首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Predators unintentionally release chemical and other cues into their environment that can be used by prey to assess predator presence. Prey organisms can therefore perform specific antipredator behavior to reduce predation risk, which can strongly shape the outcome of trophic interactions. In contrast to aquatic systems, studies on cue‐driven antipredator behavior in terrestrial arthropods cover only few species to date. Here, we investigated occurrence and strength of antipredator behavior of the wood cricket Nemobius sylvestris toward cues of 14 syntopic spider species that are potential predators of wood crickets. We used two different behavioral arena experiments to investigate the influence of predator cues on wood cricket mobility. We further tested whether changes in wood cricket mobility can be explained by five predator‐specific traits: hunting mode, commonness, diurnal activity, predator–prey body–size ratio, and predator–prey life stage differences. Crickets were singly recorded (1) in separate arenas, either in presence or absence of spider cues, to analyze changes in mobility on filter paper covered with cues compared with normal mobility on filter paper without cues; and (2) in subdivided arenas partly covered with spider cues, where the crickets could choose between cue‐bearing and cue‐less areas to analyze differences in residence time and mobility when crickets are able to avoid cues. Crickets either increased or reduced their mobility in the presence of spider cues. In the experiments with cues and controls in separate arenas, the magnitude of behavioral change increased significantly with increasing predator–prey body size ratio. When crickets could choose between spider cues and control, their mobility was significantly higher in the presence of cues from common spider species than from rare spiders. We therefore conclude that wood crickets distinguish between cues from different predator species and that spiders unintentionally release a species‐specific composition and size‐dependent quantity of cues, which lead to distinct antipredator behavior in wood crickets.  相似文献   

2.
Animals are exposed to different predators over their lifespan. This raises the question of whether exposure to predation risk in an early life stage affects the response to predators in subsequent life stages. In this study, we used wood frogs (Rana sylvatica) to test whether exposure to cues indicating predation risk from dragonfly larvae during the wood frog larval stage affected post‐metamorphic activity level and avoidance of garter snake chemical cues. Dragonfly larvae prey upon wood frogs only during the larval stage, whereas garter snakes prey upon wood frogs during both the larval stage and the post‐metamorphic stage. Exposure to predation risk from dragonflies during the larval stage caused post‐metamorphic wood frog juveniles to have greater terrestrial activity than juvenile wood frogs that were not exposed to larval‐stage predation risk from dragonflies. However, exposure to predation risk as larvae did not affect juvenile wood frog responses to chemical cues from garter snakes. Wood frogs exposed as larvae to predation risk from dragonfly larvae avoided garter snake chemical cues to the same extent as wood frog larvae not exposed to predation risk from dragonfly larvae. Our results demonstrate that while some general behaviors exhibit carry‐over effects from earlier life stages, behavioral responses to predators may remain independent of conditions experienced in earlier life stages.  相似文献   

3.
Ecological communities are partly structured by indirect interactions, where one species can indirectly affect another by altering its interactions with a third species. In the absence of direct predation, nonconsumptive effects of predators on prey have important implications for subsequent community interactions. To better understand these interactions, we used a Daphnia‐parasite‐predator cue system to evaluate if predation risk affects Daphnia responses to a parasite. We investigated the effects of predator cues on two aspects of host–parasite interactions (susceptibility to infection and infection intensity), and whether or not these effects differed between sexes. Our results show that changes in response to predator cues caused an increase in the prevalence and intensity of parasite infections in female predator‐exposed Daphnia. Importantly, the magnitude of infection risk depended on how long Daphnia were exposed to the cues. Additionally, heavily infected Daphnia that were constantly exposed to cues produced relatively more offspring. While males were ~5× less likely to become infected compared to females, we were unable to detect effects of predator cues on male Daphnia–parasite interactions. In sum, predators, prey, and their parasites can form complex subnetworks in food webs, necessitating a nuanced understanding of how nonconsumptive effects may mediate these interactions.  相似文献   

