首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new technique was devised for the dynamic detection of the axoplasmic transport of beta-radioactively labeled materials in which a semiconductor radiation detector was used as the beta-ray counter. The detector element is a silicon p-n junction diode and has a diameter of 2.0 mm. With this detector, the beta-radioactive distribution of axoplasmic transport could be measured in a axon maintained physiologically without cutting nerves. This method makes possible determination of the transport rate using one bundle of peripheral nerves. The rate in the bullfrog was 6.4 mm per hour at 24.0 degrees D. Temperature effects on the bullfrog axoplasmic transport were also observed at different temperatures, ranging from 5.0 to 24.0 degrees C. At these temperatures the rate increased as an exponential function of temperature from 1.1 to 6.4 mm per hour. Within this temperature range, the Q10 is 2.5 and an Arrhenius plot of the natural logarithm of velocity versus the reciprocal of absolute temperature yielded an apparent activation energy of 14.8 Kcal. this technique offers great advantages in permitting direct study of the axoplasmic flow of the axon in a physiological condition.  相似文献   

2.
An apparatus was devised which utilizes local cooling to reversibly interrupt the axonal transport of dopamine-beta-hydroxylase (DBH) in rabbit sciatic nerves in vitro. Lowering the temperature of a short region of nerve to between 1 and 3 degrees C, while keeping the remainder at 37 degrees C, caused DBH activity to accumulate in and proximal to the cooled region. This accumulation was evident after 0.5 hr of cooling and increased in a nearly linear fashion with time for about 3 hr. The cooling-induced interruption in transport was rapidly reversed when nerves were rewarmed to 37 degrees C. Upon rewarming after local cooling for 1.5 hr, a peak of accumulated DBH activity migrated toward the distal end of the nerve at a velocity of 300 +/- 17 mm/day. This velocity was maintained for as long as the peak could be followed and was four times greater than the average velocity estimated from the rate of accumulation of DBH activity above a ligature at the distal end of these same nerves. It is concluded that ligation experiments grossly underestimate the true velocity of axonal transport of DBH and that the present technique offers great advantages in permitting direct study of the migration of separate axonal compartments of transported materials.  相似文献   

3.
An apparatus was devised which utilizes local cooling to reversibly interrupt the axonal transport of dopamine-β-hydroxylase (DBH) in rabbit sciatic nerves in vitro. Lowering the temperature of a short region of nerve to between 1 and 3°C, while keeping the remainder at 37°C, caused DBH activity to accumulate in and proximal to the cooled region. This accumulation was evident after 0.5 hr of cooling and increased in a nearly linear fashion with time for about 3 hr. The cooling-induced interruption in transport was rapidly reversed when nerves were rewarmed to 37°C. Upon rewarming after local cooling for 1.5 hr, a peak of accumulated DBH activity migrated toward the distal end of the nerve at a velocity of 300 ± 17 mm/day. This velocity was maintained for as long as the peak could be followed and was four times greater than the average velocity estimated from the rate of accumulation of DBH activity above a ligature at the distal end of these same nerves. It is concluded that ligation experiments grossly underestimate the true velocity of axonal transport of DBH and that the present technique offers great advantages in permitting direct study of the migration of separate axonal compartments of transported materials.  相似文献   

4.
A model for slow axonal transport is developed in which the essential features are reversible binding of cytoskeletal elements and of soluble cytosolic proteins to each other and to motile elements such as actin microfilaments. Computer simulation of the equations of the model demonstrate that the model can account for many of the features of the SCa and SCb waves observed in pulse experiments. The model also provides a unified explanation for the increase and decrease of neurofilament transport rates observed in various toxicant-induced neuropathies.  相似文献   

