首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The responses of canine lingual epithelium to D-glucose weremeasured in an Ussing chamber to determine the possible contributionof the osmotic changes of taste cells to the response of saccharides.With the mucosal solution containing 50 mM NaCl, 2 mM HEPES,pH 7.4 (solution A) and the serosal solution containing Krebs—Henseleit(KH) buffer the addition of up to 0.5 M D-glucose in the mucosalsolution increased the short circuit current (Isc) in a sigmoidalmanner. The D-glucose-stimulated Isc was inhibited by 0.1 mMamiloride or 1 mM ouabain added to either the mucosal or theserosal solution, and partially inhibited by 5 mM BaCl2 addedto the serosal solution. The inhibition by these three compoundswas also observed in the presence of 0.5 M NaCl. Ouabain alsoinhibited transport when added to solution A. These experimentssuggest that in canine lingual epithelium the paracellular pathwaypermits molecules as large as ouabain (mol. wt 586) to diffusefrom the mucosal to the serosal solution and vice versa underall osmotic conditions. These results may explain the phenomenonof intravascular taste. Such is not the case in rat tongue whereouabain only inhibited transport when added to the serosal solution.Increasing the osmolality of the serosal KH buffer by additionof relatively membrane-impermeable saccharides such as sucroseor L-glucose did not significantly alter the Isc, whereas makingthe serosal KH solution hypo-osmotic resulted in a transientdecrease in Isc. These data suggest that the increase in Iscinduced by saccharides, such as D-glucose, is not simply anosmotic response of the epithelium but more likely the consequenceof saccharides binding weakly to receptors. That the responseto both salts by themselves and in the presence of saccharidesexhibits the same cation selectivity, and that both are inhibitedby amiloride, ouabain, BaCl2 and LaCl3 suggest that in caninelingual epithelia, in contrast to rat epithelium, the responsesto hyperosmotic concentrations of salts and saccharides mightoccur via the same transcellular pathways.  相似文献   

2.
When intact cells of Chlamydomonas reinhardtii were anaerobicallyincubated in the dark, rapid inactivation of oxygen evolutionwith benzoquinone as the Hill oxidant occurred. Measurementsof electron transport using thylakoids isolated after anaerobictreatment showed that the inactivation occurred at, or before,the secondary electron acceptor of PS II, whereas PS I activitywas largely unaffected. In addition, after anaerobic treatmentfluorescence transients measured with no addition or with dibromomethylisopropylbenzoquinonepresent were virtually the same as those obtained with DCMUpresent. When 10 mM NaHCO3 was added to inactivated cells, partof the oxygen evolution capacity was restored rapidly. However,almost complete recovery (within 20 to 25 min) required theaddition of oxygen as well. This recovery was not light-dependentand was faster in the presence of 1 mM KCN. We suggest thatthe in activation of benzoquinone-dependent oxygen evolutionwas due to both bicarbonate depletion and reduction of the plastoquinonepool. 1Present address: Institute of Molecular Biophysics, FloridaState University, Tallahassee, Florida 32306, U.S.A. (Received January 17, 1984; Accepted February 25, 1984)  相似文献   

3.
The effect of plasma membrane alteration caused by osmotic shockof different strengths on the auxin-induced responses of Avenacoleoptile cells was observed. Osmotic shock brought about by0.5–0.7 M mannitol solution for 10 or 30 min, followedby phosphate-buffer (1 mM, pH 6.0) treatment for 10 min at 4?Ccaused no significant inhibition of auxin-induced cell extension.The osmotic shock did not affect auxin-induced cell wall looseningrepresented by stress-relaxation time and a decrease in thenoncellulosic glucose level of the cell wall. The shock causedonly a temporary inhibition of transmembrane potential and noinhibition of oxygen consumption. However, it inhibited auxin-stimulatedH+ secretion which was reversed by 0.1 mM CaCl2. We concludedthat the Osmotic shock may partly modify the plasma membranerelated to the hydrogen ion pump which interacts with auxin,but this modification which is reflected little by the transmembranepotential and cellular metabolism, is not closely related toauxin-induced cell wall loosening and thus cell extension inAvena coleoptiles. 3 Present address: Department of Botany, Faculty of Science,University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan (Received February 17, 1978; )  相似文献   

