首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulating mechanisms of PAF-acether (platelet-activating factor) biosynthesis in cultured human vascular endothelial cells stimulated with thrombin were investigated. The formation of PAF-acether was maximal at 5 min after stimulation and gradually decreased for up to 30 min. Thrombin induced a rapid 3-4-fold increase in the activity which was maximal by 1 min after stimulation and returned progressively to basal level within 10 min. The thrombin-induced enhancement in acetyltransferase activity was due to an increase of the Vmax of the acetylation reaction without a significant effect on the apparent Km of the enzyme for acetyl-CoA. Human endothelial cells also exhibited a basal PAF-acether acetylhydrolase activity which was not altered upon thrombin stimulation. The pretreatment with 2 mM phenylmethylsulfonyl fluoride (PMSF), a serine proteinase inhibitor reported to block the acetylhydrolase, induced about 2-times more PAF-acether production in response to 2.5 U/ml thrombin stimulation. However, this enhancement of PAF-acether formation seems to be not only due to the inhibition of the acetylhydrolase, but also to the influences on the activities of the acetyltransferase and other enzymes such as phospholipase A2. These results suggest a key role for acetyltransferase and acetylhydrolase in the regulation of PAF-acether formation and catabolism in thrombin-stimulated human endothelial cells.  相似文献   

2.
Triacsin C, a product of Streptmyces sp. SK-1894, was previously reported as an inhibitor of long chain acyl-CoA synthetase. Pretreatment with triacsin C (500 nM) for 1h enhanced production of platelet-activating factor in rat neutrophils, followed by stimulation with A23187 or fMLP. Amount of lyso-PAF was also augumented. Triacsin C alone did not increase PAF content and did not modulate enzymatic activities of acytransferase, cholinephosphotransferase, acetylhydrolase, acetyltransferase or phospholipase A2. These results suggest that triacsin C might enhance supply of substrate for PAF synthesis, i.e. accumulation of lyso-PAF by interfering reacylation pathway.  相似文献   

3.
Availability of the common precursor arachidonic acid represents the fundamental prerequisite of the cellular eicosanoid synthesis. The amount of free arachidonic acid is regulated not only by phospholipases, which liberate this polyunsaturated fatty acid from lipid pools, but also by the reacylating enzyme acylCoA:lysophosphatide acyltransferase. We have previously shown (Goppelt-Strübe, G., C.-F. K?rner, G. Hausmann, D. Gemsa, and K. Resch. Control of Prostanoid Synthesis: Role of Reincorporation of Released Precursor Fatty Acids. Prostaglandins 32:373. 1986.) that the organic mercury compound thimerosal in murine peritoneal macrophages inhibits arachidonic acid reincorporation into cellular lipids, thereby leading to an enhanced prostanoid synthesis. In this report we show that the production of leukotriene C4 was also increased after the addition of thimerosal to mouse peritoneal macrophages in a time and dose dependent manner. Concomitantly, thimerosal led to a significant rise of the intracellular calcium concentration as measured by fura-2 fluorescence. Simultaneous addition of thimerosal and indomethacin or exogeneous arachidonic acid to the cells resulted in a synergistic enhancement of leukotriene C4 synthesis. On the other hand, another sulfhydryl group blocking agent, ethacrynic acid, was found to be ineffective in increasing leukotriene C4 levels even in combination with exogeneous arachidonic acid. Thimerosal therefore provides a helpful tool in studying the basic regulatory mechanisms of the cellular leukotriene synthesis.  相似文献   

