首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate the use of self-assembled luminescent semiconductor quantum dot (QD)-peptide bioconjugates for the selective intracellular labeling of several eukaryotic cell lines. A bifunctional oligoarginine cell penetrating peptide (based on the HIV-1 Tat protein motif) bearing a terminal polyhistidine tract was synthesized and used to facilitate the transmembrane delivery of the QD bioconjugates. The polyhistidine sequence allows the peptide to self-assemble onto the QD surface via metal-affinity interactions while the oligoarginine sequence allows specific QD delivery across the cellular membrane and intracellular labeling as compared to nonconjugated QDs. This peptide-driven delivery is concentration-dependent and thus can be titrated. Upon internalization, QDs display a punctate-like staining pattern in which some, but not all, of the QD signal is colocalized within endosomes. The effects of constant versus limited exposure to QD-peptide conjugates on cellular viability are evaluated by a metabolic specific assay, and clear differences in cytotoxicity are observed. The efficacy of using peptides for selective intracellular delivery is highlighted by performing a multicolor QD labeling, where we found that the presence or absence of peptide on the QD surface controls cellular uptake.  相似文献   

2.
The development of non-viral gene delivery systems, with the capacity to overcome most of the biological barriers facing gene delivery, is challenging. We have developed peptide-based, multicomponent, non-viral delivery systems, incorporating: a bombesin peptide ligand (BBN(6–14)), to selectively target the gastrin releasing peptide receptor (GRPR); oligoarginine peptides (hexa- (R6) and nona-arginine (R9)), for plasmid DNA (pDNA) condensation; and GALA, to facilitate endosome escape. The uptake and endosome escape efficiency of bombesin/oligoarginine and bombesin/oligoarginine/GALA fusion peptides for oligonucleotide delivery was evaluated in terms of their complex size, cellular uptake, endosome escape, and cellular toxicity. Complex size and cell uptake studies demonstrated that the nona-arginine/bombesin delivery system was more efficient at condensing and delivering pDNA into PC-3 prostate cancer cells compared to the hexa-arginine/bombesin delivery system. Further, competition with free bombesin peptide, and comparative uptake studies in Caco-2 cells, which express GRPR at a lower level, suggested that GRPR contributes to the targeted uptake of this system. The addition of GALA into the nona-arginine/bombesin-based system further increased the pDNA cellular uptake at all tested N/P ratios; facilitated endosomal pDNA release; and had limited effects on cell viability. In conclusion, the delivery system combining BBN(6–14) with nona-arginine and GALA had optimal characteristics for the delivery of pDNA into the GRPR overexpressing cell line PC-3.  相似文献   

3.
Cell-penetrating peptides (CPPs) are membrane permeable vectors recognized for their intrinsic ability to gain access to the cell interior. The hydrophobic counter-anion, pyrenebutyrate, enhances cellular uptake of oligoarginine CPPs. To elucidate CPP uptake mechanisms, the effect of pyrenebutyrate on well-recognized CPPs with varying hydrophobicity and arginine content is investigated. The cellular CPP uptake and CPP-mediated oligonucleotide delivery is analyzed by fluorescence activated cell sorting, confocal microscopy, and a cell-based splice-switching assay. The splice-switching oligonucleotide is a mixmer of 2′-O-methyl RNA and locked nucleic acids delivered as a non-covalent complex with 10-fold molar CPP excess. CPP-induced membrane perturbation on large unilamellar vesicles is investigated in calcein release experiments. We observed that pyrenebutyrate facilitates cellular uptake and translocation of oligonucleotide mediated by oligoarginine nonamer while limited effect of pyrenebutyrate on more hydrophobic CPPs was observed. By combining the different experimental results we conclude that the pathway for cellular uptake of oligoarginine is dominated by direct membrane translocation, whereas the pathway for oligoarginine-mediated oligonucleotide translocation is dominated by endocytosis. Both mechanisms are promoted by pyrenebutyrate and we suggest that pyrenebutyrate has different sites of action for the two uptake and translocation mechanisms.  相似文献   

