首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
PGC-1alpha activates CYP7A1 and bile acid biosynthesis   总被引:6,自引:0,他引:6  
  相似文献   

16.
17.
The orphan nuclear hormone receptor SHP (gene designation NROB2) is an important component of a negative regulatory cascade by which high levels of bile acids repress bile acid biosynthesis. Short term studies in SHP null animals confirm this function and also reveal the existence of additional pathways for bile acid negative feedback regulation. We have used long term dietary treatments to test the role of SHP in response to chronic elevation of bile acids, cholesterol, or both. In contrast to the increased sensitivity predicted from the loss of negative feedback regulation, the SHP null mice were relatively resistant to the hepatotoxicity associated with a diet containing 0.5% cholic acid and the much more severe effects of a diet containing both 0.5% cholic acid and 2% cholesterol. This was associated with decreased hepatic accumulation of cholesterol and triglycerides in the SHP null mice. There were also alterations in the expression of a number of genes involved in cholesterol and bile acid homeostasis, notably cholesterol 12alpha-hydroxylase (CYP8B1), which was strongly reexpressed in the SHP null mice, but not the wild type mice fed either bile acid containing diet. This contrasts with the strong repression of CYP8B1 observed with short term bile acid feeding, as well as the effects of long term feeding on other bile acid biosynthetic enzymes such as cholesterol 7alpha-hydroxylase (CYP7A1). CYP8B1 expression could contribute to the decreased toxicity of the chronic bile acid treatment by increasing the hydrophilicity of the bile acid pool. These results identify an unexpected role for SHP in hepatotoxicity and suggest new approaches to modulating effects of chronically elevated bile acids in cholestasis.  相似文献   

18.
19.
Cholesterol 7alpha-hydroxylase (CYP7A1) is regulated by bile acids through the farnesoid X receptor (FXR) mechanism in a negative feedback fashion. However, the fact that CYP7A1 is down-regulated by intraduodenal administration of bile acid, but not by intravenous administration may not be explained only by this mechanism. The aim of this study was to establish a new rat model with reconstructed or simulated enterohepatic circulation to examine if intravenous or portal administration of bile acid can regulate CYP7A1. Under biliary drainage, taurocholate (0 or 6 micromol/h/100g body weight) was administered continuously for 48h into the duodenum (ID-0/ID-6), femoral vein (IV-0/IV-6), or portal vein (IP-0/IP-6) to create a condition in which biliary bile acids were continuously lost, and a similar dose of taurocholate was supplied to the liver simultaneously. CYP7A1 activity and mRNA expression of the ID-0 group were significantly increased compared with the no treatment (NT) group. CYP7A1 activity and mRNA expression of the ID-6 group were suppressed significantly to 41 and 46% of those of the ID-0 group, respectively. In the IV-6 and IP-6 groups, however, enzyme activity and mRNA expression were decreased slightly, but the suppression was not statistically significant. The results suggested that portal as well as intravenous administration of bile acids cannot suppress bile acid synthesis as effectively as intraduodenal administration. It was concluded that an unidentified regulatory factor other than the nuclear receptors may be involved in bile acid synthesis in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号