4.
The exposure of [3H]arachidonate-radiolabelled murine peritoneal macrophages to alpha 2-macroglobulin-methylamine or alpha 2-macroglobulin-trypsin but not native alpha 2-macroglobulin (alpha 2M) results in the rapid secretion of [3H]eicosanoids. Resident peritoneal macrophages stimulated with 0.1 microM alpha 2M-methylamine exhibited an enhanced secretion within 10 min. The ability of alpha 2M 'fast' forms to stimulate secretion of [3H]eicosanoids was similar to that observed in the presence of the murine macrophage chemoattractant platelet-activating factor. As observed for total [3H]eicosanoid secretion, alpha 2M 'fast' forms also rapidly enhanced the secretion of the cAMP-elevating prostanoid, prostaglandin E2, from resident peritoneal macrophages. Stimulated secretion of prostaglandin E2 in response to 0.1 microM alpha 2M-methylamine was less rapid than that observed using 0.1 microM platelet-activating factor. Similar amounts of secreted prostaglandin E2 were present in media of macrophage cultures after 1 h exposure to the two stimuli. In the presence of 0.1 microM alpha 2M-methylamine, secreted prostaglandin E2 remained elevated, compared to the appropriate buffer control, for at least 24 h. The present results indicate that receptor recognition of alpha 2M 'fast' forms by macrophages results in the rapid stimulation of eicosanoid secretion and suggest that secretion of prostaglandin E2 and other eicosanoids may be involved in the ability of alpha 2 M 'fast' forms to regulate various macrophage functional responses.  相似文献   

5.
The rate of production of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF) and 1-acyl-2-acetyl-sn-glycero-3-phosphocholine (acylPAF) was measured in macrophages following the incorporation of [3H]acetate. Upon activation by A23187, guinea pig alveolar macrophages incorporated [3H]acetate into PAF, but a little radioactivity was found in acylPAF. However, labeling of acylPAF and PAF with [3H]acetate was greatly enhanced in A23187-stimulated alveolar macrophages that had been pretreated with phenylmethanesulphonyl fluoride (PMSF). [3H]PAF was predominantly converted to 1-[3H]alkyl-2-acyl glycerophosphocholine, but [14C]acylPAF rapidly hydrolyzed to 14C-labeled free fatty acid by the incubation with lysates prepared from macrophages. The deacetylation of [14C]acylPAF and [3H]PAF by acetylhydrolase and also the hydrolysis of [14C]lysoPC by lysophospholipase were strongly inhibited in macrophages that had been pretreated with PMSF, while PMSF failed to inhibit the activities of acetyltransferase and acyltransferase. The relative proportions of PAF and acylPAF were quite different in different types of cells. In contrast to alveolar macrophages, peritoneal macrophages, neutrophils and spleen cells from guinea pigs incorporated 2-4 times more [3H]acetate into acylPAF than into PAF. The presence of high levels of acylPAF in peritoneal macrophages was confirmed by GLC-MS analysis. The activities of lysophospholipase, acetylhydrolase and acetyltransferase were measured in alveolar and peritoneal macrophages to determine whether the preferential formation of acylPAF as compared to PAF in peritoneal macrophages was due to differences in these activities between alveolar and peritoneal macrophages. The activity of acetylhydrolase of peritoneal macrophages was almost the same as that in alveolar macrophages. The activity of acetyltransferase in peritoneal macrophages was about half of that in alveolar macrophages. However, the activity of lysophospholipase in peritoneal macrophages was one-sixth of that in alveolar macrophages. These results suggest that lysophospholipase is one of the primary factors involved in the control of the production of acylPAF in activated cells, and that it acts by modulating the availability of lysoPC for the synthesis of acylPAF. Furthermore, high levels of activity of lysophospholipase allow the preferential formation of PAF, via the rapid hydrolysis of lysoPC which would act as a competitive inhibitor of the incorporation of acetate into lysoPAF.  相似文献   

