首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gap junction channels contain two hemichannels (connexons), each being a connexin (Cx) hexamer. In cells expressing multiple connexins, heteromeric connexons are believed to form, whereas cell pairs expressing different connexins generate heterotypic channels. To define gating behavior of heteromeric and heterotypic channels, CO2-induced gating was tested in Xenopus oocyte pairs expressing Cx32, or 5R/N (Cx32 mutant), as well as in pairs in which one oocyte (mx) expressed a 50/50 mixture of Cx32 and 5R/N and the other either the mixture (mx), Cx32 (32) or 5R/N (R/N). In 5R/N, replacement of 5 C-terminus arginines with asparagines greatly increased CO2 sensitivity. In response to 3 and 15 min CO2 exposures, junctional conductance (G j ) decreased to 85% and 47%, in 32–32 pairs, and to 7% and 0.9%, in R/N-R/N pairs, respectively. In mx-mx and mix-32 pairs, G j decreased to similar values (33% and 35%, respectively) with 15 min CO2. The sensitivity of mx-R/N pairs was similar to that of heterotypic 32-R/N pairs, as G j dropped to 36% and 38%, respectively, with 3 min CO2. Monoheteromeric (mx-32 and mx-R/N) and biheteromeric (mx-mx) channels behaved as if Cx32 were dominant, suggesting that hemichannel sensitivity is not an average of the sensitivities of its connexin monomers. In contrast, heterotypic channels behaved as if the two hemichannels of a cell-cell channel had no influence on each other. Received: 15 May 1997/Revised: 8 December 1997  相似文献   

2.
To evaluate the influence of intracellular domains of connexin (Cx) on channel transfer properties, we analyzed mouse connexin (Cx) Cx26 and Cx30, which show the most similar amino acid sequence identities within the family of gap junction proteins. These connexin genes are tightly linked on mouse chromosome 14. Functional studies were performed on transfected HeLa cells stably expressing both mouse connexins. When we examined homotypic intercellular transfer of microinjected neurobiotin and Lucifer yellow, we found that gap junctions in Cx30-transfected cells, in contrast to Cx26 cells, were impermeable to Lucifer yellow. Furthermore, we observed heterotypic transfer of neurobiotin between Cx30-transfectants and HeLa cells expressing mouse Cx30.3, Cx40, Cx43 or Cx45, but not between Cx26 transfectants and HeLa cells of the latter group. The main differences in amino acid sequence between Cx26 and Cx30 are located in the presumptive cytoplasmic loop and C-terminal region of these integral membrane proteins. By exchanging one or both of these domains, using PCR-based mutagenesis, we constructed Cx26/30 chimeric cDNAs, which were also expressed in HeLa cells after transfection. Homotypic intercellular transfer of injected Lucifer yellow was observed exclusively with those chimeric constructs that coded for both cytoplasmic domains of Cx26 in the Cx30 backbone polypeptide chain. In contrast, cells transfected with a construct that coded for the Cx26 backbone with the Cx30 cytoplasmic loop and C-terminal region did not show transfer of Lucifer yellow. Thus, Lucifer yellow transfer can be conferred onto chimeric Cx30 channels by exchanging the cytoplasmic loop and the C-terminal region of these connexins. In turn, the cytoplasmic loop and C-terminal domain of Cx30 prevent Lucifer yellow transfer when swapped with the corresponding domains of Cx26. In chimeric Cx30/Cx26 channels where the cytoplasmic loop and C-terminal domains had been exchanged, the unitary channel conductance was intermediate between those of the parental channels. Moreover, the voltage sensitivity was slightly reduced. This suggests that these cytoplasmic domains interfere directly or indirectly with the diffusivity, the conductance and voltage gating of the channels. Received: 26 July 2000/Revised: 15 February 2001  相似文献   

