首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
O-Specific polysaccharide, consisting of D-rhamnose and L-glycero-D-manno-heptose (LD-Hep) in a 2 : 1 ratio, was obtained on the mild acid degradation of the Pseudomonas cepacia IMV 673/2 lipopolysaccharide; monosaccharide LD-Hep has not previously been found in O-specific chains of lipopolysaccharides. On the basis of methylation and 13C-NMR data, it was concluded that the polysaccharide is composed of trisaccharide repeating units having the following structure: ----3)-alpha-D-Rha-(1----3)-alpha-D-Rha-(1----2)-alpha-LD-Hep-(1----  相似文献   

2.
Structure of the O-antigen of Francisella tularensis strain 15.   总被引:2,自引:0,他引:2  
The O-specific polysaccharide, obtained by mild acid degradation of the lipopolysaccharide of Francisella tularensis strain 15, contained 2-acetamido-2,6-dideoxy-D-glucose (D-QuiNAc), 4,6-dideoxy-4-formamido-D-glucose (D-Qui4NFm), and 2-acetamido-2-deoxy-D-galacturonamide (D-GalNAcAN) in the ratios 1:1:2. Tri- and tetra-saccharide fragments were obtained on treatment of the polysaccharide with anhydrous hydrogen fluoride and partial hydrolysis with 0.1 M hydrochloric acid, respectively. On the basis of 1H- and 13C-n.m.r. spectroscopy of the polysaccharide and the saccharides, it was concluded that the O-antigen had the structure: ----4)-alpha-D-GalpNAcAN-(1----4)-alpha-D-GalpNAcAN-(1----3) -beta-D-QuipNAc-(1----2)-beta-D-Quip4NFm-(1----. This O-antigen is related in structure to those of Pseudomonas aeruginosa O6, immunotype 1, and IID 1008, and Shigella dysenteriae type 7.  相似文献   

3.
The O-specific polysaccharide chain of the Pseudomonas aurantiaca IMV 31 lipopolysaccharide contains N-acetyl-L-fucosamine (FucNAc) and di-N-acetyl-D-bacillosamine (2,4-diacetamido-2,4,6-trideoxyglucose, Bac(NAc)2) in the ratio 2:1. On the basis of methylation, solvolysis with anhydrous hydrogen fluoride, and computer-assisted analysis of 13C-NMR spectrum, it was concluded that the trisaccharide repeating unit of the polysaccharide possesses the following structure: structure: ----3)-beta-D-Bac(NAc)2-(1----3)-alpha-L-FucNAc-(1----3)-alpha-L- FucNAc-(1----.  相似文献   

4.
The capsular polysaccharide of Klebsiella serotype K40 contained D-mannose, D-glucuronic acid, D-galactose, and L-rhamnose in the approximate molar ratios 1:1:1:2. The primary structure of the capsular polysaccharide has been investigated mainly by methylation analysis, periodate oxidation, characterization of oligosaccharides, base degradation reaction, and 1H and 13CNMR spectroscopy. The polysaccharide does not contain any pyruvic acetal or O-acetyl substitution. It has a pentasaccharide repeating unit of the following primary structure: alpha-D-Manp 1----4 ----4)-beta-D-GlcpA-(1----2)-alpha-L-Rhap-(1----3)-beta-D-Ga lp-(1----2)-alpha- L-Rhap-(1----.  相似文献   

5.
O-Specific polysaccharide composed of L-rhamnose and 2-acetamido-2-deoxy-D-mannose was obtained on mild acid degradation of P. aeruginosa X (Meitert classification) lipopolysaccharide. On the basis of non-destructive analis using 1H, 13C NMR spectroscopy and Klyne's rule calculation, as well as chemical methods (acid hydrolysis, methylation, Smith degradation), it was established that the polysaccharide is built up of disaccharide repeating units of the following structure: ----4)-alpha-L-Rha-(1----3)-beta-D-ManNAc-(1----.  相似文献   

6.
On mild acid degradation of a lipopolysaccharide from Pseudomonas cepacia strain IMV 4137, a serologically active O-specific polysaccharide was obtained and shown to contain L-rhamnose and D-galactose. According to 1H- and 13C-NMR data as well as methylation analysis, the polysaccharide is made up of disaccharide repeating units of the following structure:----2)-alpha-L-Rhap-(1----4)-alpha-D-Galp-(1----.  相似文献   