6.
Availability of the common precursor arachidonic acid represents the fundamental prerequisite of the cellular eicosanoid synthesis. The amount of free arachidonic acid is regulated not only by phospholipases, which liberate this polyunsaturated fatty acid from lipid pools, but also by the reacylating enzyme acylCoA:lysophosphatide acyltransferase. We have previously shown (Goppelt-Strübe, G., C.-F. Körner, G. Hausmann, D. Gemsa, and K. Resch. Control of Prostanoid Synthesis: Role of Reincorporation of Released Precursor Fatty Acids. Prostaglandins : 373. 1986.) that the organic mercury compound thimerosal in murine peritoneal macrophages inhibits arachidonic acid reincorporation into cellular lipids, thereby leading to an enhanced prostanoid synthesis. In this report we show that the production of leukotriene C4 was also increased after the addition of thimerosal to mouse peritoneal macrophages in a time and dose dependent manner. Concomitantly, thimerosal led to a significant rise of the intracellular calcium concentration as measured by fura-2 fluorescence. Simultaneous addition of thimerosal and indomethacin or exogeneous arachidonic acid to the cells resulted in a synergistic enhancement of leukotriene C4 synthesis. On the other hand, another sulfhydryl group blocking agent, ethacrynic acid, was found to be ineffective in increasing leukotriene C4 levels even in combination with exogeneous arachidonic acid. Thimerosal therefore provides a helpful tool in studying the basic regulatory mechanisms of the cellular leukotriene synthesis.  相似文献   

7.
A23187 stimulated two enzymatic activities of human neutrophils (polymorphonuclear leukocytes), phospholipase A2 and fatty acyl-CoA acyltransferase, which resulted in a stimulated deacylation/reacylation cycle. The incorporation of fatty acids, other than arachidonic or eicosapentaenoic acid, into diacyl and alkylacyl species of choline phosphoglycerides was stimulated by 10-fold by A23187. These fatty acids were exclusively incorporated into the sn-2 position, and [3H]glycerol labeling showed there was no stimulation of de novo synthesis. A23187 also stimulated fatty acid incorporation into other phospholipids, but de novo synthesis accounted for a portion of this uptake. Inhibitors of protein kinase C prevented the stimulated recycling of phosphatidylcholine, and the simultaneous induction of platelet-activating factor synthesis, by inhibiting phospholipase A2 activation. They inhibited [3H]arachidonate release from prelabeled polymorphonuclear leukocytes, but had no effect on in vitro fatty acyl-CoA acyltransferase or acetyl-CoA acetyltransferase activity. Extracts from A23187-treated cells contained a fatty acyl-CoA acyltransferase, which did not utilize arachidonoyl-CoA, that was 2.3-fold more active than that of control extracts. Phosphatase treatment decreased this stimulated activity by 66%. Thus, A23187 stimulated a phospholipase A2 activity that generated both 1-alkyl and 1-acyl lysophosphatidylcholines. A stimulated acetyltransferase used a portion of the alkyl species for platelet-activating factor synthesis, while the acyl species and residual alkyl species were rapidly reacylated to phosphatidylcholine by a stimulated acyl-transferase. Arachidonate, an eicosanoid precursor, was spared by this process.  相似文献   

8.
The effects of extracellular ATP on inositol phospholipid breakdown and synthesis of eicosanoids were studied in mouse peritoneal macrophages. Addition of ATP to intact cells labelled with [3H]inositol stimulated a rapid (within 10 s) formation of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate. In parallel there was also a substantial accumulation of inositol 1,3,4-trisphosphate and the monophosphate and bisphosphate derivatives of inositol. Within 10 s after the addition of 30 microM ATP there was a twofold increase in inositol trisphosphate (InsP3), which declined over 2 min. The ED50 for ATP-stimulated generation of InsP3 was approximately 12 microM. ADP and GTP showed only weak effects on InsP3 formation, while AMP and adenosine were completely ineffective at 30 microM. Furthermore, the rank order of potency of ATP analogues was ATP greater than ATP[S] greater than AdoPP[NH]P = AdoPP[CH2]P greater than AdoP[CH2]PP thus, indicating the presence of a P2y-purinergic receptor. Cells labelled with [3H]arachidonic acid showed a 50% increase of label in 1,2-diacylglycerol after 15 s upon stimulation with ATP. In parallel to the stimulation of inositol phospholipid hydrolysis, ATP also caused a marked synthesis of prostaglandin E2 (PGE2) and leukotriene C4 (LTC4) in mouse peritoneal macrophages. The rank order of potency of ATP analogues was identical with that of InsP3 generation. The effect on eicosanoid synthesis could be mimicked by the calcium ionophore A23187 and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate. These results suggest that ATP-induced activation of P2y-purinergic receptors in mouse peritoneal macrophages triggers inositol phospholipid breakdown and eicosanoid synthesis.  相似文献   