3.
Certain COOH-terminus mutants of connexin32 (Cx32) were previously shown to form channels with unusual transjuctional voltage (V j ) sensitivity when tested heterotypically in oocytes against Cx32 wild type. Junctional conductance (G j ) slowly increased by severalfold or decreases to nearly zero with V j positive or negative, respectively, at mutant side, and V j positive at mutant side reversed CO2-induced uncoupling. This suggested that the CO2-sensitive gate might be a V j -sensitive slow gate. Based on previous data for calmodulin (CaM) involvement in gap junction function, we have hypothesized that the slow gate could be a CaM-like pore plugging molecule (cork gating model). This study describes a similar behavior in heterotypic channels between Cx32 and each of four new Cx32 mutants modified in cytoplasmic-loop and/or COOH-terminus residues. The mutants are: ML/NN+3R/N, 3R/N, ML/NN and ML/EE; in these mutants, N or E replace M105 and L106, and N replace R215, R219 and R220. This study also reports that inhibition of CaM expression strongly reduces V j and CO2 sensitivities of two of the most effective mutants, suggesting a CaM role in slow and chemical gating. Received: 19 April 2000/Revised: 11 August 2000  相似文献   

4.
Connexin40 (Cx40) and connexin43 (Cx43) are co-expressed in the cardiovascular system, yet their ability to form functional heterotypic Cx43/Cx40 gap junctions remains controversial. We paired Cx43 or Cx40 stably-transfected N2a cells to examine the formation and biophysical properties of heterotypic Cx43/Cx40 gap junction channels. Dual whole cell patch clamp recordings demonstrated that Cx43 and Cx40 form functional heterotypic gap junctions with asymmetric transjunctional voltage (Vj) dependent gating properties. The heterotypic Cx43/Cx40 gap junctions exhibited less Vj gating when the Cx40 cell was positive and pronounced gating when negative. Endogenous N2a cell connexin expression levels were 1,000-fold lower than exogenously expressed Cx40 and Cx43 levels, measured by real-time PCR and Western blotting methods, suggestive of heterotypic gap junction formation by exogenous Cx40 and Cx43. Imposing a [KCl] gradient across the heterotypic gap junction modestly diminished the asymmetry of the macroscopic normalized junctional conductance – voltage (Gj-Vj) curve when [KCl] was reduced by 50% on the Cx43 side and greatly exacerbated the Vj gating asymmetries when lowered on the Cx40 side. Pairing wild-type (wt) Cx43 with the Cx40 E9,13K mutant protein produced a nearly symmetrical heterotypic Gj-Vj curve. These studies conclusively demonstrate the ability of Cx40 and Cx43 to form rectifying heterotypic gap junctions, owing primarily to alternate amino-terminal (NT) domain acidic and basic amino acid differences that may play a significant role in the physiology and/or pathology of the cardiovascular tissues including cardiac conduction properties and myoendothelial intercellular communication.  相似文献   

5.
Connexin40 (Cx40) and connexin43 (Cx43) are co-expressed in the cardiovascular system, yet their ability to form functional heterotypic Cx43/Cx40 gap junctions remains controversial. We paired Cx43 or Cx40 stably-transfected N2a cells to examine the formation and biophysical properties of heterotypic Cx43/Cx40 gap junction channels. Dual whole cell patch clamp recordings demonstrated that Cx43 and Cx40 form functional heterotypic gap junctions with asymmetric transjunctional voltage (Vj) dependent gating properties. The heterotypic Cx43/Cx40 gap junctions exhibited less Vj gating when the Cx40 cell was positive and pronounced gating when negative. Endogenous N2a cell connexin expression levels were 1,000-fold lower than exogenously expressed Cx40 and Cx43 levels, measured by real-time PCR and Western blotting methods, suggestive of heterotypic gap junction formation by exogenous Cx40 and Cx43. Imposing a [KCl] gradient across the heterotypic gap junction modestly diminished the asymmetry of the macroscopic normalized junctional conductance – voltage (Gj-Vj) curve when [KCl] was reduced by 50% on the Cx43 side and greatly exacerbated the Vj gating asymmetries when lowered on the Cx40 side. Pairing wild-type (wt) Cx43 with the Cx40 E9,13K mutant protein produced a nearly symmetrical heterotypic Gj-Vj curve. These studies conclusively demonstrate the ability of Cx40 and Cx43 to form rectifying heterotypic gap junctions, owing primarily to alternate amino-terminal (NT) domain acidic and basic amino acid differences that may play a significant role in the physiology and/or pathology of the cardiovascular tissues including cardiac conduction properties and myoendothelial intercellular communication.  相似文献   

