首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To determine whether the NV gene of viral hemorrhagic septicemia virus (VHSV) is related to the type I interferon response of hosts, expression of Mx gene in Epithelioma papulosum cyprini (EPC) cells and in olive flounder (Paralichthys olivaceus) in response to infection with either wild-type VHSV or recombinant VHSVs (rVHSV-ΔNV-EGFP and rVHSV-wild) was investigated. A reporter vector was constructed for measuring Mx gene expression using olive flounder Mx promoter, in which the reporter Metridia luciferase was designed to be excreted to culture medium to facilitate measurement. The highest increase of luciferase activity was detected from supernatant of cells infected with rVHSV-ΔNV-EGFP. In contrast cells infected with wild-type VHSV showed a slight increase of the luciferase activity. Interestingly, cells infected with rVHSV-wild that has artificially changed nucleotides just before and after the NV gene ORF, also showed highly increased luciferase activity, but the increased amplitude was lower than that by rVHSV-ΔNV-EGFP. These results strongly suggest that the NV protein of VHSV plays an important role in suppressing interferon response in host cells, which provides a condition for the viruses to efficiently proliferate in host cells. In an in vivo experiment, the Mx gene expression in olive flounder challenged with the rVHSV-ΔNV-EGFP was clearly higher than fish challenged with rVHSV-wild or wild-type VHSV, suggesting that lacking of the NV gene in the genome of rVHSV-ΔNV-EGFP brought to strong interferon response that subsequently inhibit viral replication in fish.  相似文献   

2.
Viral hemorrhagic septicemia virus (VHSV) and infectious hematopoietic necrosis virus (IHNV) are members of the genus Novirhabdovirus within the Rhabdoviridae family, which can cause severe hemorrhagic disease in fresh- and saltwater fish worldwide. These viruses carry an additional nonvirion (NV) gene, which codes for the nonstructural NV protein that has been implicated to play a role in viral pathogenesis. To determine the precise biological function of this NV gene and its gene product, we generated NV-deficient and NV knockout recombinant VHSVs, using reverse genetics. Comparisons of the replication kinetics and markers for virus-induced apoptosis indicated that the NV-deficient and NV knockout mutant viruses induce apoptosis earlier in cell culture than the wild-type recombinant VHSV. These results suggest that the NV protein has an antiapoptotic function at the early stage of virus infection. Furthermore, we created a chimeric VHSV, in which the NV gene of VHSV was replaced by the IHNV NV gene, which was capable of suppressing apoptosis in cell culture. These results show that the NV protein of other members of Novirhabdovirus can restore the NV protein function. In this study, we also investigated the kinetics of VHSV replication during a single round of viral replication and examined the mechanism of VHSV-induced apoptosis. Our results show that VHSV infection induced caspases 3, 8 and 9 in cell culture.  相似文献   

3.
The role of viral hemorrhagic septicemia virus (VHSV) NV gene in nuclear factor-κB (NF-κB) activation was investigated. Epithelioma papulosum cyprini (EPC) cells pre-treated with tumor necrosis factor (TNF)-α showed a strong resistance against VHSV infection, but cells treated with TNF-α after VHSV infection showed no resistance, suggesting that immediate early TNF-α-mediated responses inhibit VHSV replication. Activation of NF-κB is a key step in TNF-α-mediated immunomodulatory pathways. In this study, activation of NF-κB by TNF-α exposure was inhibited in EPC cells harboring NV gene expressing vectors, indicating that the NV gene of VHSV can suppress TNF-α-mediated NF-κB activation. Furthermore, the NV gene knock-out recombinant VHSV (rVHSV-ΔNV-EGFP) induced significantly higher NF-κB activity in EPC cells than wild-type VHSV, suggesting that VHSV adopted a strategy to suppress early activation of NF-κB in host cells through and NV gene.  相似文献   