9.
At 1 hr to 14 days after total-body exposure of guinea pigs to 3.0 Gy 60Co, changes were detected in prostaglandin concentrations in bronchial airway tissues. At 3 hr postexposure, tissue levels of PGE were significantly elevated, while at 48 hr transiently elevated levels of PGF2 alpha were observed. By 72 hr, levels returned to control values. Airway synthesis of thromboxane B2 in irradiated animals did not differ from that in controls. Also assessed were the capacities of bronchial airway preparations to respond to H-1 receptor stimulation by the exogenous addition of histamine or transmembrane divalent cation transport stimulation with ionophore. Tissues from irradiated animals demonstrated alterations in the amount and type of prostaglandins generated, varying with time postirradiation.  相似文献   

10.
Prostaglandin E2 synthesis and eicosanoid biosynthetic enzyme activities (arachidonyl CoA synthetase, cyclooxygenase and phospholipase A2) were measured in dermal fibroblasts from patients with metabolic disorders of peroxisomal origin and compared to those from normal subjects and patients with other metabolic disorders of lipid metabolism. Basal- as well as interleukin 1-stimulated prostaglandin E2 syntheses were higher in fibroblasts from patients with X-linked adrenoleukodystrophy, the Zellweger cerebrohepatorenal syndrome and rhizomelic chondrodysplasia punctata than in normals. Basal cyclooxygenase and phospholipase A2 activities were elevated in most of the peroxisomal disease cells. Cells from patients with adrenomyeloneuropathy, however, had significantly lower cytokine-stimulated cyclooxygenase and phospholipase A2 activities than normals, as well as lower prostaglandin E2 synthesis in response to interleukin 1. The peroxisomal disease lines exhibited dose-response curves to interleukin 1 similar to controls. Receptor-binding analysis indicated that cells from patients with rhizomelic chondrodysplasia punctata expressed 5-times fewer interleukin 1 receptors than normals and the other disease lines. Exaggerated arachidonic acid metabolism in response to interleukin 1 suggests that cells from patients with peroxisomal enzyme defects may be useful in elucidating pathways for arachidonate release and eicosanoid synthesis.  相似文献   

11.
We have previously reported that platelet-activating factor (PAF) is present in human amniotic fluid obtained from women in labor. We have also demonstrated that PAF, lyso-PAF, and alkyl acyl-sn-glycero-3-phosphocholine (AA-GPC) are present in human amnion tissue. In the reported study, we have investigated the enzymes involved in PAF metabolism in amnion tissue and their regulation. A phospholipase A2 activity has been demonstrated in amnion tissue which cleaves alkyl acyl (long-chain) sn-glycero-3-phosphocholine. The enzyme activity is not altered by Ca2+ and is distinctly different from the phospholipase A2 that we have previously characterized in this tissue. Amnion tissue contains acetyltransferase activity which requires Ca2+ and is associated with the microsomal fraction. Acetylhydrolase is also present in the cytosolic fraction of amnion tissue. Acetylhydrolase activity has also been demonstrated in amniotic fluid. The affinities of acetyltransferase (for lyso-PAF) and acetylhydrolase (for PAF) were unaffected by Ca2+. In the presence of Ca2+, however, the specific activity of acetyltransferase was increased four- to fivefold while that of acetylhydrolase was unaffected. Acetyltransferase and acetylhydrolase activities in fetal membranes and decidua were similar and were unchanged with gestational age. The possible role of PAF in the initiation of human parturition is discussed.  相似文献   