6.
Many cardiovascular cells coexpress multiple connexins (Cx), leading to the potential formation of mixed (heteromeric) gap junction hemichannels whose biophysical properties may differ from homomeric channels containing only one connexin type. We examined the potential interaction of connexin Cx43 and Cx40 in HeLa cells sequentially stably transfected with these two connexins. Immunoblots verified the production of comparable amounts of both connexins, cross-linking showed that both connexins formed oligomers, and immunofluorescence showed extensive colocalization. Moreover, Cx40 copurified with (His)(6)-tagged Cx43 by affinity chromatography of detergent-solubilized connexons, demonstrating the presence of both connexins in some hemichannels. The dual whole cell patch-clamp method was used to compare the gating properties of gap junctions in HeLa Cx43/Cx40 cells with homotypic (Cx40-Cx40 and Cx43-Cx43) and heterotypic (Cx40-Cx43) gap junctions. Many of the observed single channel conductances resembled those of homotypic or heterotypic channels. The steady-state junctional conductance (g(j,ss)) in coexpressing cell pairs showed a reduced sensitivity to the voltage between cells (V(j)) compared with homotypic gap junctions and/or an asymmetrical V(j) dependence reminiscent of heterotypic gap junctions. These gating properties could be fit using a combination of homotypic and heterotypic channel properties. Thus, whereas our biochemical evidence suggests that Cx40 and Cx43 form heteromeric connexons, we conclude that they are functionally insignificant with regard to voltage-dependent gating.  相似文献   

7.
The organ of Corti has been found to have multiple gap junction subunits, connexins, which are localized solely in nonsensory supporting cells. Connexin mutations can induce sensorineural deafness. However, the characteristics and functions of inner ear gap junctions are not well known. In the present study, the voltage-dependence of gap junctional conductance (G j ) in cochlear supporting cells was examined by the double voltage clamp technique. Multiple types of asymmetric voltage dependencies were found for both nonjunctional membrane voltage (V m ) and transjunctional (V j ) voltage. Responses for each type of voltage dependence were categorized into four groups. The first two groups showed rectification that was polarity dependent. The third group exhibited rectification with either voltage polarity, i.e., these cells possessed a bell-shaped G j -V j or G j -V m function. The rectification due to V j had fast and slow components. On the other hand, V m -dependent gating was fast (<5 msec), but stable. Finally, a group was found that evidenced no voltage dependence, although the absence of V j dependence did not preclude V m dependence and vice versa. In fact, for all groups V j sensitivity could be independent of V m sensitivity. The data show that most gap junctional channels in the inner ear have asymmetric voltage gating, which is indicative of heterogeneous coupling and may result from heterotypic channels or possibly heteromeric configurations. This heterogeneous coupling implies that single connexin gene mutations may affect the normal physiological function of gap junctions that are not limited to homotypic configurations. Received: 17 September 1999/Revised: 12 January 2000  相似文献   