4.
Inwardlyrectifying K+ current(IKir) infreshly isolated bovine retinal pigment epithelial (RPE) cells wasstudied in the whole cell recording configuration of the patch-clamptechnique. When cells were dialyzed with pipette solution containing noATP, IKir randown completely in <10 min [half time(t1/2) = 1.9 min]. In contrast, dialysis with 2 mM ATP sustainedIKir for 10 min or more. Rundown was also prevented with 4 mM GTP or ADP. When 0.5 mMATP was used,IKir ran down by~71%. Mg2+ was a criticalcofactor because rundown occurred when the pipette solution contained 4 mM ATP but no Mg2+(t1/2 = 1.8 min).IKir also randown when the pipette solution contained 4 mMMg2+ + 4 mM5'-adenylylimidodiphosphate(t1/2 = 2.7 min)or 4 mM adenosine 5'-O-(3-thiotriphosphate)(t1/2 = 1.9 min),nonhydrolyzable and poorly hydrolyzable ATP analogs, respectively. Weconclude that the sustained activity ofIKirin bovine RPE requires intracellular MgATP and that the underlyingmechanism may involve ATP hydrolysis.

  相似文献   

5.
The potential differences across the tonoplast and plasmalemmamembranes have been measured in the single cells of Nitellatranslucens, the cells being immersed in an artificial pondwater (composition: NaCl 1.0 mM., KC1 0.1 mM., CaCl2, 0.1 mM.).The potential of the cytoplasm is –138 m V with respectto the bathing medium and –18 mV with respect to the vacuole.The concentrations of Na, K, and Cl have been measured in thetwo cell fractions. The concentrations in the flowing cytoplasmare: Na 14 mM., K 119 mM., and Cl 65 mM.; the vacuolar concentrationsare: Na 65 mM., K 75 mM.,and Cl 160 mM. The observed potential differences across the two membranesare compared with the Nernst potentials for all three ions.This analysis shows that all three ions are actively transportedat the plasmalemma: Na is pumped outwards while K and Cl arepumped inwards. At the tonoplast Na is pumped into the vacuolewhile K and Cl are close to electrochemical equilibrium. The inhibitor, ouabain, has no effect on the cell resting potential.  相似文献   

6.
The catalytic and regulatory properties of phosphoenolpyruvate(PEP) carboxylase (PEPC) are modulated remarkably by the increasein the level of bicarbonate in the assay medium. The activityof PEPC increased by two-fold as the concentration of bicarbonatewas raised from 0.05 to 10 mM. During this state, there wasonly marginal effect on Km for PEP, while the affinity of PEPCto Mg2+ increased by >2 fold. In contrast, the sensitivityof PEPC to malate decreased with increasing concentration ofHCO3. Similarly, the stimulation by glucose 6-phosphate(G-6-P) at optimal concentration (10 mM) of HCO3 wasmuch less than that at suboptimal concentration (0.05 mM). K1for malate increased by about 3 fold and Ka for G-6-P risedby fourfold as bicarbonate concentration was rised from 0.05to 10 mM. These results suggest that HCO3 desensitizesPEPC to both malate and G-6-P. Further, these changes were manifestedin both dark- as well as light-forms of the enzyme. Similarresults were obtained with PEPC in leaf extracts or in purifiedform. We therefore propose that bicarbonate-induced changesare independent of phospho-rylation and possibly through a significantchange in the conformation of the enzyme. This is the firstdetailed report indicating marked modulation of regulatory andcatalytic properties of PEPC by bicarbonate, one of its substrate. (Received April 14, 1998; Accepted September 22, 1998)  相似文献   