12.
Monocytes and macrophages produce bioactive lipids, such as platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, PAF), that mediate inflammation. These cells synthesize PAF following their activation, but not constitutively. Previous studies have demonstrated that PAF accumulation is regulated by the activity of the synthetic enzymes. We observed that the accumulation of PAF in stimulated human monocytes decreased by 90% as they differentiated into macrophages. There was no decrease in the activities of the synthetic enzymes; however, the activity of the degradative enzyme, PAF acetylhydrolase, increased 260-fold. The increase in PAF acetylhydrolase activity appeared to result from a net increase in the synthesis of a new enzyme. These studies demonstrate a novel mechanism in which an increase of the degradative enzyme regulates the accumulation of PAF. This may be an important mechanism by which macrophages modulate inflammatory responses.  相似文献   

13.
Platelet-activating factor (PAF) is a phospholipid (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) with diverse physiological effects. It has been implicated as a mediator of inflammation, allergy, shock, and thrombosis. Plasma contains an enzyme, PAF acetylhydrolase, that catalyzes the degradation of PAF, and the level of this enzyme may regulate the concentration of PAF in the blood and extracellular spaces under some conditions. Thus, the cellular source(s) of this enzyme and the factors that regulate its synthesis and secretion are issues that may have important physiological and pathological implications. We found that cultures of Hep G2, a human hepatocarcinoma line, secreted PAF acetylhydrolase activity. Optimal secretion occurred in medium that contained serum, and the newly secreted PAF acetylhydrolase was associated with high density and low density lipoproteins (LDL and HDL, respectively), just as the enzyme is in plasma. In the absence of serum. PAF acetylhydrolase was secreted with a particle that had a density similar to HDL. Apolipoproteins B and E were found in the same fractions. We tested the effects of a variety of hormones on the secretion of PAF acetylhydrolase and found that secretion was inhibited by 17 alpha-ethynylestradiol with a maximal effect at 30 microM. This may account for the observation of others that estrogens reduce the activity of PAF acetylhydrolase in the plasma. The PAF acetylhydrolase secreted by Hep G2 cells appeared to be identical to the enzyme in human plasma based on substrate specificity, association with LDL and HDL, response to inhibitors, and reactivity with antibodies against the plasma PAF acetylhydrolase. In conclusion, we have demonstrated that hepatocytes in culture secrete a PAF acetylhydrolase that is apparently identical to the plasma form. The secretion is constitutive but may also be regulated in response to hormonal stimulation.  相似文献   

14.
Mouse bone marrow-derived mast cells passively sensitized with monoclonal IgE released paf-acether (platelet-activating factor) and beta-hexosaminidase when challenged with the specific antigen. The formation and the release of paf-acether followed an early increase in the activity of the acetyltransferase, the main enzyme in paf-acether biosynthesis. The antigen-induced activation of the acetyltransferase was dependent on physiologic temperature and on the presence of Ca2+. By using microsomal fractions from unchallenged and challenged mast cells, the Vmax values were 3.5 and 12.0 nmol/min/mg of protein, respectively, whereas in both cases a Km value for acetyl-coenzyme A of 172 microM was measured. The stimulation of acetyltransferase could be mimicked in vitro under experimental conditions which favor phosphorylation, i.e. adding ATP and Mg2+ to lysates from unchallenged mast cells. In contrast, ATP and Mg2+ were uneffective on lysates from challenged cells that exhibited high level of acetyltransferase activity, suggesting that phosphorylation of the enzyme already took place at the time of cell stimulation. Moreover, addition of alkaline phosphatase to microsomal fraction obtained from either antigen-challenged mouse bone marrow-derived mast cells or unchallenged cells, resulted in 52% and 43% loss of acetyltransferase activity, respectively. Phorbol myristate acetate treatment of cells doubled the enzyme activity supporting the phosphorylation hypothesis. Thus, we report on the immunologic activation of a key enzyme for paf-acether synthesis and on the mechanism of this activation in a pure mast cell population. A link between bridging of IgE receptors and the activation of an enzyme critical to the formation of a lipid mediator is thereby evidenced.  相似文献   