5.
测定温度的转化糖方法及其在景观生态学研究中的应用   总被引:5,自引:0,他引:5  
江源 《生态学报》2001,21(1):28-33
通过理论分析,室内实验和野外实测对测定温度的转化糖方法进行了研究,获得如下结论:①该方法的测定结果能有效地反映小尺度景观单元中和各种群落内部的平均温度特征。②调整样品PH值,能使转化糖方法适用于多种研究地区和多种观测时段;③该方法能够方便而经济地实现在大量不同景观部位和不同群落类型中实现同步测定,也能在难以设置仪器的条件中进行测定;④转化糖方法所测之“效应温度”直接反映了温度对反应过程中的作用程度,因此,对生态过程中与温度之间的关系的研究具有特殊意义。  相似文献   

6.
Gene therapy has become a treatment method for many diseases. Adeno-associated virus (AAV) is one of the most common virus vectors, is also widely used in the gene therapy field. During the past two decades, the retrograde axonal transportability of AAV has been discovered and utilized. Many studies have worked on the retrograde axonal transportability of AAV, and more and more people are interested in this field. This review describes the current application, influence factors, and mechanism of retrograde axonal transportability of AAV and predicted its potential use in disease treatment in near future.  相似文献   

7.
Neurons are specialized cells with a complex architecture that includes elaborate dendritic branches and a long, narrow axon that extends from the cell body to the synaptic terminal. The organized transport of essential biological materials throughout the neuron is required to support its growth, function, and viability. In this review, we focus on insights that have emerged from the genetic analysis of long-distance axonal transport between the cell body and the synaptic terminal. We also discuss recent genetic evidence that supports the hypothesis that disruptions in axonal transport may cause or dramatically contribute to neurodegenerative diseases.  相似文献   

8.
The expression of tyrosinase in melanocytes relates to skin pigmentation or depigmentation. Although many types of drugs with whitening effects are well known, neither the definite effect nor the mechanism underlying the effect has been elucidated. In this study, we attempted to develop the rapid and simple EIA technique for tyrosinase protein, then this technique was applied to normal human cultured melanocytes. When primary antibody and tyrosinase were incubated in non-coated 96-well microtitre plates for 48 hours at 4 degrees C, then the solution in tyrosinase-coated plate was further incubated for another 1 hour at 37 degrees C. Thus the best results were obtained. The developed EIA system could detect authentic tyrosinase until 0.1-1.0 ng/mL. This EIA technique could also be applied to human cultured melanocytes. The melanocytes cultured with endothelin-1 induced tyrosinase like immune reactive protein. The protein induction with endothelin-1 was suppressed by BQ 123, ETa receptor antagonists. The simple EIA technique developed for tyrosinase may give a clue to determination of the onset mechanisms underlying pigmental diseases of the skin as well as the mechanisms underlying the effects of various whitening drugs.  相似文献   

9.
Axonal transport has been extensively studied for a period of 20–30 years, but there is still no general consensus concerning the mechanism by which this transport process operates. An important development in this regard is the recent studies in the physical biochemistry group in the Department of Biochemistry at Monash University where it has been demonstrated that ordered flows may be generated spontaneously in polymer systems under non-equilibeium conditions. The new phenomenon exhibits many novel features, particularly with respect to polymer transport, which bear marked similarity to the behaviour of components in axonal transport. This article sets out to essentiallybring to the attention of those in the neurosciences some of the properties of ordered structured flows in polymer solutions. These properties may generate a different view in the understanding of the mechanism of axonal transport.  相似文献   

10.
11.
Cytoplasmic protein transport in axons (‘slow axonal transport’) is essential for neuronal homeostasis, and involves Kinesin‐1, the same motor for membranous organelle transport (‘fast axonal transport’). However, both molecular mechanisms of slow axonal transport and difference in usage of Kinesin‐1 between slow and fast axonal transport have been elusive. Here, we show that slow axonal transport depends on the interaction between the DnaJ‐like domain of the kinesin light chain in the Kinesin‐1 motor complex and Hsc70, scaffolding between cytoplasmic proteins and Kinesin‐1. The domain is within the tetratricopeptide repeat, which can bind to membranous organelles, and competitive perturbation of the domain in squid giant axons disrupted cytoplasmic protein transport and reinforced membranous organelle transport, indicating that this domain might have a function as a switchover system between slow and fast transport by Hsc70. Transgenic mice overexpressing a dominant‐negative form of the domain showed delayed slow transport, accelerated fast transport and optic axonopathy. These findings provide a basis for the regulatory mechanism of intracellular transport and its intriguing implication in neuronal dysfunction.  相似文献   