7.
Structure of the serotype f polysaccharide antigen of Streptococcus mutans   总被引:4,自引:0,他引:4  
The structure of the serotype f polysaccharide antigen of Streptococcus mutans was determined by methylation analysis, periodate oxidation, and partial methanolysis, and the configuration of the anomeric linkages by 13C-n.m.r. spectroscopy, indicating the trisaccharide repeating unit----3)-alpha-L-Rhap-(1----2)-[alpha-D-Glcp-(1----3)]-alpha-L-+ ++Rhap- (1----. The structure of the backbone of the polysaccharide was confirmed by demonstrating immunological identity between the product of Smith degradation of the S. mutans serotype f antigen and the group A-variant streptococcal polysaccharide.  相似文献   

8.
Streptococcus thermophilus strains grown on skimmed milk produced a viscosifying, exocellular, and water-soluble polysaccharide which contains D-glucose, D-galactose, and N-acetyl-D-galactosamine in the ratio of 1:2:1. Methylation analysis identified the glycosidic linkages in the tetrasaccharidic repeating-unit, and Smith degradation and nitrous deamination after N-deacetylation gave the sequence of monosaccharides in the repeating-unit. The anomeric configurations of the sugar residues were determined by oxidation of the peracetylated polysaccharide with chromium trioxide and by 1H- and 13C-n.m.r. spectroscopy. The following structure was assigned to the repeating unit of the polysaccharide,----3)-beta-D-Galp-(1----3)-[alpha-D-Galp-(1----6)]-beta- D- Glcp-(1----3)-alpha-D-GalpNAc-(1----.  相似文献   

9.
Specific acidic polysaccharide has been isolated from the Shigella boydii type 9 antigenic lipopolysaccharide after mild hydrolysis followed by chromatography on Sephadex G-50. The polysaccharide consists of D-glucose, D-glucuronic acid, 2-acetamido-2-deoxy-D-glucose, and L-rhamnose. From the results of methylation analysis, partial acid hydrolysis and 13C NMR data the structure of the repeating unit of the polysaccharide was deduced as follows: [----4)DGlcp(alpha 1----4)DGlcAp(beta 1----3)DGlcNAcp(alpha 1----3)LRhap(alpha 1----]n. The lipopolysaccharide from Sh. boydii 9 was fractionated by gel chromatography on the Sephadex G-200 column in a buffer containing sodium deoxycholate into three fractions. PAGE-SDS of the fractions obtained, 13C NMR- and chromato-mass-spectrometry data indicated that the three fractions contained the O-specific polysaccharide as the only carbohydrate component. The substance from the most high-molecular weight fraction contained unusually long O-specific chains (60,000 dalton). In the fat acid composition this fraction differed from other lipopolysaccharides by absence of beta-hydroxymyristic acid.  相似文献   

10.
The structure of polysaccharide prepared by lysozyme digestion from the cell wall of Propionibacterium acnes strain C7 was examined. The polysaccharide fraction was composed of glucose, galactose, mannose, galactosamine, and diaminomannuronic acid in a molar ratio of 1:1:0.3:1:2. By Smith degradation of the polysaccharide, diaminouronic acid-containing fractions were obtained, and the configuration of diaminouronic acid was identified as 2,3-diacetamido-2,3-dideoxymannuronic acid [Man(NAc)2A] by means of 1H-NMR and 13C-NMR spectroscopic analyses. The results of analyses involving methylation and partial acid hydrolysis led to the conclusion that the polysaccharide has the repeating unit----6)Gal(alpha 1----4)Man(NAc)2A(beta 1----6)Glc(alpha 1----4)Man(NAc)2A (beta 1----3)GalNAc(beta 1--. In addition, a portion of the galactose residues were substituted at C-4 by alpha 1----2 linked mannotriose.  相似文献   

11.
Pediococcus sp. produces an exocellular slime containing exclusively D-glucose. The structure of the polysaccharide was determined by methylation analysis, Smith degradation, enzymic hydrolysis, and 13C-n.m.r. spectroscopy as having a trisaccharide repeating unit, ----3)-beta-D-Glcp-(1---- 3)-[beta-D-Glcp-(1----2)]-beta-D-Glcp-(1----.  相似文献   