8.
Recent evidence indicatingformation of functional homomeric/heterotypic gap junction channels byconnexin40 (Cx40) and connexin43 (Cx43) raises the question of whetherdata previously interpreted as support for heteromeric channelformation by these connexins might not instead reflect the activity ofhomomeric/heterotypic channels. To address this question and to furthercharacterize the behavior of these channels, we used dual whole cellvoltage-clamp techniques to examine the junctions formed between cellsthat express only Cx40 (Rin40) or Cx43 (Rin43) and compared the results with those obtained when either of these cell types was paired withcells that naturally express both connexins (A7r5 cells). Rin40/Rin43cell pairs formed functional gap junctions that displayed a stronglyasymmetric voltage-dependent gating response. Single-channel eventamplitudes ranged between 34 and 150 pS, with 90- to 130-pS eventspredominating. A7r5/Rin43 and A7r5/Rin40 cell pairs had voltage-dependent gating responses that varied greatly, with most pairsdemonstrating strong asymmetry. These cell pairs exhibited a variety ofsingle-channel events that were not consistent with homomeric/homotypicCx40 or Cx43 channels or homomeric/heterotypic Cx40/Cx43 channels.These data indicate that Cx40 and Cx43 form homomeric/heterotypic aswell as heteromeric/heterotypic channels that display unique gating andconductance properties.

  相似文献   

9.
HeLa cells expressing wild-type connexin43, connexin40 or connexin45 and connexins fused with a V5/6-His tag to the carboxyl terminus (CT) domain (Cx43-tag, Cx40-tag, Cx45-tag) were used to study connexin expression and the electrical properties of gap junction channels. Immunoblots and immunolabeling indicated that tagged connexins are synthesized and targeted to gap junctions in a similar manner to their wild-type counterparts. Voltage-clamp experiments on cell pairs revealed that tagged connexins form functional channels. Comparison of multichannel and single-channel conductances indicates that tagging reduces the number of operational channels, implying interference with hemichannel trafficking, docking and/or channel opening. Tagging provoked connexin-specific effects on multichannel and single-channel properties. The Cx43-tag was most affected and the Cx45-tag, least. The modifications included (1) V j-sensitive gating of I j (V j, gap junction voltage; I j, gap junction current), (2) contribution and (3) kinetics of I j deactivation and (4) single-channel conductance. The first three reflect alterations of fast V j gating. Hence, they may be caused by structural and/or electrical changes on the CT that interact with domains of the amino terminus and cytoplasmic loop. The fourth reflects alterations of the ion-conducting pathway. Conceivably, mutations at sites remote from the channel pore, e.g., 6-His-tagged CT, affect protein conformation and thus modify channel properties indirectly. Hence, V5/6-His tagging of connexins is a useful tool for expression studies in vivo. However, it should not be ignored that it introduces connexin-dependent changes in both expression level and electrophysiological properties.  相似文献   

10.
Cells in blood vessel walls express connexin (Cx)43, Cx40, and Cx37. We recently characterized gap junction channels in rat basilar artery smooth muscle cells and found features attributable not only to these three connexins but also to an unidentified connexin, including strong voltage dependence and single channel conductance of 30-40 pS. Here, we report data consistent with identification of Cx45. Immunofluorescence using anti-human Cx45 and anti-mouse Cx45 antibodies revealed labeling between alpha-actin-positive cells, and RT-PCR of mRNA from arteries after endothelial destruction yielded amplicons exhibiting 90-98% identity with mouse Cx45 and human Cx45. Dual-perforated patch clamping was performed after exposure to oligopeptides that interfere with docking of Cx43, Cx40, or Cx45. Cell pairs pretreated with blocking peptides for Cx43 and Cx40 exhibited strongly voltage-dependent transjunctional conductances [voltage at which voltage-dependent conductance declines by one-half (V1/2) = +/-18.9 mV] and small single channel conductances (31 pS), consistent with the presence of Cx45, whereas cell pairs pretreated with blocking peptide for Cx45 exhibit weaker voltage-dependent conductances (V1/2 = +/-37.9 mV), consistent with block of Cx45. Our data suggest that Cx45 is transcribed, expressed, and forms functional gap junction channels in rat cerebral arterial smooth muscle.  相似文献   