4.
Novirhabdovirus, infectious hematopoietic necrosis virus (IHNV), and viral hemorrhagic septicemia virus (VHSV) are fish rhabdoviruses that, in comparison to the other rhabdoviruses, contain an additional gene coding for a small nonvirion (NV) protein of unassigned function. A recombinant IHNV with the NV gene deleted but expressing the green fluorescent protein (rIHNV-Delta NV) has previously been shown to be efficiently recovered by reverse genetics (S. Biacchesi et al., J. Virol. 74:11247-11253, 2000). However, preliminary experiments suggested that the growth in cell culture of rIHNV-Delta NV was affected by the NV deletion. In the present study, we show that the growth in cell culture of rIHNV-Delta NV is indeed severely impaired but that a normal growth of rIHNV-Delta NV can be restored when NV is provided in trans by using fish cell clones constitutively expressing the NV protein. These results indicate that NV is a protein that has a crucial biological role for optimal replication of IHNV in cell culture. Although IHNV and VHSV NV proteins do not share any significant identity, we show here that both NV proteins play a similar role since a recombinant IHNV virus, rIHNV-NV(VHSV), in which the IHNV NV open reading frame has been replaced by that of VHSV, was shown to replicate as well as the wild-type (wt) IHNV into fish cells. Finally, data provided by experimental fish infections with the various recombinant viruses strongly suggest an essential role of the NV protein for the pathogenicity of IHNV. Furthermore, we show that juvenile trout immunized with NV-knockout IHNV were protected against challenge with wt IHNV. That opens a new perspective for the development of IHNV attenuated live vaccines.  相似文献   

5.
Viral hemorrhagic septicemia virus (VHSV), belonging to the genus Novirhabdovirus in the family of Rhabdoviridae, causes a highly contagious disease of fresh and saltwater fish worldwide. Recently, a novel genotype of VHSV, designated IVb, has invaded the Great Lakes in North America, causing large-scale epidemics in wild fish. An efficient reverse genetics system was developed to generate a recombinant VHSV of genotype IVb from cloned cDNA. The recombinant VHSV (rVHSV) was comparable to the parental wild-type strain both in vitro and in vivo, causing high mortality in yellow perch (Perca flavescens). A modified recombinant VHSV was generated in which the NV gene was substituted with an enhanced green fluorescent protein gene (rVHSV-ΔNV-EGFP), and another recombinant was made by inserting the EGFP gene into the full-length viral clone between the P and M genes (rVHSV-EGFP). The in vitro replication kinetics of rVHSV-EGFP was similar to rVHSV; however, the rVHSV-ΔNV-EGFP grew 2 logs lower. In yellow perch challenges, wtVHSV and rVHSV induced 82-100% cumulative per cent mortality (CPM), respectively, whereas rVHSV-EGFP produced 62% CPM and rVHSV-ΔNV-EGFP caused only 15% CPM. No reversion of mutation was detected in the recovered viruses and the recombinant viruses stably maintained the foreign gene after several passages. These results indicate that the NV gene of VHSV is not essential for viral replication in vitro and in vivo, but it plays an important role in viral replication efficiency and pathogenicity. This system will facilitate studies of VHSV replication, virulence, and production of viral vectored vaccines.  相似文献   

6.
7.
Infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicaemia virus (VHSV) are rhabdoviruses that infect salmonids, producing serious economic losses. Two recombinant IHN viruses were generated by reverse genetics. For one (rIHNV GFP) the IHNV NV gene was replaced with the green fluorescent protein (GFP) gene. In the other (rIHNV-Gvhsv GFP) the G gene was also exchanged for that of VHSV. No mortalities, external signs or histological lesions were observed in experimental infections conducted with the recombinant viruses. Neither the rIHNV GFP nor rIHNV-Gvhsv GFP was detected by RT-PCR in any of the examined tissues from experimentally infected fish. In order to assess their potential as vaccines against the wild type viruses, rainbow trout were vaccinated with the recombinant viruses by intraperitoneal injection and challenged 30 d later with virulent IHNV or VHSV. The GFP viruses provided protection against both wild type viruses. None of the recombinant viruses induced antibody production, and the expression of interferon (IFNalpha4) and interferon induced genes such as Mx protein and ISG-15 was not different to that of controls. The rIHNV-Gvhsv GFP did not inhibit cellular apoptosis as it was observed in an IHNV inoculated fish cell line. These studies suggest that the recombinant rIHNV-Gvhsv GFP is a promising candidate as a live recombinant vaccine and also provides a good model to further study viral pathogenicity and the molecular basis of protection against these viral infections.  相似文献   