7.
The Membrane Potential of Nitella translucens   总被引:4,自引:0,他引:4  
The effects of changing the external concentrations of Na, K,Ca, and Cl on the potentials of the cytoplasm and the vacuolewith respect to the bathing medium of the internodal cells ofNitella translucens have been investigated. The potential differencebetween the vacuole and the cytoplasm is practically unaffectedby the concentration changes. The observed changes of potentialdifference are therefore attributed to the boundary separatingthe cytoplasm from the medium; this boundary is possibly a plasmalemma–cellwall complex. The difference of potential between the cell walland the medium has also been measured and, in the presence ofCa, shown to be markedly sensitive only to the external Ca concentration.The results are divided into two sections: (a) for cells pretreatedin 5 mM NaCl, the subsequent experiments being carried out inCa-free media, and (b) for cells initially immersed in a standardartificial pond water containing the chlorides of Na, K, Ca.With the pretreated cells the external Na/K ratio was variedwith the total NaCl+KCl concentration kept constant at 1.1 mM.The results suggest that over a limited range of concentrationsthe cytoplasm-medium potential difference can be described byan equation similar in form to a Goldman equation but containingonly terms for Na and K, the average value of the permeabilityratio (= PNa/PK) being 0.27. In the presence of Ca the effectsof Na and K on the cytoplasm-medium potential difference aregreatly reduced, while the effect of Ca is relatively large.The results cannot be fitted to any form of Goldman equationcontaining terms for the major ions. The possibility of a contributionto the plasmalemma potential from electrogenic pumps is brieflydiscussed. Measurements of the Na and K content of the cytoplasmand the vacuole have been made for the pretreated cells. TheNa concentration in the cytoplasm is 37 mM and in the vacuole73 mM; the K concentration is 93 mM in the cytoplasm and 67mM in the vacuole. The Nernst potentials for both ions are comparedwith the cytoplasm-medium and cytoplasm-vacuole potential differences.This analysis shows that Na is actively transported from thecytoplasm into the medium as well as into the Vacuole; K ispumped into the cytoplasm from the medium but appears to beclose to electrochemical equilibrium across the tonoplast. ThisConfirms previously published work.  相似文献   

8.
  1. Effect of light on ion absorption and resting potential of theinternodal cell of Nitella flexilis was investigated under variousconditions.
  2. On illumination, the resting potential increasedby about 30mVin 10–4 M KCl and by about 60 mV in 10–4M NaClsolution. A similar photoelectric response was also observedin 10–3 M KCl, 10–2 M CaCl2 and 5 x 10–2 MCaCl2 solutions, but not at all in 10–2 M KCl solution.
  3. Absorption of ions by the cell took place in parallel withthelight-induced change in resting potential.
  4. Red and bluelights were very effective in increasing the restingpotential,while green light was almost ineffective. These differenteffectsof color lights were in good agreement with their effectsinincreasing the osmotic value of the cell.
  5. The photoelectricresponse was not affected by phenylurethane,which, on the otherhand, strongly inhibited the light-inducedion absorption.
  6. Theuptake of ions by the cell from the external medium intothevacuole is assumed to proceed in two different steps: thefirstis the process involving the ion movements across theoutermostplasmalemma, and the second is that involved in thetransportof ions through the cytoplasmic layer and tonoplast.The formerprocess is considered to be influenced by the increasein restingpotential probably caused by the light absorbed bychlorophyll.The process was, however, suggested to be independentof photosynthesis.On the other hand, the latter process issupposed to be relatedto photosynthesis. A discussion was madealong this line.
(Received July 26, 1962; )  相似文献   

9.
The ionic aspect of the hyperpolarizing response in the internodalcell of Nitella is reported in some detail. The response wasobserved by passing a large inward current through the Nitellamembrane, the resistance of which had been decreased by a concentratedalkali metal ion. It was not possible to demonstrate the responsein a concentrated solution of CaCl2, MgCl2, BaCl2, ZnCl2 orAlCl2 or AlCl3. After hundreds of the spontaneous repetitiveaction potentials, which occurred in a single solution of concentratedNaCl or LiCl or caused by an application of 1–2 mM EDTAin the artificial pond water, the Nitella cell showed the hyperpolarizingresponse. Almost the same size of the response was observedfor change in pH of the external KC1 solution from 6.7 to 10.0,but it decreased markedly for pH lower than 4.7. It seems tobe an essential condition for the response to remove the divalentcations from the cell surface, having a concentrated monovalentcation in the external medium. (Received April 22, 1966; )  相似文献   