11.
Gap junctions are collections of intercellular channels composed of structural proteins called connexins (Cx). We have examined the functional interactions of the three rodent connexins present in the lens, Cx43, Cx46, and Cx50, by expressing them in paired Xenopus oocytes. Homotypic channels containing Cx43, Cx46, or Cx50 all developed high conductance. heterotypic channels composed of Cx46 paired with either Cx43 or Cx50 were also well coupled, whereas Cx50 did not form functional channels with Cx43. We also examined the functional response of homotypic and heterotypic channels to transjunctional voltage and cytoplasmic acidification. We show that all lens connexins exhibited sensitivity to cytoplasmic acidification as well as to voltage, and that voltage-dependent closure of heterotypic channels for a given connexin was dramatically influenced by its partner connexins in the adjacent cell. Based on the observation that Cx43 can discriminate between Cx46 and Cx50, we investigated the molecular determinants that specify compatibility by constructing chimeric connexins from portions of Cx46 and Cx50 and testing them for their ability to form channels with Cx43. When the second extracellular (E2) domain in Cx46 was replaced with the E2 of Cx50, the resulting chimera could no longer form heterotypic channels with Cx43. A reciprocal chimera, where the E2 of Cx46 was inserted into Cx50, acquired the ability to functionally interact with Cx43. Together, these results demonstrate that formation of intercellular channels is a selective process dependent on the identity of the connexins expressed in adjacent cells, and that the second extracellular domain is a determinant of heterotypic compatibility between connexins.  相似文献   

12.
Neonatal rat cardiomyocytes mainly coexpress the connexins Cx40, Cx43, and to a small amount Cx45, leading to potential formation of mixed (heteromeric/heterotypic) gap junction channels. Using the dual-voltage clamp technique with switching clamp circuits, the authors investigated voltage sensitivity of gap junction channels between cell pairs of Cx40, Cx43, and Cx45 stably transfected HeLa cells and compared those data to data obtained from cell pairs of cultured neonatal rat cardiomyocytes. In accordance to previously published data, the relationship between normalized conductance and transjunctional voltage (g/V(j)) was quasisymmetrical for the transfected HeLa cells, indicating homotypic gap junction channels. Boltzmann curves fitted to data obtained from neonatal rat cardiomyocyte pairs expressing both Cx40 and Cx43 showed an asymmetrical inactivation pattern, which cannot be explained by the presence of pure populations of homotypic gap junction channels of either isoform. In conclusion the authors assume the additional presence of heterotypic and possibly even heteromeric gap junction channels in neonatal rat cardiomyocytes.  相似文献   

13.
Connexins (Cxs) 40, 43, and 45 are expressed in many different tissues, but most abundantly in the heart, blood vessels, and the nervous system. We examined formation and gating properties of heterotypic gap junction (GJ) channels assembled between cells expressing wild-type Cx40, Cx43, or Cx45 and their fusion forms tagged with color variants of green fluorescent protein. We show that these Cxs, with exception of Cxs 40 and 43, are compatible to form functional heterotypic GJ channels. Cx40 and Cx43 hemichannels are unable or effectively impaired in their ability to dock and/or assemble into junctional plaques. When cells expressing Cx45 contacted those expressing Cx40 or Cx43 they readily formed junctional plaques with cell-cell coupling characterized by asymmetric junctional conductance dependence on transjunctional voltage, V(j). Cx40/Cx45 heterotypic GJ channels preferentially exhibit V(j)-dependent gating transitions between open and residual states with a conductance of approximately 42 pS; transitions between fully open and closed states with conductance of approximately 52 pS in magnitude occur at substantially lower ( approximately 10-fold) frequency. Cx40/Cx45 junctions demonstrate electrical signal transfer asymmetry that can be modulated between unidirectional and bidirectional by small changes in the difference between holding potentials of the coupled cells. Furthermore, both fast and slow gating mechanisms of Cx40 exhibit a negative gating polarity.  相似文献   