4.
Predators can indirectly reduce herbivory by killing herbivores. In addition, predation risk can influence the feeding rate and feeding location of herbivores. Herbivores are expected to avoid plants currently occupied by a predator. Consequently, less herbivory is expected on plants bearing fresh predator cues. We examined whether wood crickets, Nemobius sylvestris Bosc (Orthoptera: Gryllidae), avoided plants bearing the chemical cues of nursery web spiders, Pisaura mirabilis Clerck (Araneae: Pisauridae), or red wood ants, Formica rufa L. (Hymenoptera: Formicidae). We conducted a series of behavioural experiments, in which crickets had the choice between a plant with spider or ant cues vs. a control plant, a plant with spider cues vs. a plant with ant cues, or two control plants. For all plants, we quantified leaf damage and the position and weight change in the crickets. Crickets avoided plants with spider cues. In contrast, ant cues did not significantly deter crickets. The herbivory pattern among the plants reflected the plant choice of the crickets. However, net herbivory was not affected by the presence of predator cues. Thus, our results suggest that spider cues affect feeding location rather than the total amount of herbivory.  相似文献   

5.
1. Changes in one prey species' density can indirectly affect the abundance of another prey species if a shared predator eats both species. Sometimes, indirect effects occur when prey straddle habitats, including when riparian predator populations grow in response to emergent aquatic insects and increase predation on terrestrial prey. However, predators may largely switch to aquatic insects or become satiated, reducing predation on terrestrial prey. 2. To determine the net indirect effect of aquatic insects on terrestrial arthropods via generalist spider predators, a field experiment was conducted mimicking midge influx and a wolf spider numerical response inside enclosures near an Icelandic lake. Lab mesocosms were also used to assess per capita rates of spider predation u nder differing levels of midge abundance. 3. Midges always decreased sentinel prey predation, but this effect increased with predator density. When midges were absent, predation increased 30% at a high spider density, but predation was equal between spider treatments when midges were present. In situ arthropods showed no effect of midge or spider treatments, although non‐significant abundance patterns were observed congruent with sentinel prey results. 4. In lab mesocosms, prey survivorship increased ≥50% where midges were present and rapidly saturated; the addition of 5, 20, 50, and 100 midges equivalently reduced spider predation, supporting predator distraction rather than satiation as the root cause. 5. The present results demonstrate a strong positive indirect effect of midges and broadly support the concept that predator responses to alternative prey are a major influence on the magnitude and direction of predator‐mediated indirect effects.  相似文献   

6.
The diverse benefits of group living include protection against predators through dilution effects and greater group vigilance. However, intraspecific aggregation can decrease developmental rates and survival in prey species. We investigated the impact on tadpole development and behaviour of the interaction between population density and predation risk. Spotted tree frog (Litoria spenceri: Hylidae, Dubois 1984) tadpoles were kept at one of three different densities (two tadpoles per litre, five tadpoles per litre or 10 tadpoles per litre) until metamorphosis in the presence or absence of predatory cues. We aimed to determine the influence of population density, predation and the interaction of both factors in determining growth rates in tadpoles. Tadpoles were measured weekly to assess growth and development and filmed to quantify differences in activity and feeding frequency between groups. Generally, tadpoles housed without predators had longer developmental periods when housed with a predator, but there was no effect on tail length or total length. There was no effect of either predation cues or density on percentage of individuals feeding or moving. Although the effects of the presence of predators alone may appear to be less than the effects of the presence of competitors, the prioritisation of competitiveness over predator avoidance may increase vulnerability of tadpoles to the lethal threat of predators. This is particularly important in species such as L. spenceri, which is at risk from introduced fish predators.  相似文献   