4.
Arginine-rich cell-penetrating peptides (CPPs) are promising transporters for intracellular delivery of antisense morpholino oligomers (PMO). Here, we determined the effect of L-arginine, D-arginine and non-alpha amino acids on cellular uptake, splice-correction activity, cellular toxicity and serum binding for 24 CPP-PMOs. Insertion of 6-aminohexanoic acid (X) or beta-alanine (B) residues into oligoarginine R8 decreased the cellular uptake but increased the splice-correction activity of the resulting compound, with a greater increase for the sequences containing more X residues. Cellular toxicity was not observed for any of the conjugates up to 10 microM. Up to 60 microM, only the conjugates with > or = 5 Xs exhibited time- and concentration-dependent toxicity. Substitution of L-arginine with D-arginine did not increase uptake or splice-correction activity. High concentration of serum significantly decreased the uptake and splice-correction activity of oligoarginine conjugates, but had much less effect on the conjugates containing X or B. In summary, incorporation of X/B into oligoarginine enhanced the antisense activity and serum-binding profile of CPP-PMO. Toxicity of X/B-containing conjugates was affected by the number of Xs, treatment time and concentration. More active, stable and less toxic CPPs can be designed by optimizing the position and number of R, D-R, X and B residues.  相似文献   

5.
Peptides are emerging as pharmaceutical agents in cancer therapy. The peptide, TLSGAFELSRDK (TLS) is a targeting ligand that can specifically triggers cellular uptake by binding to SKOV3 cells. Cell surface proteins and the C-terminal basic residues of the TLS are required for effective cell penetration, and the uptake process is energy-dependent. It inhibited the proliferation of SKOV3 cells and induced early-stage apoptosis by down-regulation of Bcl-2 expression mediated through a caspase-dependent pathway. The synergistic anti-proliferative effects of the peptide TLS and doxorubicin on SKOV3 cells were further investigated. Taken together, TLS, acting as a combination of a targeted ligand and a therapeutic agent, was a promising candidate for the development of peptide-based therapies in ovarian cancer.  相似文献   

6.
Conjugation to cationic cell penetrating peptides (such as Tat, Penetratin, or oligo arginines) efficiently improves the cellular uptake of large hydrophilic molecules such as oligonucleotides and peptide nucleic acids, but the cellular uptake is predominantly via an unproductive endosomal pathway and therefore mechanisms that promote endosomal escape (or avoid the endosomal route) are required for improving bioavailability. A variety of auxiliary agents (chloroquine, calcium ions, or lipophilic photosensitizers) has this effect, but improved, unaided delivery would be highly advantageous in particular for future in vivo applications. We find that simply conjugating a lipid domain (fatty acid) to the cationic peptide (a CatLip conjugate) increases the biological effect of the corresponding PNA (CatLip) conjugates in a luciferase cellular antisense assay up to 2 orders of magnitude. The effect increases with increasing length of the fatty acid (C8-C16) but in parallel also results in increased cellular toxicity, with decanoic acid being optimal. Furthermore, the relative enhancement is significantly higher for Tat peptide compared to oligoarginine. Confocal microscopy and chloroquine enhancement indicates that the lipophilic domain increases the endosomal uptake as well as promoting significantly endosomal escape. These results provide a novel route for improving the (cellular) bioavailability of larger hydrophilic molecules.  相似文献   

7.
Many promising therapeutics are currently awaiting their clinical application. Due to their low capability of cell membrane crossing, these compounds do not reach their site of action. One way to overcome this problem might be the fusion of these agents to cell-penetrating peptides (CPP), which are able to shuttle various cargoes across cellular membranes. One disadvantage in using CPP in drug delivery is their low metabolic stability. The aim of our work was to increase the proteolytic resistance of the CPP hCT(9-32), a truncated C-terminal fragment of human calcitonin. Thus, we synthesised six modified N-terminally carboxyfluorescein labelled hCT(9-32) derivatives by replacing positions 12 and/or 16 of hCT(9-32) with either N-methylphenylalanine or d-phenylalanine, respectively. By using confocal laser scanning microscopy we showed that the modifications did neither affect the peptide internalisation efficiency in HeLa nor HEK 293T cells. The metabolic stability of the peptides was investigated in human blood plasma and HEK 293T cell culture supernatant. To analyse the degradation patterns, we used RP-HPLC and MALDI-TOF mass spectrometry. However, we found for all of the new derivatives high metabolic stabilities. In blood plasma, the half-lives for five of the six peptides increased compared to unmodified hCT(9-32). The degradation patterns showed a distinct stabilisation in the N-terminal part of the modified peptides, in the C-terminal part, we found some cleavage to a minor extent. Furthermore, we studied the conformation of the peptides by CD spectroscopy and demonstrated that they possess no cell toxicity. Since our metabolically more stable compounds are still able to pass the cell membrane they provide powerful tools as drug delivery vectors.  相似文献   