14.
15.
Murine connexin 40 (Cx40) and connexin 43 (Cx43) do not form functional heterotypic gap junction channels. This property may contribute to the preferential propagation of action potentials in murine conductive myocardium (expressing Cx40) which is surrounded by working myocardium, expressing Cx43. When mouse Cx40 and Cx43 were individually expressed in cocultured human HeLa cells, no punctate immunofluorescent signals were detected on apposed plasma membranes between different transfectants, using antibodies specific for each connexin, suggesting that Cx40 and Cx43 hemichannels do not dock to each other. We wanted to identify domains in these connexin proteins which are responsible for the incompatibility. Thus, we expressed in HeLa cells several chimeric gene constructs in which different extracellular and intracellular domains of Cx43 had been spliced into the corresponding regions of Cx40. We found that exchange of both extracellular loops (E1 and E2) in this system (Cx40*43E1,2) was required for formation of homotypic and heterotypic conductive channels, although the electrical properties differed from those of Cx40 or Cx43 channels. Thus, the extracellular domains of Cx43 can be directed to form functional homo- and heterotypic channels. Another chimeric construct in which both extracellular domains and the central cytoplasmic loop (E1, E2, and C2) of Cx43 were spliced into Cx40 (Cx40*43E1,2,C2) led to heterotypic coupling only with Cx43 and not with Cx40 transfectants. Thus, the central cytoplasmic loop of Cx43 contributed to selectivity. A third construct, in which only the C-terminal domain (C3) of Cx43 was spliced into Cx40, i.e., Cx40*43C3, showed neither homotypic nor heterotypic coupling with Cx40 and Cx43 transfectants, suggesting that the C-terminal region of Cx43 determined incompatibility.  相似文献   

16.
Previous results demonstrated that the intercellular communication mediated by gap junctions in retinal pigment epithelial (RPE) cells from the healthy Long Evans (LE) rat strain is higher than that from the dystrophic Royal College of Surgeons (RCS) rat strain. We examined connexin (Cx) expression in both cell types. At the mRNA level, a qualitatively similar expression pattern was found whereby Cx26, Cx32, Cx36, Cx43, Cx45 and Cx46 were all expressed. At the protein level, only Cx43 and Cx46 were detected. Expression of both isoforms was higher in LE-RPE as compared to RCS-RPE by a factor of 1.25 and 2 respectively. Phosphorylation of Cx43 was increased upon activation of protein kinase C (PKC) by 1 μM phorbol 12-myristate 13-acetate (PMA). The phosphorylation status was not changed in hyperglycemic conditions, but this treatment strongly decreased total Cx43 levels to about 75 and 40% (in LE-RPE and RCS-RPE cells respectively) of the control level in LE-RPE cells. This decrease could be overcome by PKC downregulation. These results demonstrate that PKC activation and hyperglycemic conditions have different effects on Cx43 and that PKC is involved in the metabolic pathway induced by hyperglycemic conditions. Received: 21 July 2000/Revised: 19 January 2001  相似文献   

17.
One consequence of the diversity in gap junction structural proteins is that cells expressing different connexins may come into contact and form intercellular channels that are mixed in connexin content. We have systematically examined the ability of adjacent cells expressing different connexins to communicate, and found that all connexins exhibit specificity in their interactions. Two extreme examples of selectivity were observed. Connexin40 (Cx40) was highly restricted in its ability to make heterotypic channels, functionally interacting with Cx37, but failing to do so when paired with Cx26, Cx32, Cx43, Cx46, and Cx50. In contrast, Cx46 interacted well with all connexins tested except Cx40. To explore the molecular basis of connexin compatibility and voltage gating, we utilized a chimera consisting of Cx32 from the N-terminus to the second transmembrane domain, fused to Cx43 from the middle cytoplasmic loop to the C-terminus. The chimeric connexin behaved like Cx43 with regard to selectivity and like Cx32 with regard to voltage dependence. Taken together, these results demonstrate that the second but not the first extracellular domain affects compatibility, whereas voltage gating is strongly influenced by sequences between the N-terminus and the second transmembrane domain.  相似文献   