7.
Most animals metamorphose, changing morphology, physiology, behavior and ecological interactions. Size- and habitat-dependent mortality risk is thought to affect the evolution and plastic expression of metamorphic timing, and high predation during the morphological transition is posited as a critical selective force shaping complex life cycles. Nonetheless, empirical data on how risk changes across metamorphosis and stage-specific habitats, or how that varies with size, are rare. We examined predator–prey interactions of red-eyed treefrogs, Agalychnis callidryas, with an aquatic predator (giant water bug, Belostoma) and a semi-terrestrial predator (fishing spider, Thaumasia) across metamorphosis. We manipulated tadpole density to generate variation in metamorph size and conducted predation trials at multiple developmental stages. We quantified how frog behavior (activity) changes across metamorphic development, habitats, and predator presence or absence. In aquatic trials with water bugs, frog mortality increased with forelimb emergence, as hypothesized. In semi-terrestrial trials, contrary to predictions, predation by spiders increased, not decreased, with tail resorption. In neither case did frog size affect mortality. Frogs reduced activity upon forelimb emergence in the water, and further with emergence into air, then increased activity with tail resorption. Longer-tailed metamorphs were captured more often in spider attacks, but attacked less, as most attacks followed prey movements. Metamorphs behaviorally compensated for poor escape performance more effectively on land than in water, thus emergence timing may critically affect mortality. The developmental timing of the ecological transition between environments that select for different larval and juvenile phenotypes is an important, neglected variable in studies of complex life cycles.  相似文献   

8.
9.
Herbivores suffer significant mortality from predation and are therefore subject to natural selection on traits promoting predator avoidance and resistance. They can employ an array of strategies to reduce predation, for example through changes in behaviour, morphology and life history. So far, the anti-predator response studied most intensively in spider mites has been the avoidance of patches with high predation risk. Less attention has been given to the dense web produced by spider mites, which is a complex structure of silken threads that is thought to hinder predators. Here, we investigate the effects of the web produced by the red spider mite, Tetranychus evansi Baker & Pritchard, on its interactions with the predatory mite, Phytoseiulus longipes Evans. We tested whether female spider mites recognize predator cues and whether these can induce the spider mites to produce denser web. We found that the prey did not produce denser web in response to such cues, but laid more eggs suspended in the web, away from the leaf surface. These suspended eggs suffered less from predation by P. longipes than eggs that were laid on the leaf surface under the web. Thus, by altering their oviposition behaviour in response to predator cues, females of T. evansi protect their offspring.  相似文献   

10.
1. Prey organisms can perceive cues to predation hazard and adopt low‐risk behaviours to increase survival. Animals with complex life cycles, such as insects, can exhibit such anti‐predatory behaviours in multiple life stages. 2. Cues to predation risk may induce ovipositing females to choose habitats with low predation risk. Cues to predation risk may also induce larvae to adopt facultative behaviours that reduce risk of predation. 3. One hypothesis postulates that anti‐predation behaviours across adult and larval stages may be negatively associated because selection for effective anti‐predator behaviour in one stage leads to reduced selection for avoidance of predators in other stages. An alternative hypothesis suggests that selection by predation favours multi‐component defences, with both avoidance of oviposition and facultative adoption of low‐risk behaviours by larvae. 4. Laboratory and field experiments were used to determine whether defensive responses of adult and larval mosquitoes are positively or negatively associated. The study tested effects of waterborne cues from predatory Toxorhynchites theobaldi on oviposition choices and larval behaviours of three of its common prey: Culex mollis, Limatus durhamii and Aedes albopictus. 5. Culex mollis shows strong anti‐predator responses in both life stages, consistent with the hypothesis of a multi‐component behavioural defence. The other two species showed no detectable responses to waterborne predator cues in either adult or larval stages. Larvae of these unresponsive species were significantly more vulnerable to this predator than was C. mollis. 6. For these mosquitoes, species appear either to have been selected for multi‐component defences against predation or to act in ways that could be called predator‐naïve.  相似文献   