12.
On the basis of non-destructive analysis by means of 1H and 13C NMR spectroscopy and calculation of specific optical rotation, it was concluded that O-specific polysaccharide of Pseudomonas cepacia strain IMV 4207 (serotype A) has the structure (I): (formula; see text) Two structurally different polysaccharides were found in the ratio of approximately 2.5:1 in P. cepacia strain IMV 598/2 which is serologically related to serotype A in Nakamura classification and serotype 2 in Heidt classification. The minor polysaccharide has the structure (I) whereas the major one possesses the structure (II) which is characteristic of the formerly studied O-specific polysaccharide of P. cepacia strain IMV 4137 belonging to serotype 2: ----4)-beta-D-Galp-(1----2)-alpha-L-Rhap-(1----.  相似文献   

13.
The structure of the group-specific polysaccharide of group G Streptococcus was determined by means of methylation analysis and selective chemical degradations. The anomeric configurations and conformations of the sugar residues were studied by 1H- and 13C-n.m.r. spectroscopy. The tetrasaccharide repeating unit, ----3)-alpha-D-Galp-(1----2)-[alpha-L-Rhap-(1----3)-beta-D-GalpNAc - (1----4)]-alpha-L-Rhap-(1----, was determined.  相似文献   

14.
The O-specific polysaccharide of Salmonella arizonae O59 (Arizona 19) is composed of D-galactose, N-acetyl-D-glucosamine, and N-acetyl-L-fucosamine (FucNAc, 2-acetamido-2,6-dideoxy-L-galactose) in the ratio 1:1:1. The computerized calculation of the 13C NMR spectrum of the polysaccharide, based on the monosaccharide composition, spectra of the free monosaccharides and glycosydation effects, together with the chemical analysis (methylation and Smith degradation) showed that the polysaccharide is built up of trisaccharide repeating units of the following structure: ----3)-alpha-L-FucNAcp(1----3)-beta-D-GlcNAcp-(1----2)-beta- D-Galp-1(----. The molecular basis of serological interrelations between S. arizonae O59 and Pseudomonas aeruginosa O7 (Lányi) is discussed.  相似文献   

15.
O-Specific side chain of P. aeruginosa immunotype 3 lipopolysaccharide is composed of N-acetyl-D-fucosamine (FucNAc), 2,3-diacetamido-2,3-dideoxy-L-guluronic acid (GulN2Ac2A) and 3-acetamidino = 2-acetamido = 2,3 = dideoxy = D-mannuronic acid (ManNAcAmA). The latter sugar is identified on the basis of solvolysis with anhydrous hydrogen fluoride, 13C NMR spectroscopy and fast-atom bombardment mass spectrometry analysis, as well as of reactions of acetamidino function (alkaline hydrolysis to acetamido group and reductive deamination to ethylamino group). Earlier, in the course of investigation of P. aeruginosa O3 lipopolysaccharides, the structure of 1-methyl-2-imidazoline was erroneously ascribed to the acetamidino group. The following structure was established for the repeating unit of immunotype 3 polysaccharide which is identical to P. aeruginosa O3(a),3c polysaccharide: ----4)-beta-D-ManNAcAmA-(1----4)-alpha-L-GulN2Ac2A-(1----3)- beta-D-FucNac-(1----.  相似文献   

16.
The polysaccharide chain of Proteus vulgaris O19 lipopolysaccharide contains D-galactose, N-acetyl-D-glucosamine N-acetyl-D-galactosamine and N-acetyl-L-fucosamine in the ratio 1:1:1:1. The structure of the polysaccharide was established by full acid hydrolysis and methylation analysis, as well as by non-destructive methods, i.e. the computer-assisted evaluation of the 13C-NMR spectrum and computer-assisted evaluation of the specific optical rotation by Klyne's rule. The polysaccharide is regular and built up of tetrasaccharide repeating units of the following structure: ----3)-alpha-L-FucNAcp-(1----3)-beta-D-GlcNAcp-(1----3)-alph a-D-Galp- (1----4)-alpha-D-GalNAcp-(1---- The O19-antiserum cross-reacts with lipopolysaccharide from P. vulgaris O42, the structure of which is still unknown. No cross-reactions were observed with O-polysaccharides Pseudomonas aeruginosa O7 and Salmonella arizonae O59 in spite of some structural similarities.  相似文献   