8.
Many promising therapeutics are currently awaiting their clinical application. Due to their low capability of cell membrane crossing, these compounds do not reach their site of action. One way to overcome this problem might be the fusion of these agents to cell-penetrating peptides (CPP), which are able to shuttle various cargoes across cellular membranes. One disadvantage in using CPP in drug delivery is their low metabolic stability. The aim of our work was to increase the proteolytic resistance of the CPP hCT(9-32), a truncated C-terminal fragment of human calcitonin. Thus, we synthesised six modified N-terminally carboxyfluorescein labelled hCT(9-32) derivatives by replacing positions 12 and/or 16 of hCT(9-32) with either N-methylphenylalanine or d-phenylalanine, respectively. By using confocal laser scanning microscopy we showed that the modifications did neither affect the peptide internalisation efficiency in HeLa nor HEK 293T cells. The metabolic stability of the peptides was investigated in human blood plasma and HEK 293T cell culture supernatant. To analyse the degradation patterns, we used RP-HPLC and MALDI-TOF mass spectrometry. However, we found for all of the new derivatives high metabolic stabilities. In blood plasma, the half-lives for five of the six peptides increased compared to unmodified hCT(9-32). The degradation patterns showed a distinct stabilisation in the N-terminal part of the modified peptides, in the C-terminal part, we found some cleavage to a minor extent. Furthermore, we studied the conformation of the peptides by CD spectroscopy and demonstrated that they possess no cell toxicity. Since our metabolically more stable compounds are still able to pass the cell membrane they provide powerful tools as drug delivery vectors.  相似文献   

9.
Cell-penetrating peptides (CPPs) are able to traverse cellular membranes and deliver macromolecular cargo. Uptake occurs through both endocytotic and nonendocytotic pathways, but the molecular requirements for efficient internalization are not fully understood. Here we investigate how the presence of tryptophans and their position within an oligoarginine influence uptake mechanism and efficiency. Flow cytometry and confocal fluorescence imaging are used to estimate uptake efficiency, intracellular distribution and toxicity in Chinese hamster ovarian cells. Further, membrane leakage and lipid membrane affinity are investigated. The peptides contain eight arginine residues and one to four tryptophans, the tryptophans positioned either at the N-terminus, in the middle, or evenly distributed along the amino acid sequence. Our data show that the intracellular distribution varies among peptides with different tryptophan content and backbone spacing. Uptake efficiency is higher for the peptides with four tryptophans in the middle, or evenly distributed along the peptide sequence, than for the peptide with four tryptophans at the N-terminus. All peptides display low cytotoxicity except for the one with four tryptophans at the N-terminus, which was moderately toxic. This finding is consistent with their inability to induce efficient leakage of dye from lipid vesicles. All peptides have comparable affinities for lipid vesicles, showing that lipid binding is not a decisive parameter for uptake. Our results indicate that tryptophan content and backbone spacing can affect both the CPP uptake efficiency and the CPP uptake mechanism. The low cytotoxicity of these peptides and the possibilities of tuning their uptake mechanism are interesting from a therapeutic point of view.  相似文献   

10.
In this work we report synthesis and biological evaluation of a cell‐penetrating peptide (CPP), that is partly cyclized via a triazole bridge. Recently, beneficious properties have been reported for cyclized peptides concerning their metabolic stability and intracellular uptake. A CPP based on human calcitonin was used in this study, and side chain cyclization was achieved via copper catalyzed alkyne‐azide click reaction. Cell viability studies in several cell‐lines revealed no cytotoxic effects. Furthermore, efficient uptake in breast cancer MCF‐7 cells could be determined. Moreover, preliminary studies using this novel peptide as drug transporter for daunorubicin were performed. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
Binding of cationic cell-permeable peptides to plastic and glass   总被引:1,自引:0,他引:1  
  相似文献   