12.
Microtubule proteins, isolated by cycles of assembly, will undergo ATP-dependent gelation-contraction in vitro. A particulate component is present in these preparations, which is required for the gelation-contraction of microtubules assembled from purified tubulin. These particulates contain tubulin, neurofilament, spectrin, MAP2, and other as yet unidentified proteins. The particulates have a microtubule-stimulated ATPase that may be unique and is the likely motor for microtubule gelation-contraction. The basic structural unit of these particulates appears to be a crescent-shaped, or hemispherical, granule about 20 nm in diameter. The particles move along microtubule walls at a rate of about 1 micron. When compared to known physiological phenomena, microtubule gelation-contraction has striking similarities to component a of slow axonal transport (SCa), but displays no relationship to slow component b or to fast transport. On the basis of their similarities in composition, solubility, and rate of movement, we have proposed that the particulates responsible for microtubule gelation-contraction are the insoluble protein complexes, which have been suggested to be the transported component of SCa. We have termed these structures "slow component a particulates" or "SCAPs." It is probable that similar motile protein complexes exist in cells other than neurons, and we propose the term "dynasome" to describe such structures in general.  相似文献   

13.
In neurons and other animal cells, membrane-bound vesicles course rapidly along cytoskeletal filaments to reach their destinations. Based on a variety of in vivo studies it is becoming clear that the microtubule-based motor, kinesin (and its relatives), drive vesicle movements in axons. Surprisingly, some axonal membranes have the capacity to move on both microtubules and actin filaments.  相似文献   

14.
15.
Neurons transmit long-range biochemical signals between cell bodies and distant axonal sites or termini. To test the hypothesis that signaling molecules are hitchhikers on axonal vesicles, we focused on the c-Jun NH2-terminal kinase (JNK) scaffolding protein Sunday Driver (syd), which has been proposed to link the molecular motor protein kinesin-1 to axonal vesicles. We found that syd and JNK3 are present on vesicular structures in axons, are transported in both the anterograde and retrograde axonal transport pathways, and interact with kinesin-I and the dynactin complex. Nerve injury induces local activation of JNK, primarily within axons, and activated JNK and syd are then transported primarily retrogradely. In axons, syd and activated JNK colocalize with p150Glued, a subunit of the dynactin complex, and with dynein. Finally, we found that injury induces an enhanced interaction between syd and dynactin. Thus, a mobile axonal JNK-syd complex may generate a transport-dependent axonal damage surveillance system.  相似文献   

16.
Differential effects of cobalt on the initiation of fast axonal transport   总被引:9,自引:0,他引:9  
Effects of Co2+ on the fast axonal transport of individual proteins were examined in vitro in bullfrog spinal/sciatic nerves.35S-methionine-labeled proteins, fast-transported in control and Co2+-treated preparations were separated via two-dimensional gel electrophoresis. While the overall amount of protein transported was reduced, no qualitative differences could be seen when gel fluorographic patterns were compared. Quantitative analyses of the 48 most abundantly transported species revealed two significantly different populations (p < 0.01) differentially sensitive to Co2+ and distinguishable to a large extent by molecular weight. Those proteins less sensitive to Co2+ ranged from ~20,000 to 35,000 daltons while those more sensitive to Co2+ were >~35,000 daltons. The finding that all proteins are affected by Co2+ supports the proposal that fast-transported proteins are subject to a common Co2+-sensitive, Ca2+-requiring step. The observed differential effects are consistent with more than one Ca2+-dependent step occurring during the initiation phase of fast transport.This research was supported by a Muscular Dystrophy Association postdoctoral fellowship to G.C.S., and by research grants from NSF (BNS 79-24125) and the National Multiple Sclerosis Society (RG 1296-A-1) to R.H.  相似文献   