11.
12.
Environmental heterogeneity can have profound effects on agroecosystem function and it is important for improving ecosystem services such as biological control. Promoting system diversity via non‐crop plants is one method for increasing habitat heterogeneity within farmscapes. Non‐crop plants provide access to refuges and alternative food resources provide multiple benefits to enhance populations of arthropod predators. In this study, we examined the effects of small‐scale spatial structure on life‐stage specific interactions between the native coccinellid, Hippodamia convergensGuérin‐Méneville, and the exotic Harmonia axyridis (Pallas) (both Coleoptera: Coccinellidae), which overlap in spatial distribution in many crop systems. Squash [Cucurbita pepo L. (Cucurbitaceae)] and non‐crop mugwort [Artemisia vulgaris L. (Asteraceae)] plants with and without aphids were used as a model of spatial heterogeneity in micro‐ and mesocosm experiments. In response to factorial treatment combinations, we evaluated oviposition behavior, egg predation, larval survival, and larval predator‐prey and predator‐predator interactions. Adult H. convergens displayed higher foraging activity on aphids when exposed to complex habitats containing a non‐crop plant. In the presence of the exotic coccinellid, H. convergens preferred to deposit eggs on the non‐crop plant. Furthermore, a combination of spatial heterogeneity and prey availability reduced larval intraguild predation and cannibalism, and improved reproductive output of H. convergens by reducing intra‐ and interspecific egg predation. Our results provide evidence that life‐stage‐specific intraguild interactions are mediated by access to non‐crop plants. Thus, the introduction or maintenance of non‐crop plants has the potential to enhance coexistence of multiple natural enemies and improve top‐down control of pests.  相似文献   

13.
Territorial males may adopt a mating tactic that yields greater reproductive success but that at the same time increases the risk of predation. Plasticity in reproductive behavior can reflect a balance between sexual selection and natural selection. In this study, we sought to verify the effect of predation risk on territorial behavior of males of the solitary bee Ptilothrix fructifera (Apidae). Males of the species employ alternative mating tactics and can be territorial in defense of larval food sources. By manipulating predator models in the field, we tested whether (1) males avoid perch flowers containing predator models; (2) males alternate between mating tactics when their territory is associated with a predation risk; and (3) female foraging on flowers in a territory is altered in the presence of a predator model. We measured the responses of males and females in flowers containing and not containing a model of a spider or a stuffed bird. The results show that territorial males of P. fructifera alter their territorial behavior when faced with a high risk of predation. They do not abandon their territory or change to a non‐territorial mating tactic, but instead change the use of their territory, avoiding flowers containing predator models or perching on other flowers when the previous flower presented a potential predation risk. Female P. fructifera decreases the frequency of their visits to flowers and the length of time spent there in the presence of a spider model. In short, in the face of predation risk, females and males alter their behaviors at the cost of less efficient foraging and searching for partners, respectively.  相似文献   

14.
Various strategies have evolved to protect animals from predators. We explored the activity and predation risk experienced by two species of aphid. Both species will drop from plants when disturbed and face a suite of predators, including wolf spiders, when they reach the ground. We focused on Aphis fabae Scopoli and Aphis nerii Boyer de Fonscolombe (Hemiptera: Aphididae, Aphidini); A. nerii sequesters cardiac glycosides when it feeds on milkweed. We explored the interactions between these aphids and the wolf spider Pardosa milvina Hentz (Araneae: Lycosidae) that is likely a predator they encounter when they are not on their host plants. We hypothesized that there would be differences in the susceptibility of the two species to predation and that the more vulnerable species would react more strongly to substrate-borne cues deposited by the spider. We predicted that any behavioral reactions that the aphid displayed in response to predator cues would be effective in reducing risk. We documented the activity of each aphid species on chemotactile cues from P. milvina and measured predation rate in arenas with and without those same cues. Aphis fabae altered their activity in the presence of P. milvina cues but A. nerii did not. Likewise, A. fabae was more susceptible to predation by P. milvina when no cues were present, but when cues were present, predatory success was much lower. Aphis nerii, the less desirable prey for this predator, moved less and had a different locomotory pattern than A. fabae in control trials with no spider cues and so we cannot determine whether its chemical protection or activity were more important in reducing predation levels. These results provide insight into the risks faced by aphids when they are off of their host plant and in a barren environment.  相似文献   

