibian hosts when assessing the spread and impact of Bd‐GPL on worldwide amphibian populations.  相似文献   

9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号