10.
A concentration chain, static-drop electrode system has beenused by several investigators to measure the geoelectric effectin plant shoots. This paper describes investigations of theinherent sensitivity of this electrode system to reorientationwith respect to gravity. When the gelatine plug of the electrodeis made up with distilled water, and the contact solution is0.1 mM KCl, a potential difference develops immediately afterelectrodes in direct contact are rotated through 90° intothe vertical plane. A similar response is found when the contactsolution is 5 mM CaCl2. Increasing the concentration of thecontact solution, or incorporating KCl, K2SO4, or ZnSO4 intothe gelatine plug, drastically reduces the potential differencedeveloped after reorientation. The potential difference acrosselectrodes in direct contact decreases as the electrodes age.The potential difference measured with these electrodes acrossa decapitated, horizontally placed, hypocotyl of Helianthusarmuus also decreases as the electrodes age. The polarity ofthe charge is reversed as compared with that found when theelectrodes are in direct contact. The kinetic characteristicsof the geoelectric potential difference developed across a non-decapitated,horizontal coleoptile of Zea mays change as the electrodes age.With fresh electrodes the potential develops immediately afterreorientation and continues to increase with time. With 4-day-oldelectrodes, however, no potential difference develops until9 min after the moment of reorientation, but then it increaseswith time. The characteristics of the geoelectric potentialdifference developed with the aged concentration-chain, static-dropelectrodes are similar to those found with several other typesof electrodes which do not themselves have an inherent sensitivityto reorientation with respect to gravity. The results supportour earlier suggestion that the potential difference which apparentlydevelops with the static-drop electrode system, immediatelyafter a shoot is turned through 90° in reality developsin the electrode system itself and not in the plant tissue.The geoelectric effect which arises in the living plant shootbegins to develop approximately 10 min after reorientation.  相似文献   

11.
Effects on positive phototaxis and the cell motility of 7 cationsin 5mM MOPS (morpholinopropane sulfonic acid) buffer (pH 7.0)containing 0.16 mM NaCl, 0.68 mM KCl, 0.5 mM CaCl2 and 0.16mM MgCl2 were studied in the unicellular flagellate Cryptomonaswith a photoelectrical measuring apparatus and photomicrography.When calcium ion was removed from the medium by adding 1 mMEGTA (ethylene glycol-bis-(ß-amino-ethylether)-N,N'-tetraaceticacid), the phototactic response was totally inhibited, but theswimming rate was not much affected. The effect of EGTA waspartially reversed by the addition of 1 mM CaCl2. When 15mMKCl or RbCl was added to the medium, phototaxis was greatlyinhibited, but there was no significant influence on the swimmingrate. Similar but less inhibitory effects were induced in thepresence of NaCl, LiCl and CsCl. KCl-induced inhibition waspartially removed by the addition of 15 mM CaCl2 or MgCl2. (Received June 25, 1982; Accepted September 27, 1982)  相似文献   

12.
Sodium Dependent Photosynthetic Oxygen Evolution in a Marine Diatom   总被引:8,自引:0,他引:8  
Photosynthetic oxygen evolution in air-equilibrated culturesof Phaeodactylum tricornutum is dependent on the presence ofsodium, but not potassium; sodium cannot be replaced by eitherpotassium, lithium or ammonium. Respiration is not sodium dependent.At constant CO2 concentrations the depression of oxygen evolutionin the absence of sodium is more pronounced at pH 8.0 than atpH 6.5 and it is concluded that sodium facilitates the utilizationof bicarbonate. Sodium increases the affinity of Phaeodactylumfor inorganic carbon as does growth at low inorganic carbonconcentrations. Key words: Sodium, Photosynthesis, Marine diatom, Phaeodactylum  相似文献   

13.
Mutations in the gene SURF1 prevent synthesis of cytochrome-c oxidase (COX)-specific assembly protein and result in a fatal neurological disorder, Leigh syndrome. Because this severe COX deficiency presents with barely detectable changes of cellular respiratory rates under normoxic conditions, we analyzed the respiratory response to low oxygen in cultured fibroblasts harboring SURF1 mutations with high-resolution respirometry. The oxygen kinetics was quantified by the partial pressure of oxygen (PO2) at half-maximal respiration rate (P50) in intact coupled cells and in digitonin-permeabilized uncoupled cells. In both cases, the P50 in patients was elevated 2.1- and 3.3-fold, respectively, indicating decreased affinity of COX for oxygen. These results suggest that at physiologically low intracellular PO2, the depressed oxygen affinity may lead in vivo to limitations of respiration, resulting in impaired energy provision in Leigh syndrome patients. oxygen kinetics; mitochondrial disease  相似文献   

