首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although much research has examined the process of prey capture by tiger beetles, an underlying assumption in this work is that tiger beetles are principally, or even exclusively, visual predators. Because this assumption is untested, we performed a series of experiments on four diurnally active tiger beetles in the Genus Cicindela. Individual beetles were placed in chambers in complete darkness and allowed to forage on apterous Drosophila for 6 h. Contrary to expectations, adults of all tested species captured more than 90% of prey items. These results show that other modalities can be used by tiger beetles during prey capture. Beyond potentially providing an explanation for observed night activity in tiger beetle species, the significance of these findings lies in the need to test underlying assumptions of even well-studied organisms.  相似文献   

2.
The influence of prey mobility and species on prey selection by the coccinellid Harmonia axyridis Pallas was determined under laboratory conditions for two prey species, Hyaliodes vitripennis (Say) and Tetranychus urticae Koch. Prey selection was influenced by prey mobility. In the presence of active prey, the coccinellid selected T. urticae while in presence of immobilized prey, H. vitripennis was preferred. Harmonia axyridis searching time was longer in the presence of active H. vitripennis than in the presence of active T. urticae. Moreover, the coccinellid capture rate was lower for active H. vitripennis caused by effective defensive mechanisms. Prey suitability was affected by prey mobility and species. Immobilized H. vitripennis were the most profitable prey, i.e. induced a shorter developmental time and no mortality. However, active H. vitripennis were not a suitable food source for H. axyridis. Our results suggested that three factors are involved in prey selection by H. axyridis: (i) prey mobility; (ii) prey defensive mechanisms; and (iii) prey species.  相似文献   

3.
Abstract

The manner in which Dysdera crocata used its large chelicerae was described. Previous claims that the chelicerae are adaptations enabling the spider to penetrate the dorsal carapace of its prey (woodlice) were not supported.  相似文献   

4.
Both laboratory experiments and field observations were usedto examine the prey-attraction hypothesis for the function ofthe silk decoration on the orb web of Octonoba sybotides. Thereflectance spectrum of the decorative silk showed that thedecorations reflect relatively more ultraviolet (UV) light.Choice experiments were conducted using Drosophila melanogaster,a common prey species of the spider, to determine whether webswith silk decoration attract more flies than undecorated webs.The choice experiment showed that webs with silk decorationattract more flies in light that includes UV rays. However,flies choose their flight direction randomly in light withoutUV rays. This suggests that the silk decoration might attract preyinsects that tend to fly toward UV-reflecting objects. Fieldobservations comparing the prey capture rate between webs withand without a silk decoration showed that more prey are caughtin decorated webs. In this study, no difference between thetwo forms of silk decoration, linear and spiral, was detectedeither in prey attraction in the choice experiment or in theprey capture rate in the field observations.  相似文献   

5.
Zooplankton is a morphologically and taxonomically diverse group and includes organisms that vary in size by many orders of magnitude, but they are all faced with the common problem of collecting food from a very dilute suspension. In order to maintain a viable population in the face of mortality, zooplankton in the ocean have to clear daily a volume of ambient water for prey particles that is equivalent to about 106 times their own body volume. While most size‐specific vital rates and mortality rates decline with size, the clearance requirement is largely size‐independent because food availability also declines with size. There is a limited number of solutions to the problem of concentrating dilute prey from a sticky medium: passive and active ambush feeding; feeding‐current feeding, where the prey is either intercepted directly, retained on a filter, or individually perceived and extracted from the feeding current; cruise feeding; and colonization of large particles and marine snow aggregates. The basic mechanics of these food‐collection mechanisms are described, and it is shown that their efficiencies are inherently different and that each of these mechanisms becomes less efficient with increasing size. Mechanisms that compensate for this decline in efficiency are described, including inflation of feeding structures and development of vision. Each feeding mode has implications beyond feeding in terms of risk of encountering predators and chance of meeting mates, and they partly target different types of prey. The main dichotomy is between (inefficient) ambush feeding on motile prey and the more efficient active feeding modes; a secondary dichotomy is between (efficient) hovering and (less efficient) cruising feeding modes. The efficiencies of the various feeding modes are traded off against feeding‐mode‐dependent metabolic expenses, predation risks, and mating chances. The optimality of feeding strategies, evaluated as the ratio of gain over risk, varies with the environment, and may explain both size‐dependent and spatio‐temporal differences in distributions of various feeding types as well as other aspects of the biology of zooplankton (mating behaviour, predator defence strategies).  相似文献   