18.
Incells that coexpress connexin (Cx)40 and Cx43, the ratio of expressioncan vary depending on the cellular environment. We examined the effectof changing Cx40:Cx43 expression ratio on functional gap junctionproperties. Rin cells transfected with Cx40 or Cx43 (Rin40, Rin43) werecocultured with 6B5n, A7r5, A7r540C1, or A7r540C3 cells forelectrophysiological and dye coupling analysis. Cx40:Cx43 expressionratio in 6B5n, A7r5, A7r540C1, and A7r540C3 cells was ~1:1, 3:1, 5:1,and 10:1, respectively. When Rin43 cells were paired with coexpressingcells, there was an increasing asymmetry of voltage-dependent gatingand a shift toward smaller conductance events as Cx40:Cx43 ratioincreased in the coexpressing cell. These observations could not bepredicted by linear combinations of Cx40 and Cx43 properties inproportion to the expressed ratios of the two Cxs. When Rin40 cellswere paired with coexpressing cells, the net voltage gating andsingle-channel conductance behavior were similar to those ofRin40/Rin40 cell pairs. Dye permeability properties of cell monolayersdemonstrated that as Cx40:Cx43 expression ratio increased incoexpressing cells the charge and size selectivity of dye transferreflected that of Rin40 cells, as would be predicted. These dataindicate that the electrophysiological properties of heteromeric/heterotypic channels are not directly related to the proportions of Cx constituents expressed in the cell; however, the dyepermeability of these same channels can be predicted by the relative Cx contributions.

  相似文献   

19.
Using the planar lipid bilayer technique we demonstrate that the lipodepsipeptide antibiotic, syringomycin E, forms voltage-sensitive ion channels of weak anion selectivity. The formation of channels in bilayers made from dioleoylglycerophosphatidylserine doped with syringomycin E at one side (1–40 μg/ml) was greatly affected by cis-positive voltage. A change of voltage from a positive to a negative value resulted in (i) an abrupt increase in the single channel conductance (the rate of increase was voltage dependent) simultaneous with (ii) a closing of these channels and an exponential decrease in macroscopic conductance over time. The strong voltage dependence of multichannel steady state conductance, the single channel conductance, the rate of opening of channels at positive voltages and closing them at negative voltages, as well as the observed abrupt increase of single channel conductance after voltage sign reversal suggest that the change of the transmembrane field induces a significant rearrangement of syringomycin E channels, including a change in the spacing of charged groups that function as voltage sensors. The conductance induced by syringomycin E increased with the sixth power of syringomycin E concentration suggesting that at least six monomers are required for channel formation. Received: 3 April 1995/Revised: 24 August 1995  相似文献   

20.
Homomeric gap junction channels are composed solely of oneconnexin type, whereas heterotypic forms contain two homomeric hemichannels but the six identical connexins of each are different fromeach other. A heteromeric gap junction channel is one that containsdifferent connexins within either or both hemichannels. The existenceof heteromeric forms has been suggested, and many cell types are knownto coexpress connexins. To determine if coexpressed connexins wouldform heteromers, we cotransfected rat connexin43 (rCx43) and humanconnexin37 (hCx37) into a cell line normally devoid of any connexinexpression and used dual whole cell patch clamp to compare the observedgap junction channel activity with that seen in cells transfected onlywith rCx43 or hCx37. We also cocultured cells transfected with hCx37 orrCx43, in which one population was tagged with a fluorescent marker tomonitor heterotypic channel activity. The cotransfected cells possessedchannel types unlike the homotypic forms of rCx43 or hCx37 or theheterotypic forms. In addition, the noninstantaneous transjunctionalconductance-transjunctional voltage(Gj/Vj)relationship for cotransfected cell pairs showed a large range ofvariability that was unlike that of the homotypic or heterotypic form.The heterotypic cell pairs displayed asymmetric voltage dependence. Theresults from the heteromeric cell pairs are inconsistent with summedbehavior of two independent homotypic populations or mixed populationsof homotypic and heterotypic channels types. TheGj/Vjdata imply that the connexin-to-connexin interactions are significantlyaltered in cotransfected cell pairs relative to the homotypic andheterotypic forms. Heteromeric channels are a population of channelswhose characteristics could well impact differently from theirhomotypic counterparts with regard to multicellular coordinatedresponses.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号