14.
When Chlorella vulgaris 11h, Chlorella vulgaris C-l, Chlamydomonasreinhardtii, Chlamydomonas moewusii, Scenedesmus obliquus, orDunaliella tertiolecta were illuminated in with 0.5 mM NaHCO3,the pH of the medium increased in a few minutes from 6 to about9 or 10. The alkalization, which was accompanied by O2 evolution,was dependent on light, external dissolved inorganic carbon(DIC) as HCO-3, and algae grown or adapted to a low, air-levelCO2 in order to develop a DIC concentrating mechanism. Therewas little pH increase by algae without a DIC concentratingprocess from growth on 3% CO2 in air. Photosynthetic O2 evolutionwithout alkalization occurred using either internal DIC or externalCO2 at acidic pH. The PH increase stopped between pH 9 to 10,but the alkalization would restart upon re-acidification betweenpH 6 and 8. Alkalization was suppressed by the carbonic anhydraseinhibitors, acetazolamide, ethoxyzolamide or carbon oxysulfide.The pH increase appeared to be the consequence of the externalconversion of HCO3 into CO2 plus OH during photosynthesisby cells with a high affinity for CO2 uptake. Cells grown onhigh CO2 to suppress the DIC pump, when given low levels ofHCO3 in the light, acidified the medium from pH 10 to7. Air adapted Scenedesmus cells with a HCO3 pump, aswell as a CO2 pump, alkalized the medium very rapidly in thelight to a pH of over 10, as well as slower in the dark or inthe light with DCMU or without external DIC and O2 evolution.Alkalization of the medium during photosynthetic DIC uptakeby algae has been considered to be part of the global carboncycle for converting H2CO3 to HCO3 and for the formationof carbonate salts by calcareous algae from the alkaline conversionof bicarbonate to carbonate. These processes seem to be a consequenceof the algal CO2 concentrating process. 1Present address: Department of Biology, Faculty of Science,Niigata University, Niigata, 950-21 Japan.  相似文献   

15.
Membrane potentials of protoplasts isolated from Vigna mungohypocotyl segments were measured using the fluorescent probediS-C3-(5). The fluorescence intensity changed in response tothe external K+ concentration. Membrane potential was estimatedto be inside negative (–85?8 mV at 0.1 mM KCl) from theNernst equation for K+. The membrane potential was not affectedby DCCD (50 µM) or low temperature (5?C). Addition of0.5 mM Ca2+ to the protoplast suspension markedly depolarizedthe membrane potential, and subsequent EDTA treatment repolarizedit to the initial level. The Ca2+ effect on the membrane potentialmay be due to change in the permeability ratio of Clto K+. (Received December 16, 1986; Accepted April 22, 1987)  相似文献   

16.
Effect of Sudden Salt Stress on Ion Fluxes in Intact Wheat Suspension Cells   总被引:4,自引:0,他引:4  
Although salinity is one of the major problems limiting agriculturalproduction around the world, the underlying mechanisms of highNaCl perception and tolerance are still poorly understood. Theeffects of different bathing solutions and fusicoccin (FC),a known activator of plasma membrane ATPase, on plasma membranepotential (Em) and net fluxes of Na+, K+and H+were studied inwheat suspension cells (Triticum aestivum) in response to differentNaCl treatments. Emof cells in Murashige and Skoog (MS) mediumwas less negative than in cells exposed to a medium containing10 mM KCl + 0.1 m M CaCl2(KSM) and to a basic salt medium (BSM),containing 1 m M KCl and 0.1 m M CaCl2. Multiphasic Na+accumulationin cells was observed, peaking at 13 min after addition of 120m M NaCl to MS medium. This time scale was in good agreementwith net Na+flux changes measured non-invasively by moving ion-selectivemicroelectrodes (the MIFE system). When 120 m M NaCl was addedto all media studied, a quick rise of Na+influx was reversedwithin the first 20 min. In both 120 and 20 m M NaCl treatmentsin MS medium, net Na+efflux was observed, indicating that activeNa+transporters function in the plant cell response to saltstress. Lower external K+concentrations (KSM and BSM) and FCpre-treatment caused shifts in Na+fluxes towards net influxat 120 m M NaCl stress. Copyright 2000 Annals of Botany Company Sodium, potassium, proton, membrane potential, fusicoccin, salt stress, wheat, Triticum aestivum  相似文献   

17.
The electrical potential difference across the tonoplast ofpalisade mesophyll cells of leaves of Pisum sativum was 6.6± 0.8 mv (positive in the vacuole). The potential acrossthe plasmalemma depended on the particular anion accompanyingpotassium in the external solution. Assuming that the plasmalemmapotentials were diffusion potentials that could be analyzedusing the Goldman equation, the permeabilities of pyruvate,formate, .butyrate, acetate and bicarbonate into the cells werecalculated to be large compared with that of potassium, whilethe chloride permeability was relatively low. The upper limitsfor concentrations in the cytoplasm of palisade mesophyll cellsin pea leaves were as follows: potassium, 98 mM total monovalentorganic acids, 0.4 mM and bicarbonate, 0.2 mM. (Received March 3, 1971; )  相似文献   