15.
Conclusions regarding the contribution of low molecular weight secretory phospholipase A2 (sPLA2) enzymes in eicosanoid generation have relied on data obtained from transfected cells or the use of inhibitors that fail to discriminate between individual members of the large family of mammalian sPLA2 enzymes. To elucidate the role of group V sPLA2, we used targeted gene disruption to generate mice lacking this enzyme. Zymosan-induced generation of leukotriene C4 and prostaglandin E2 was attenuated approximately 50% in peritoneal macrophages from group V sPLA2-null mice compared with macrophages from wild-type littermates. Furthermore, the early phase of plasma exudation in response to intraperitoneal injection of zymosan and the accompanying in vivo generation of cysteinyl leukotrienes were markedly attenuated in group V sPLA2-null mice compared with wild-type controls. These data provide clear evidence of a role for group V sPLA2 in regulating eicosanoid generation in response to an acute innate stimulus of the immune response both in vitro and in vivo, suggesting a role for this enzyme in innate immunity.  相似文献   

16.
Production of platelet-activating factor 1-O-alkyl-2-acetyl-sn-glycero-3- phosphocholine (PAF), a potent mediator of inflammation, by mononuclear phagocytes varies with their stage of cellular differentiation and the nature of the eliciting stimulus. The human monocytic cell line U937 can be induced to differentiate to a macrophage-like cell following phorbol myristate acetate exposure, and after differentiation, these cells efficiently support replication of respiratory syncytial virus (RSV). U937 cells induced to differentiate with phorbol myristate acetate demonstrated a time-dependent decrease in PAF synthesis. RSV infection of these differentiated U937 cells caused a sustained stimulation of PAF synthesis that paralleled viral replication and was dependent on infectious virus. Virus increased the activity of lyso-PAF:acetyl-CoA acetyl-transferase (PAF acetyltransferase) in cell lysates, thus enhancing the anabolic pathway of PAF synthesis without altering the activity of PAF acetylhydrolase, which regulates PAF catabolism. RSV infection of human monocytes also caused a marked increase in [3H] monocytes also caused to uninfected monocytes. Thus, virus infection serves as a novel stimulus to induce PAF synthesis in human mononuclear phagocytes and suggests that increased PAF production may have a critical role in the inflammatory response to RSV.  相似文献   

17.
Stimulated inflammatory cells synthesize platelet-activating factor (PAF), but lysates of these cells show little enhancement in PAF synthase activity. We show that human neutrophils contain intracellular plasma PAF acetylhydrolase (PLA2G7), an enzyme normally secreted by monocytes. The esterase inhibitors methyl arachidonoylfluorophosphonate (MAFP), its linoleoyl homolog, and Pefabloc inhibit plasma PAF acetylhydrolase. All of these inhibitors induced PAF accumulation by quiescent neutrophils and monocytes that was equivalent to agonist stimulation. Agonist stimulation after esterase inhibition did not further increase PAF accumulation. PAF acetylhydrolase activity in intact neutrophils was reduced, but not abolished, by agonist stimulation. Erythrocytes, which do not participate in the acute inflammatory response, inexplicably express the type I PAF acetylhydrolase, whose only known substrate is PAF. Inhibition of this enzyme by MAFP caused PAF accumulation by erythrocytes, which was hemolytic in the absence of PAF acetylhydrolase activity. We propose that PAF is continuously synthesized by a nonselective acyltransferase activity(ies) found even in noninflammatory cells as a component of membrane remodeling, which is then selectively and continually degraded by intracellular PAF acetylhydrolase activity to modulate PAF production.  相似文献   