12.
Cell-penetrating peptides (CPPs) are a promising group of delivery vectors for various therapeutic agents but their application is often hampered by poor stability in the presence of serum. Different strategies to improve peptide stability have been exploited, one of them being "retro-inversion" (RI) of natural peptides. With this approach the stability of CPPs has been increased, thereby making them more efficient transporters. Several RI-CPPs were here assessed and compared to the corresponding parent peptides in different cell-lines. Surprisingly, treatment of cells with these peptides induced trypsin insensitivity and rapid severe toxicity in contrast to L-peptides. This was measured as reduced metabolic activity and condensed cell nuclei, in parity with the apoptosis inducing agent staurosporine. Furthermore, effects on mitochondrial network, focal adhesions, actin cytoskeleton and caspase-3 activation were analyzed and adverse effects were evident at 20 μM peptide concentration within 4 h while parent L-peptides had negligible effects. To our knowledge this is the first time RI peptides are reported to cause cellular toxicity, displayed by decreased metabolic activity, morphological changes and induction of apoptosis. Considering the wide range of research areas that involves the use of RI-peptides, this finding is of major importance and needs to be taken under consideration in applications of RI-peptides.  相似文献   

13.
Brunner J  Barton JK 《Biochemistry》2006,45(40):12295-12302
Cell-penetrating peptides are widely used to deliver cargo molecules into cells. Here we describe the synthesis, characterization, DNA binding, and cellular uptake studies of a series of metal-peptide conjugates containing oligoarginine as a cell-penetrating peptide. d-Octaarginine units are appended onto a rhodium intercalator containing the sterically expansive chrysenequinone diimine (chrysi) ligand to form Rh(chrysi)(phen)(bpy)(3+)-tethered oligoarginine conjugates, where the peptide is attached to the ancillary bpy ligand; some conjugates also include a fluorescein or thiazole orange tag. These complexes bind and with photoactivation selectively cleave DNA neighboring single-base mismatches. The presence of the oligoarginines is found to increase the nonspecific binding affinity of the complexes for both matched and mismatched DNA, but for these conjugates, photocleavage remains selective for the mismatched site, as assayed using both gel electrophoresis and mass spectrometry experiments. Significantly, the rhodium complex does not interfere with the delivery properties of the cell-penetrating peptide. Confocal microscopy experiments show rapid nuclear localization of the metal-peptide conjugates containing the tethered fluorescein. Mass spectrometry experiments confirm the association of the rhodium with the HeLa cells. These results provide a strategy for targeting mismatch-selective metal complexes inside cell nuclei.  相似文献   

14.
For therapeutic applications of small interfering RNA (siRNA), serum stability, enhanced cellular uptake, and facile endosome escape are key issues for designing carriers. In this study, green fluorescent protein (GFP) siRNA was conjugated to a six‐arm polyethylene glycol (PEG) derivative via a reducible disulfide linkage (6PEG‐siRNA). The 6PEG‐siRNA conjugate was also functionalized with a cell penetrating peptide, Hph1 to enhance its cellular uptake property (6PEG‐siRNA‐Hph1). The 6PEG‐siRNA‐Hph1 conjugate was electrostatically complexed with cationic self‐crosslinked fusogenic KALA peptide (cl‐KALA) to form multifunctional polyelectrolyte complex micelles for gene silencing. The resultant siRNA complex formulation with multiple PEG chains showed superior physical stability and resistance to enzymatic degradation. The 6PEG‐siRNA‐Hph1/cl‐KALA complexes exhibited enhanced GFP gene silencing efficiency for MDA‐MB‐435 cells in the serum containing condition. The current reducible and multifunctional polyelectrolyte complex micelles are expected to have high potential for efficient delivery of therapeutic siRNA. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