6.
Field experiments carried out on the nocturnal orb weaver spider, Neoscona crucifera (Aranea: Araneidae), found in deciduous hardwood forests suggest that lighted areas where prey densities are elevated provide cues used by the spiders to rank optimal foraging sites. Specifically, experiments were conducted to test whether spiders exhibited preferences for lighted areas where prey densities are high, maximizing their energy intake per unit of foraging time, and minimizing energy expended on web building. Incandescent light bulbs of 4–60 W were used to influence prey densities, and results indicate that when given a choice of brighter versus darker foraging areas, spiders seek lighted areas where prey densities are high. In addition, results support the hypothesis that the size and time of web construction are drastically reduced in brighter situations.  相似文献   

7.
1. Patterns of prey discrimination by the generalist predatory coccinellid Coleomegilla maculata lengi Timb. (Coleoptera: Coccinellidae) were studied in relation to prey quality, under laboratory conditions. 2. Choice experiments were performed in which second‐ and fourth‐instar coccinellids had the choice between Trichoplusia ni (Lepidoptera: Noctuidae) eggs that were young or old, unparasitised or parasitised by Trichogramma evanescens Westwood (Hymenoptera: Trichogrammatidae). 3. Coleomegilla maculata larvae did not exhibit any preference for parasitised or unparasitised eggs at a similar stage of development but always preferred younger eggs, regardless of whether or not they were parasitised. Furthermore, the percentage of rejection was higher and handling time longer on the less preferred egg type. Pre‐imaginal development time, food intake to reach adulthood, and survival of coccinellid immatures were altered when coccinellid larvae were fed with parasitised and old unparasitised eggs. 4. These results indicate that C. maculata larvae select eggs based on their stage of development regardless of parasitism, and that prey quality of aged prey is lower. 5. Fourth‐instar coccinellid larvae spent less time in patches containing solely parasitised old eggs, and their level of exploitation was greatly reduced, compared with homogeneous patches containing unparasitised young eggs. This suggests that C. maculata larvae respond to variable patch quality by using flexible decision rules that reflect the payoff of the patch.  相似文献   

8.
Mantispids (Neuroptera: Mantispidae) are remarkable insects as a result of their close resemblance to the praying mantis (order Mantodea). Although not closely related phylogenetically, as a result of similar selective pressures, both mantispids and mantids have evolved powerful raptorial forelegs for capturing insects. Another striking feature is the hypermetamorphosis in mantispid development, as well as the parasitizing behaviour of the first‐instar larvae. The present review focuses on the role of mantispid vision. First, the morphology and functional significance of the larval eyes (stemmata) are examined. In principle, the stemmata are suitable for spatial vision because of their arrangement and structure. This is then followed by a discussion of how adult mantispids are able to capture fast‐moving insects successfully, although, in contrast to the praying mantis, mantispids rely on superposition eyes rather than on apposition eyes with a frontal region of high acuity. For both larvae and adults, comparisons are made with other insect groups. The present review also addresses the role of mantispid vision as an important cue for triggering mating behaviour; accordingly, sex‐specific differences are considered. Finally, vision in the context of orientation flight is discussed.  相似文献   