15.
Invasive fish threaten many native freshwater fauna. However, it can be difficult to determine how invasive fish impact animals with complex life cycles as interaction may be driven by either predation of aquatic larvae or avoidance of fish‐occupied waterbodies by the terrestrial adult stage. Mosquitofish (Gambusia spp.) are highly successful and aggressive invaders that negatively impact numerous aquatic fauna. One species potentially threatened by Gambusia holbrooki is the green and golden bell frog (Litoria aurea). However, G. holbrooki's role in this frog's decline was unclear due to declines driven by the chytrid fungal disease and the continued co‐existence of these fish and frogs in multiple locations. To clarify the extent to which Gambusia is impacting L. aurea, we conducted 3 years of field surveys across a deltaic wetland system in south‐east Australia. We measured the presence and abundance of aquatic taxa including G. holbrooki, and L. aurea frogs and tadpoles, along with habitat parameters at the landscape and microhabitat scale. Generalized linear models were used to explore patterns in the abundance and distributions of L. aurea and G. holbrooki. We found strong negative associations between G. holbrooki and tadpoles of most species, including L. aurea, but no apparent avoidance of G. holbrooki by adult frogs. Native invertebrate predators (Odonata and Coleoptera) were also absent from G. holbrooki‐occupied ponds. Due to the apparent naivety of adult frogs toward G. holbrooki, the separation of G. holbrooki and tadpoles, plus the abundance of alternative predators in G. holbrooki‐free ponds, we conclude that the impact of G. holbrooki on L. aurea recruitment is likely substantial and warrants management action.  相似文献   

16.
Predation risk in aquatic systems is often assessed by prey through chemical cues, either those released by prey or by the predator itself. Many studies on predation risk focus on simple pairwise interactions, with only a few studies examining community‐level and ecosystem responses to predation risk in species‐rich food webs. Further, of these few community‐level studies, most assume that prey primarily assess predation risk through chemical cues from consumed prey, even heterospecific prey, rather than just those released by the predator. Here, we compared the effects of different predation cues (predator presence with or without consumed prey) on the structure and functioning of a speciose aquatic food web housed in tropical bromeliads. We found that the mere presence of the top predator (a damselfly) had a strong cascading effect on the food web, propagating down to nutrient cycling. This predation risk cue had no effect on the identity of colonizing species, but strongly reduced the abundance and biomass of the macroinvertebrate colonists. As a result, bacterial biomass and nitrogen cycling doubled, with a concomitant decrease in bacterial production, but CO2 flux was unaffected. These community and ecosystem effects of predator presence cues were not amplified by the addition of chemical cues from consumed prey. Our results show that some of the consequences of predation risk observed in controlled experiments with simplified food webs may be observed in a natural, species‐rich food web.  相似文献   

17.
Olfaction is a common sensory mode of communication in much of the Vertebrata, although its use by adult frogs remains poorly studied. Being part of an open signalling system, odour cues can be exploited by 'eavesdropping' predators that hunt by smell, making association with odour a high-risk behaviour for prey. Here, we show that adult great barred frogs (Mixophes fasciolatus) are highly attracted to odour cues of conspecifics and those of sympatric striped marsh frogs (Limnodynastes peronii). This attraction decreased significantly with the addition of odours of a scent-hunting predator, the red-bellied black snake (Pseudechis porphyriacus), indicating that frogs perceived predation risks from associating with frog odours. Male frogs, however, maintained some attraction to unfamiliar conspecific scents even with predator odours present, suggesting that they perceived benefits of odour communication despite the risk. Our results indicate that adult frogs can identify species and individuals from their odours and assess the associated predation risk, revealing a complexity in olfactory communication previously unknown in adult anurans.  相似文献   