18.
Importance of glucose-6-phosphate dehydrogenase activity in cell death   总被引:12,自引:0,他引:12  
The intracellular redox potential plays an important role incell survival. The principal intracellular reductant NADPH is mainlyproduced by the pentose phosphate pathway by glucose-6-phosphate dehydrogenase (G6PDH), the rate-limiting enzyme, and by6-phosphogluconate dehydrogenase. Considering the importance of NADPH,we hypothesized that G6PDH plays a critical role in cell death. Ourresults show that 1) G6PDHinhibitors potentiatedH2O2-inducedcell death; 2) overexpression ofG6PDH increased resistance toH2O2-induced cell death; 3) serum deprivation, astimulator of cell death, was associated with decreased G6PDH activityand resulted in elevated reactive oxygen species (ROS);4) additions of substrates for G6PDHto serum-deprived cells almost completely abrogated the serumdeprivation-induced rise in ROS; 5)consequences of G6PDH inhibition included a significant increase inapoptosis, loss of protein thiols, and degradation of G6PDH; and6) G6PDH inhibition caused changesin mitogen-activated protein kinase phosphorylation that were similarto the changes seen withH2O2.We conclude that G6PDH plays a critical role in cell death by affectingthe redox potential.  相似文献   

19.
Diffusion resistance to oxygen within nodules was calculatedusing the respiratory quotient (RQ) of nodules from intact plantsof subterranean clover (Trifolium subterraneum L.) cv. SeatonPark nodulated by Rhizobiun trifolii WU95. From 21 to 52% O2,the RQ remained between 0.94 and 1.04, whereas at 10% O2, theRQ was 1.65. When nodulated roots of intact plants were exposedto sub-ambient pO2 in a continuous flow-through system, respirationdeclined immediately, followed by a partial recovery within30 min. The magnitude of the final respiration rate was dependentupon the pO2 in the gas stream. Initial rates of respirationwere re-established after 24 h at sub-ambient pO2 as a resultof changes in the resistance of the variable barrier to oxygendiffusion within the nodules. Nitrogenase activity also decreasedlinearly with decreasing pO2 in the gas stream, but partialrecovery occurred after 24 h incubation at sub-ambient pO2.Maximum rates of nitrogenase activity occurred at rhizosphereoxygen concentrations between 21% and 36% O2. Resistance tothe diffusion of oxygen within the nodules increased at supra-ambientpO2 and at oxygen concentrations above 36% O2, resulted in adecrease in both nitrogenase activity and nodulated root respiration.The diffusion resistance of nodules to oxygen increased rapidlyin the presence of either supra-ambient pO2 or saturating pC2H2.Reductions in nodule diffusion resistance either during recoveryfrom exposure to 10% acetylene or to sub-ambient pO2 occurredmore slowly. It is concluded that subterranean clover is welladapted for maximum nitrogen fixation at ambient pO2. Key words: Nitrogenase activity, oxygen, subterranean clover, diffusion resistance  相似文献   

20.
The inhibition of hexose uptake by bicarbonate ions was investigatedin detail in order to test the specificity and reversibilityof the effect and to compare it with those of other electrolytes.The degree of inhibition was similar at pH 7.0 and pH 8.0. AtpH 4.5 no influence of a high concentration of CO2 on 3-O-methylglucoseuptake was found. Therefore, the inhibition of hexose uptakeby bicarbonate cannot be explained by consequences of CO2 influx.The inhibition of sugar absorption by calcium and potassiumions was similar to that exerted by bicarbonate in so far asit was observed at higher pH only. The inhibition exerted bysodium salts of different monovalent weak acids was limitedto lower pH and needed some time to become established or reversed.The bicarbonate effect was independent of time and reversiblewithout a lag phase. Sodium salts of strong mineral monovalentacids did not differ significantly in their effect on sugaruptake. Bicarbonate inhibited phosphate uptake in a similarmanner to hexose uptake but strongly stimulated the absorptionof potassium. The bicarbonate effect is assumed to result froma change in the degree of coupling of secondary active transportto the proton pump. Key words: Inhibition, Transport coupling, pH, Proton pump  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号