9.
Prey selection by a spider wasp,Batozonellus lacerticida, was investigated at the riverside of the Toyohira River in Misumai, Sapporo, Hokkaido over 7 years from 1981 to 1987. Seventeen species of araneid spiders were found in the study area and six of them were hunted by the wasps. Most (97.3%) of the 223 prey records obtained were of three species,Araneus macacus, A. marmoreus andA. pinguis. Nesting activity of the wasps continued until mid-August in 1981, 1982 and 1986, but stopped in July in 1984, 1985 and 1987. The length of nesting period was related to whether the wasps successfully switched prey species fromA. macacus toA. marmoreus andA. pinguis andA. pinguis or not Switching seemed to occur at the phase when density ofA. macacus remained high, depending on the density of largerA. marmorus andA. pinguis. This switching had large effects on species composition and size distribution of actual prey. Chesson's index α calculated at every 10 day period revealed that the wasps preferredA. macacus to the two other species and large prey to medium and small ones. The effect of prey density on preference depended on whetherA. macacus was present or absent. In the presence of it there were only slight differences in preference among various conditions of prey density. However, whenA. macacus was absent, densities of bothA. marmoreus andA. pinguis had some complementary effects on preference. The importance of prey size selection by pompilid wasps, and implications of density effects on preference are discussed.  相似文献   

10.
A total of 1872 bones from a fish eagle roost at Lake Turkana, Kenya was identified and analysed to provide data on fish eagle prey and diet. The approach of this study complements field observation studies in that it provides a long‐term analysis and quantification of the diet, rather than short qualitative observations. The study found that, at least where fish is relatively abundant, fish eagles are both selective and opportunistic: selective in taking preferred fish in much greater proportions than natural availability, and also in avoiding unwanted fish regardless of abundance, but opportunistic in taking certain other species in proportion to their availability. They also show considerable selection in size and habitat preferences of prey. Non‐fish prey forms a considerable proportion of the diet, and probably represents both opportunistic hunting, possibly when conditions for fishing are poor, and killing of other predators robbing fish eagle nests.
As well as describing and quantifying the fish eagle diet at Lake Turkana, data from this study suggest that further study is needed to quantify the impact of fish eagle predation on Clarias lazera , a rare, but valuable species to the Lake Turkana fishery. The study of bird roost prey remains also provides baseline data for studies of fossil microfaunal accumulations. Scatters of bones under fish eagle roosts are common in eastern Africa, and undoubtedly contribute to many of the fossil bone accumulations recovered. One of us (DM) has noted that the taxonomic and skeletal composition of the Koobi Fora roost bears a great resemblance to some of the clusters she is analysing from Olduvai Gorge. Further similar studies will provide additional data on bird roost accumulations.  相似文献   

11.
Over the past half century, the field of Evolutionary Developmental Biology, or Evo‐devo, has integrated diverse fields of biology into a more synthetic understanding of morphological diversity. This has resulted in numerous insights into how development can evolve and reciprocally influence morphological evolution, as well as generated several novel theoretical areas. Although comparative by default, there remains a great gap in our understanding of adaptive morphological diversification and how developmental mechanisms influence the shape and pattern of phenotypic variation. Herein we highlight areas of research that are in the process of filling this void, and areas, if investigated more fully, that will add new insights into the diversification of morphology. At the centre of our discussion is an explicit awareness of organismal biology. Here we discuss an organismal framework that is supported by three distinct pillars. First, there is a need for Evo‐devo to adopt a high‐resolution phylogenetic approach in the study of morphological variation and its developmental underpinnings. Secondly, we propose that to understand the dynamic nature of morphological evolution, investigators need to give more explicit attention to the processes that generate evolutionarily relevant variation at the population level. Finally, we emphasize the need to address more thoroughly the processes that structure variation at micro‐ and macroevolutionary scales including modularity, morphological integration, constraint, and plasticity. We illustrate the power of these three pillars using numerous examples from both invertebrates and vertebrates to emphasize that many of these approaches are already present within the field, but have yet to be formally integrated into many research programs. We feel that the most exciting new insights will come where the traditional experimental approaches to Evo‐devo are integrated more thoroughly with the principles of this organismal framework.  相似文献   