17.
Virulence of Vibrio vulnificus has been strongly associated with encapsulation and an opaque colony morphology. Capsular polysaccharide was purified from a whole-cell, phosphate-buffered saline-extracted preparation of the opaque, virulent phase of V. vulnificus M06-24 (M06-24/O) by dialysis, centrifugation, enzymatic digestion, and phenol-chloroform extraction. Nuclear magnetic resonance spectroscopic analysis of the purified polysaccharide showed that the polymer was composed of a repeating structure with four sugar residues per repeating subunit: three residues of 2-acetamido-2,6-dideoxyhexopyranose in the alpha-gluco configuration (QuiNAc) and an additional residue of 2-acetamido hexouronate in the alpha-galactopyranose configuration (GalNAcA). The complete carbohydrate structure of the polysaccharide was determined by heteronuclear nuclear magnetic resonance spectroscopy and by high-performance anion-exchange chromatography. The 1H and 13C nuclear magnetic resonance spectra were completely assigned, and vicinal coupling relationships were used to establish the stereochemistry of each sugar residue, its anomeric configuration, and the positions of the glycosidic linkages. The complete structure is: [----3) QuipNAc alpha-(1----3)-GalpNAcA alpha-(1----3)-QuipNAc alpha-(1----]n QuipNAc alpha-(1----4)-increases The polysaccharide was produced by a translucent phase variant of M06-24 (M06-24/T) but not by a translucent, acapsular transposon mutant (CVD752). Antibodies to the polysaccharide were demonstrable in serum from rabbits inoculated with M06-24/O.  相似文献   

18.
Structure of the group-specific polysaccharide of group E Streptococcus   总被引:1,自引:0,他引:1  
The structure of the group-specific polysaccharide of group E Streptococcus was determined by methylation, periodate oxidation, and partial methanolysis, and the configuration of the anomeric linkages by 1H- and 13C-n.m.r. spectroscopy. The trisaccharide repeating unit----2)-alpha-L-Rhap-(1----3)-[beta-D-Glcp-(1----2)]-alpha-L -Rhap-(1----was determined.  相似文献   

19.
The lipopolysaccharide (LPS) of Klebsiella serotype O2 is antigenically heterogeneous; some strains express multiple antigenic factors. To study this heterogeneity, we determined the structure of the O-antigen polysaccharides in isolates belonging to serotypes O2(2a), O2(2a,2b), and O2(2a,2c), by using composition analysis, methylation analysis, and both 1H and 13C nuclear magnetic resonance spectroscopy. The repeating unit structure of the 2a polysaccharide was identified as the disaccharide [----3)-beta-D-Galf-(1----3)-alpha-D-Galp-(1----] and was identical to D-galactan I, one of two O polysaccharides present in the LPS of Klebsiella pneumoniae serotype O1 (C. Whitfield, J. C. Richards, M. B. Perry, B. R. Clarke, and L. L. MacLean, J. Bacteriol. 173:1420-1431, 1991). LPS from serotype O2(2a,2b) also contained D-galactan I as the only O polysaccharide, suggesting that the 2b antigen is not an O antigen. The LPS of serotype O2(2a,2c) contained a mixture of two structurally distinct O polysaccharides and provides a second example of this phenomenon in Klebsiella spp. One polymer was identical to D-galactan I, and the other polysaccharide, the 2c antigen, was a polymer with a disaccharide repeating unit structure, [----3)-beta-D-GlcpNAc-(1----5)-beta-D-Galf-(1----]. The 2c structure does not resemble previously reported O polysaccharides from Klebsiella spp. Periodate oxidation confirmed that D-galactan I and the 2c polysaccharide are distinct glycans, rather than representing domains within a single polysaccharide chain. Monoclonal antibodies against the 2c antigen indicated that only LPS molecules with the longest O-polysaccharide chains contained the 2c epitope.  相似文献   

20.
A polysaccharide isolated from the degraded lipopolysaccharides of P. aeruginosa serogroup O7 (Lányi--Bergan classification) was characterized by liquid chromatography, acid hydrolysis, and 1H and 13C NMR spectroscopy. It has molecular mass 15,000 and represents mainly a rhamnan of the structure----2)-alpha-D-Rha-(1----3)-alpha-D-Rha-(1----3)-alpha-D-Rha-(1 ----, identical to the structure of O-specific polysaccharides of Pseudomonas aeruginosa pvs morsprunorum and cerasi. Some minor constituents, such as glucose, mannose, an unknown sugar, and phosphate, are found in the polysaccharide preparation as well. Distribution of the rhamnan in some other P. aeruginosa serogroups is discussed and its identity to the common polysaccharide antigen of P. aeruginosa is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号