15.
Cell-penetrating peptides (CPPs) have been extensively studied during the past decade, because of their ability to promote the cellular uptake of various cargo molecules, e.g., oligonucleotides and proteins. In a recent study of the uptake of several analogues of penetratin, Tat(48-60) and oligoarginine in live (unfixed) cells [Thorén et al. (2003) Biochem. Biophys. Res. Commun. 307, 100-107], it was found that both endocytotic and nonendocytotic uptake pathways are involved in the internalization of these CPPs. In the present study, the membrane interactions of some of these novel peptides, all containing a tryptophan residue to facilitate spectroscopic studies, are investigated. The peptides exhibit a strong affinity for large unilamellar vesicles (LUVs) containing zwitterionic and anionic lipids, with binding constants decreasing in the order penetratin > R(7)W > TatP59W > TatLysP59W. Quenching studies using the aqueous quencher acrylamide and brominated lipids indicate that the tryptophan residues of the peptides are buried to a similar extent into the membrane, with an average insertion depth of approximately 10-11 A from the bilayer center. The membrane topology of the peptides was investigated using an assay based on resonance energy transfer between tryptophan and a fluorescently labeled lysophospholipid, lysoMC, distributed asymmetrically in the membranes of LUVs. By determination of the energy transfer efficiency when peptide was added to vesicles with lysoMC present exclusively in the inner leaflet, it was shown that none of the peptides investigated is able to translocate across the lipid membranes of LUVs. By contrast, confocal laser scanning microscopy studies on carboxyfluorescein-labeled peptides showed that all of the peptides rapidly traverse the membranes of giant unilamellar vesicles (GUVs). The choice of model system is thus crucial for the conclusions about the ability of CPPs to translocate across lipid membranes. Under the conditions used in the present study, peptide-lipid interactions alone cannot explain the different cellular uptake characteristics exhibited by these peptides.  相似文献   

16.
Uptake of analogs of penetratin,Tat(48-60) and oligoarginine in live cells   总被引:4,自引:0,他引:4  
Cell-penetrating peptides are regarded as promising vectors for intracellular delivery of large, hydrophilic molecules, but their mechanism of uptake is poorly understood. Since it has now been demonstrated that the use of cell fixation leads to artifacts in microscopy studies on the cellular uptake of such peptides, much of what has been considered as established facts must be reinvestigated using live (unfixed) cells. In this work, the uptake of analogs of penetratin, Tat(48-60), and heptaarginine in two different cell lines was studied by confocal laser scanning microscopy. For penetratin, an apparently endocytotic uptake was observed, in disagreement with previous studies on fixed cells found in the literature. Substitution of the two tryptophan residues, earlier reported to be essential for cellular uptake, did not alter the uptake characteristics. A heptaarginine peptide, with a tryptophan residue added in the C-terminus, was found to be internalized by cells via an energy-independent, non-endocytotic pathway. Finally, a crucial role for arginine residues in penetratin and Tat(48-60) was demonstrated.  相似文献   

17.
The influence of the peptide-to-cell ratio and energy depletion on uptake and degradation of the cell-penetrating peptides (CPPs) MAP (model amphipathic peptide) was investigated. The intracellular concentration of the CPPs, MAP and penetratin was monitored while varying the number of cells at fixed peptide concentration and incubation volume, or changing the concentration and incubation volume at fixed cell number. The uptake of CPPs was shown to be dependent on the peptide/cell ratio. At given peptide concentration and incubation volume, the intracellular concentration of peptide increased with lower cell number. At given cell number, doubling of the incubation volume increased intracellular peptide concentration to a similar extent as the doubling in incubation concentration. From a practical view, this means that the peptide/cell ratio has at least the same importance for the uptake of CPPs as the used peptide concentration. No influence of the peptide/cell ratio was found for the cellular uptake of peptide nucleic acid (PNA), or a non-amphipathic MAP analogue, investigated in parallel for comparison purposes. Energy depletion resulted in significantly reduced quantities of intracellular fluorescence label. Moreover, we show that this difference is mainly due to a membrane-impermeable fluorescent-labelled degradation product, which is lacking in energy-depleted cells. The mechanism of its generation is not likely to be endosomal degradation of endocytosed material, as it is not chloroquine- or brefeldin-sensitive.  相似文献   

18.
Small interfering RNAs (siRNAs) are rapidly emerging as new therapeutic tools for the treatment of some of the deadly diseases such as cancer. However, poor cellular uptake and instability in physiological milieu limit its therapeutic potential, hence there arises a need of a delivery system which can efficiently and repeatedly deliver siRNA to the target cells. Nanoparticles have shown immense potential as suitable delivery vectors with enhanced efficacy and biocompatibility. These delivery vectors are usually few nanometers in size, which not only protects siRNA against enzymatic degradation but also leads to tissue and cellular targeting. Nanoparticles prepared from various cationic polymers like polyethylenimine, and chitosan have been largely exploited as they bear several advantages such as, ease of manipulation, high stability, low cost and high payload. This review summarizes some of the recent patents on siRNA delivery employing polymer or lipid-based nano-vectors for therapeutic applications.  相似文献   