17.
We have developed a model that accounts for the effect of a non-uniform distribution of tau protein along the axon length on fast axonal transport of intracellular organelles. The tau distribution is simulated by using a slow axonal transport model; the numerically predicted tau distributions along the axon length were validated by comparing them with experimentally measured tau distributions reported in the literature. We then developed a fast axonal transport model for organelles that accounts for the reduction of kinesin attachment rate to microtubules by tau. We investigated organelle transport for two situations: (1) a uniform tau distribution and (2) a non-uniform tau distribution predicted by the slow axonal transport model. We found that non-uniform tau distributions observed in healthy axons (an increase in tau concentration towards the axon tip) result in a significant enhancement of organelle transport towards the synapse compared with the uniform tau distribution with the same average amount of tau. This suggests that tau may play the role of being an enhancer of organelle transport.  相似文献   

18.
Axonal transport of mitochondria is critical for neuronal survival and function. Automatically quantifying and analyzing mitochondrial movement in a large quantity remain challenging. Here, we report an efficient method for imaging and quantifying axonal mitochondrial transport using microfluidic-chamber-cultured neurons together with a newly developed analysis package named “MitoQuant”. This tool-kit consists of an automated program for tracking mitochondrial movement inside live neuronal axons and a transient-velocity analysis program for analyzing dynamic movement patterns of mitochondria. Using this method, we examined axonal mitochondrial movement both in cultured mammalian neurons and in motor neuron axons of Drosophila in vivo. In 3 different paradigms (temperature changes, drug treatment and genetic manipulation) that affect mitochondria, we have shown that this new method is highly efficient and sensitive for detecting changes in mitochondrial movement. The method significantly enhanced our ability to quantitatively analyze axonal mitochondrial movement and allowed us to detect dynamic changes in axonal mitochondrial transport that were not detected by traditional kymographic analyses.  相似文献   

19.
In this paper we consider the advective/diffusive transport of a solute near a hovering zooplankter. We approximate the fluid flow with that of a Stokeslet, corresponding to the plankter exerting a point force on the water, and assume that the plankter acts as a point source for the transported solute, located at the same point as the force. We find an analytical expression in closed form for the steady-state concentration of the solute. We also discuss the situation where the plankter performs Brownian motion. Finally we apply the results to the courtship of the marine copepod Pseudocalanus elongatus, where the male performs a mating dance below the hovering female. For this situation, our model supports the hypothesis that the mating dance is guided by the plume of a signalling pheromone.  相似文献   

20.
Cerebellar connections were investigated in the turtle using a technique of unilateral application of horseradish peroxidase to the body and the nuclei of the cerebellum as well as the structures of the mesencephalic tegmentum. Findings showed that the origins of projections to the cerebellum in the caudal sections of the brain (vestibular nuclei, perihypoglossal complex, inferior reticular formation with the inferior olive, the spinal chord, etc.) were more numerous than in the rostral mesodiencephalic regions, such as the tegmentum and the pretectum. Extensive efferent cerebellar projections were detected both in the medulla, including the vestibular nuclei and nuclei of the dorsal columns of the spinal cord, and in the mesencephalic tegmentum, but were rare in the hypothalamus and the ventral somatic section of the thalamus. The conclusion was reached that the closest similarity between reptiles and mammals is seen in the afferent and efferent connections linking the cerebellum with the spinal cord, the caudal sections of the brain stem, and the mesencephalic brain structures, which have a common involvement in the regulation of muscle tonus and the coordination of locomotor activity.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 17, No. 6, pp. 786–794, November–December, 1985.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号