18.
PURPOSE OF REVIEW: Although findings obtained from various studies are inconclusive in determining whether plasma platelet-activating factor acetylhydrolase, or lipoprotein-associated phospholipase A2, plays a proatherogenic or antiatherogenic role in atherosclerosis, many recent reviews appear to favor it as a risk factor for coronary artery disease. To provide a contrasting view, this review focuses on the enzyme's antiatherogenic and antiinflammatory properties. RECENT FINDINGS: A recent report demonstrates that plasma platelet-activating factor acetylhydrolase activity increases in men and women with stable angina or acute coronary syndromes, supporting previously published data that plasma levels of the protein are independently and positively associated with the risk of coronary artery disease. In contrast, at least four lines of evidence indicate that the enzyme has strong antiatherogenic properties: (1) it inhibits the effects of LDL oxidation, (2) genetic deficiency of plasma levels constitutes a risk factor for vascular diseases including atherosclerosis, (3) adenoviral transfer of the protein reduces atherosclerosis in apolipoprotein E-deficient mice, and (4) pretreatment of an electronegative LDL subfraction isolated from hypercholesterolemic human plasma with a recombinant platelet-activating factor acetylhydrolase completely abolishes the proapoptotic effects of the electronegative LDL on vascular endothelial cells. Additionally, treatment with the recombinant product reduced mortality from severe sepsis in a phase IIb clinical trial. In an animal study, transfection of tumor cells with platelet-activating factor acetylhydrolase inhibited tumor growth at the site of implantation. SUMMARY: Plasma platelet-activating factor acetylhydrolase becomes progressively activated as atherosclerosis progresses, but lines of evidence indicate that the enzyme possesses potent antiatherogenic and antiinflammatory properties. This raises the question of whether increased activity is a cause or a result of atherosclerosis and, consequently, whether inhibiting the enzyme's activities may decelerate or accelerate the progress of the disease.  相似文献   

19.
A passive Arthus reaction (AR) induced in the peritoneal cavity of mice was followed by increased local vascular permeability and haemoconcentration. The intensity of the increased vasopermeability was higher in BALB/c compared with C3H/HePas mice despite the latter being 10 times more sensitive to platelet-activating factor (PAF). C3H/HePas mice however, exhibited higher levels of haemoconcentration and shock-like symptoms. Both events were inhibited by the PAF antagonist, WEB 2170. Indomethacin reduced both pathological events whereas L663,536, that inhibits leukotrienes synthesis reduced haemoconcentration but only in BALB/c mice. PAF was released into the peritoneal cavity, peak release being at 10 min after induction of AR. Prostaglandin E2 (PGE2), thromboxane B2 (TXB2), leukotriene B4 (LTB4), and leukotriene C4/D4 (LTC4/D4) were also released at this time. Similar levels of PAF and eicosanoids were found in BALB/c and C3H/HePas mice except for LTB4, which was higher in C3H/HePas. It is concluded that PAF and eicosanoids are mediators of local and systemic changes induced by immune complexes in the peritoneal cavity of mice.  相似文献   

20.
Tumor necrosis factor stimulates polymorphonuclearneutrophils to synthesize leukotriene B4 and platelet-activating factor (PAF), but alpha 1-proteinase inhibitor and alpha 1-antichymotrypsin block this response. However, proteinases such as elastase and cathepsin G induce preferentially synthesis of PAF. An acetyltransferase required, together with phospholipase A2, in the remodeling pathway of PAF synthesis is activated in polymorphonuclearneutrophils stimulated by tumor necrosis factor and elastase. In contrast, 1-oleyl-2-acetylglycerol, a protein kinase C activator, promotes PAF formation by the de novo biosynthetic pathway without activating the acetyltransferase. Staurosporine, an inhibitor of protein kinase C, blocks PAF production apparently by inhibiting phospholipase A2. This suggests that diacylglycerols are involved in activating both pathway of PAF synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号