19.
Cell penetrating peptides (CPPs) have been shown to enhance the cellular uptake of antisense oligonucleotides (AOs). However, the effectiveness of the CPPs for cytoplasmic or nuclear delivery of therapeutic AOs must take into account the possible entrapment of the CPP-AO conjugates in endosomes/lysosomes and the overall stability of the CPP-AO conjugates to enzymes. This includes the stabilities of the CPPs and AOs themselves as well as the linkage between them. In this study, we investigated the effects of several structural features of arginine-rich CPPs on the metabolic stability of CPP conjugated to phosphorodiamidate morpholino oligomers (PMOs) in human serum and in cells. Those structural features include amino acid configurations (d or l), incorporation of non-alpha-amino acids, peptide sequences, and types of linkages between CPPs and PMOs. Using matrix-assisted laser desorption ionization time-of-flight mass spectrometry, we found that the stability of the CPP portion was varied although the PMO portion of the conjugate was completely stable both in cells and in human serum. d-Configuration CPPs were completely stable, while l-CPPs were degraded in both serum and HeLa cells. Insertions of 6-aminohexanoic acid residues (X) into an R8 peptide increased the corresponding CPP's serum stability with the degree of stability being dependent upon the positions of X. However, X-containing CPPs were degraded rapidly intracellularly. Insertions of beta-alanines (B) into the R8 peptide increased its serum stability and intracellular stability. An amide or a maleimide linkage was stable in both serum and cells; however, an unhindered disulfide linkage was not stable in either. By using fluorescent microscopy, flow cytometry, and an antisense splice correction assay, the cellular uptakes of an X-containing conjugate and its fragments were compared to their antisense activities. We found that a large fraction of the conjugate was trapped within vesicles and the degraded fragments cannot escape from the vesicles. This study indicates that the incorporation of non-alpha-amino acids into l-CPPs can increase the metabolic stability of CPP-PMOs without using costly d-CPPs. However, the position and type of non-alpha-amino acids affect the degree of stability extracellularly and intracellularly. In addition, this study reveals that the degradation of an X-containing CPP-PMO conjugate is a more rapid process than degradation of a B-containing conjugate. Last, the endosomal/lysosomal trapping limits the effectiveness of a CPP-PMO conjugate, and the stability of the CPP is one of the factors affecting the ability of the conjugate to escape the endosomes/lysosomes.  相似文献   

20.
Exploring the development of nonviral nucleic acid delivery vectors with progressive, specific, and novel designs in molecular architecture is a fundamental way to investigate how aspects of chemical and physical structure impact the transfection process. In this study, macromolecules comprised of a four-arm star poly(ethylene glycol) and termini modified with one of five different heparin binding peptides have been investigated for their ability to bind, compact, and deliver DNA to mammalian cells in vitro. These new delivery vectors combine a PEG-derived stabilizing moiety with peptides that exhibit unique cell-surface binding ability in a molecular architecture that permits multivalent presentation of the cationic peptides. Five peptide sequences of varying heparin binding affinity were studied; each was found to sufficiently bind heparin for biological application. Additionally, the macromolecules were able to bind and compact DNA into particles of proper size for endocytosis. In biological studies, the PEG-star peptides displayed a range of toxicity and transfection efficiency dependent on the peptide identity. The vectors equipped with peptides of highest heparin binding affinity were found to bind DNA tightly, increase levels of cellular internalization, and display the most promising transfection qualities. Our results suggest heparin binding peptides with specific sequences hold more potential than nonspecific cationic polymers to optimize transfection efficiency while maintaining cell viability. Furthermore, the built-in multivalency of these macromolecules may allow simultaneous binding of both DNA at the core of the polyplex and heparan sulfate on the surface of the cell. This scheme may facilitate a bridging transport mechanism, tethering DNA to the surface of the cell and subsequently ushering therapeutic nucleic acids into the cell. This multivalent star shape is therefore a promising architectural feature that may be exploited in the design of future polycationic gene delivery vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号