12.
Intraguild predation (IGP) has been increasingly recognized as an important interaction in ecological systems over the past two decades, and remarkable insights have been gained into its nature and prevalence. We have developed a technique using molecular gut-content analysis to compare the rate of IGP between closely related species of coccinellid beetles (lady beetles or ladybirds), which had been previously known to prey upon one another. We first developed PCR primers for each of four lady beetle species: Harmonia axyridis, Coccinella septempunctata, Coleomegilla maculata and Propylea quatuordecimpunctata. We next determined the prey DNA detection success over time (DS(50) ) for each combination of interacting species following a meal. We found that DS(50) values varied greatly between predator-prey combinations, ranging from 5.2 to 19.3 h. As a result, general patterns of detection times based upon predator or prey species alone are not discernable. We used the DS(50) values to correct field data to demonstrate the importance of compensation for detection times that are specific to particular predator-prey combinations.  相似文献   

13.
Despite repeated acquisitions of aquatic or semi-aquatic lifestyles revolving around piscivory, snakes have not evolved suction feeding. Instead, snakes use frontally or laterally directed strikes to capture prey under water. If the aquatic medium constrains strike performance because of its physical properties, we predict morphological and functional convergence in snakes that use similar strike behaviours. Here we use natricine snakes to test for such patterns of convergence in morphology and function. Our data show that frontal strikers have converged on a similar morphology characterized by narrow elongate heads with a reduced projected frontal surface area. Moreover, simple computational fluid dynamics models show that the observed morphological differences are likely biologically relevant as they affect the flow of water around the head. In general, our data suggest that the direction of evolution may be predictable if constraints are strong and evolutionary solutions limited.  相似文献   

14.
Depression of the hyoid apparatus plays a crucial role in generating suction, especially in fishes with a dorso-ventrally flattened head shape. It is generally assumed that shortening of the sternohyoideus muscle, which connects the hyoid to the pectoral girdle, contributes to hyoid depression. However, a recent study on the clariid catfish Clarias gariepinus has shown that this muscle does not shorten but elongates during this phase through retraction of the pectoral girdle. Here, we test whether this pattern is general among clariid catfish, or if variation in the morphology of the sternohyoideus may result in a different sternohyoideus behavior during hyoid depression. First, sternohyoideus mass, effective cross-sectional area, fiber length and fiber diameter were measured and compared for four clariid species. Next, velocity and magnitude of hyoid depression during prey capture (from high-speed videos), as well as patterns of sternohyoideus strain were analyzed (from high-speed X-ray videos) in these species. While morphology and hyoid depression performance varied considerably among these species, only the species with the most massive sternohyoideus, Gymnallabes typus, showed shortening of the sternohyoideus muscle during the initial part of the expansive phase. The data for Channallabes apus demonstrate that increasing the magnitude of hyoid depression does not necessarily require a shortening of the m. sternohyoideus, as it shows elongation of this muscle during hyoid depression.  相似文献   

15.
Ontogenetic dietary shifts (ODSs), the changes in diet utilisation occurring over the life span of an individual consumer, are widespread in the animal kingdom. Understanding ODSs provides fundamental insights into the biological and ecological processes that function at the individual, population and community levels, and is critical for the development and testing of hypotheses around key concepts in trophic theory on model organisms. Here, we synthesise historic and contemporary research on ODSs in fishes, and identify where further research is required. Numerous biotic and abiotic factors can directly or indirectly influence ODSs, but the most influential of these may vary spatially, temporally and interspecifically. Within the constraints imposed by prey availability, we identified competition and predation risk as the major drivers of ODSs in fishes. These drivers do not directly affect the trophic ontogeny of fishes, but may have an indirect effect on diet trajectories through ontogenetic changes in habitat use and concomitant changes in prey availability. The synthesis provides compelling evidence that ODSs can have profound ecological consequences for fish by, for example, enhancing individual growth and lifetime reproductive output or reducing the risk of mortality. ODSs may also influence food‐web dynamics and facilitate the coexistence of sympatric species through resource partitioning, but we currently lack a holistic understanding of the consequences of ODSs for population, community and ecosystem processes and functioning. Studies attempting to address these knowledge gaps have largely focused on theoretical approaches, but empirical research under natural conditions, including phylogenetic and evolutionary considerations, is required to test the concepts. Research focusing on inter‐individual variation in ontogenetic trajectories has also been limited, with the complex relationships between individual behaviour and environmental heterogeneity representing a particularly promising area for future research.  相似文献   