18.
Ambient levels of ultraviolet-B radiation (UVB) have a variety of detrimental effects on aquatic organisms. These include death and effects on growth, development, physiology, and behavior. Amphibians show all of these effects. However, the effects vary with species, life history stage, and ecological context. Little is known about the implications of the detrimental effects of UVB on ecological dynamics. Our study was designed to test how UVB may affect predator–prey interactions, an important ecological dynamic. Specifically, we tested the effect of UVB on the susceptibility of Cascades frog (Rana cascadae) larvae to predation by rough-skinned newts (Taricha granulosa). We also further examined the sublethal effects of UVB on growth and development in Cascades frog larvae. We found no direct effect of UVB exposure on survival. However, UVB-exposed frog larvae displayed decreased growth and increased prevalence of deformities. UVB also caused increased susceptibility to predation, but there was a significant treatment–block interaction. UVB increased susceptibility to predation in two out of five blocks of Cascades frogs. The other three blocks did not show an effect of UVB on susceptibility to predation. Our study suggests that UVB can alter susceptibility to predation in at least one amphibian species. UVB-induced alteration of predator–prey interactions could potentially lead to changes at the population, community, and ecosystem levels. Handling editor: K. Martens  相似文献   

19.
Chemical cues from predators (kairomones) are used by many aquatic and terrestrial animals when deciding on behavioral responses to predation threats. These responses may also be affected by the animal’s physiological state (e.g., nutrition level, parasitism, or prior injury), which could alter normal responses to kairomones. In this study, we examined effects of leg autotomy (the voluntary sacrifice of a leg) on subsequent responses to predator chemical cues in females of the riparian-zone wolf spider Pardosa valens. In a fully-crossed design, spiders with all legs intact or with one leg removed were exposed to one of two cue treatments for 90 min: a control (no predator cue) or one with chemical cues (silk and excreta) from a larger sympatric wolf spider, Rabidosa santrita. We then introduced an R. santrita into each container, and recorded subsequent survival of P. valens. Survivorship was significantly higher for individuals previously exposed to predator cues than for those in the control group; however, autotomy had no effect on survivorship, which was similar for both intact and autotomized spiders in both the predator-cue and control treatments. In addition, although P. valens were more likely to be found off the substrate than on it when the predator was added in each of the four treatment pairings, this initial position did not influence survivorship. These results therefore indicate that P. valens can behaviorally respond to predator kairomones in ways that reduce their risk of predation, but that this response is unaffected by the prior sacrifice of a leg.  相似文献   

20.
The blacklegged tick Ixodes scapularis is the primary vector for the bacterium causing Lyme disease in eastern North America and for other medically important pathogens. This species is vulnerable to attack by fungal pathogens and arthropod predators, but the impacts of interactions between biocontrol agents have not been examined. The biocontrol agent Met52®, containing the entomopathogenic fungus Metarhizium brunneum (=M. anisopliae), controls blacklegged ticks with efficacy comparable to chemical acaricides. The brush‐legged wolf spider Schizocosa ocreata is a predator of I. scapularis that reduces their survival under field conditions. We conducted a field microcosm experiment to assess the compatibility of Met52 and S. ocreata as tick biocontrol agents. We compared the fits of alternative models in predicting survival of unfed (flat) and blood‐fed (engorged) nymphs. We found the strongest support for a model that included negative effects of Met52 and S. ocreata on flat nymph survival. We found evidence for interference between biocontrol agents, with Met52 reducing spider survival, but we did not find a significant interaction effect between the two agents on nymph survival. For engorged nymphs, low recovery rates resulted in low statistical power to detect possible effects of biocontrol agents. We found that nymph questing activity was lower when the spider was active above the leaf litter than when the spider was unobserved. This provides the first evidence that predation cues might affect behavior important for tick fitness and pathogen transmission. This study presents field microcosm evidence that the biopesticide Met52 and spider Schizocosa ocreata each reduced survival of blacklegged ticks Ixodes scapularis. Met52 reduced spider survival. Potential interference between Met52 and the spider should be examined at larger scales, where overlap patterns may differ. Ticks were more likely to quest when the spider was inactive, suggesting the ticks changed their behavior to reduce danger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号