16.
Dangerous prey and daring predators: a review   总被引:1,自引:0,他引:1  
How foragers balance risks during foraging is a central focus of optimal foraging studies. While diverse theoretical and empirical work has revealed how foragers should and do manage food and safety from predators, little attention has been given to the risks posed by dangerous prey. This is a potentially important oversight because risk of injury can give rise to foraging costs similar to those arising from the risk of predation, and with similar consequences. Here, we synthesize the literature on how foragers manage risks associated with dangerous prey and adapt previous theory to make the first steps towards a framework for future studies. Though rarely documented, it appears that in some systems predators are frequently injured while hunting and risk of injury can be an important foraging cost. Fitness costs of foraging injuries, which can be fatal, likely vary widely but have rarely been studied and should be the subject of future research. Like other types of risk‐taking behaviour, it appears that there is individual variation in the willingness to take risks, which can be driven by social factors, experience and foraging abilities, or differences in body condition. Because of ongoing modifications to natural communities, including changes in prey availability and relative abundance as well as the introduction of potentially dangerous prey to numerous ecosystems, understanding the prevalence and consequences of hunting dangerous prey should be a priority for behavioural ecologists.  相似文献   

17.
The foraging success of predators depends on how their consumption of prey is affected by prey density under different environmental settings. Here, we measured prey capture rates of drift-feeding juvenile brown trout and European grayling at different prey densities in an artificial stream channel at 5 and 11?°C. Capture rates were lower at 5 than at 11?°C, and the difference was most pronounced at high prey densities. At high prey densities, we also observed that European grayling had higher capture rates than brown trout. Type III functional response curves, i.e. sigmoidal relationships between capture rates and prey densities, fitted the data better than type I (linear) and II (hyperbolic) curves for all four combinations of temperatures and species. These results may explain the dominance of grayling in stream habitats with low water velocities and results such as these may be of use when developing foraging-based food web models of lotic ecosystems that include drift-feeding salmonids.  相似文献   

18.
The head of ray-finned fishes is structurally complex and is composed of numerous bony, muscular, and ligamentous elements capable of intricate movement. Nearly two centuries of research have been devoted to understanding the function of this cranial musculoskeletal system during prey capture in the dense and viscous aquatic medium. Most fishes generate some amount of inertial suction to capture prey in water. In this overview we trace the history of functional morphological analyses of suction feeding in ray-finned fishes, with a particular focus on the mechanisms by which suction is generated, and present new data using a novel flow imaging technique that enables quantification of the water flow field into the mouth. We begin with a brief overview of studies of cranial anatomy and then summarize progress on understanding function as new information was brought to light by the application of various forms of technology, including high-speed cinematography and video, pressure, impedance, and bone strain measurement. We also provide data from a new technique, digital particle image velocimetry (DPIV) that allows us to quantify patterns of flow into the mouth. We believe that there are three general areas in which future progress needs to occur. First, quantitative three-dimensional studies of buccal and opercular cavity dimensions during prey capture are needed; sonomicrometry and endoscopy are techniques likely to yield these data. Second, a thorough quantitative analysis of the flow field into the mouth during prey capture is necessary to understand the effect of head movement on water in the vicinity of the prey; three-dimensional DPIV analyses will help to provide these data. Third, a more precise understanding of the fitness effects of structural and functional variables in the head coupled with rigorous statistical analyses will allow us to better understand the evolutionary consequences of intra- and interspecific variation in cranial morphology and function.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号