8.
The nonvirion (NV) protein of infectious hematopoietic necrosis virus (IHNV) has been previously reported to be essential for efficient growth and pathogenicity of IHNV. However, little is known about the mechanism by which the NV supports the viral growth. In this study, cellular localization of NV and its role in IHNV growth in host cells was investigated. Through transient transfection in RTG-2 cells of NV fused to green fluorescent protein (GFP), a nuclear localization of NV was demonstrated. Deletion analyses showed that the (32)EGDL(35) residues were essential for nuclear localization of NV protein, and fusion of these 4 amino acids to GFP directed its transport to the nucleus. We generated a recombinant IHNV, rIHNV-NV-ΔEGDL in which the (32)EGDL(35) was deleted from the NV. rIHNVs with wild-type NV (rIHNV-NV) or with the NV gene replaced with GFP (rIHNV-ΔNV-GFP) were used as controls. RTG-2 cells infected with rIHNV-ΔNV-GFP and rIHNV-NV-ΔEGDL yielded 12- and 5-fold less infectious virion, respectively, than wild type rIHNV-infected cells at 48 h post-infection (p.i.). While treatment with poly I∶C at 24 h p.i. did not inhibit replication of wild-type rIHNVs, replication rates of rIHNV-ΔNV-GFP and rIHNV-NV-ΔEGDL were inhibited by poly I∶C. In addition, both rIHNV-ΔNV and rIHNV-NV-ΔEGDL induced higher levels of expressions of both IFN1 and Mx1 than wild-type rIHNV. These data suggest that the IHNV NV may support the growth of IHNV through inhibition of the INF system and the amino acid residues of (32)EGDL(35) responsible for nuclear localization are important for the inhibitory activity of NV.  相似文献   

9.
10.
11.
12.
A method is described for the production of recombinant adeno-associated virus (AAV) stocks that contain no detectable wild-type helper AAV. The recombinant viruses contained only the terminal 191 nucleotides of the AAV chromosome bracketing a nonviral marker gene. trans-Acting AAV functions were provided by a helper DNA in which the terminal 191 nucleotides of the AAV chromosome were substituted with adenovirus terminal sequences. Although the helper DNA did not appear to replicate, it expressed AAV functions at a substantially higher level than did DNA molecules that contained neither AAV nor adenovirus termini. Since the recombinant viruses with AAV termini contained no sequence homology to the helper DNA, no wild-type AAV was generated by homologous recombination within infected cells. Since the terminal region of the AAV chromosome is required for replication and encapsidation, only recombinant DNAs were amplified and packaged into AAV virions. When human cells were infected at a high multiplicity with a recombinant virus carrying a drug resistance marker gene, approximately 70% of the infected cells gave rise to colonies stably expressing the marker. The recombinant virus gene was then used to generate drug-resistant human cell lines subsequent to infection. These cells contained stably integrated copies of the recombinant viral DNA which could be excised, replicated, and encapsidated by infection with wild-type AAV plus adenovirus. Thus, AAV gene expression is not required for normal integration of an infecting DNA containing AAV termini.  相似文献   

13.
A recombinant viral hemorrhagic septicemia virus (rVHSV-ΔNV-EGFP) that has enhanced green fluorescent protein (EGFP) gene instead of NV gene was previously generated using reverse genetics technology. In this study, potential of the rVHSV-ΔNV-EGFP to be used as a live oral vaccine candidate was assessed. The presence of the recombinant virus in internal organs of orally administered olive flounder (Paralichthys olivaceus) was analyzed by semi-quantitative RT-PCR. Although the recombinant VHSV-specific band was detected only when the number of PCR cycle was increased to 35, the band was detected from internal organs, such as kidney, spleen, and liver of fish that were reared at either 15 °C or 20 °C till even 20 days, suggesting that a few orally administered rVHSV-ΔNV-EGFP might be transported to internal organs, and might keep weak replication ability in the organs. VHSV-neutralizing activity was induced by oral immunization of olive flounder with the NV gene knock-out recombinant VHSV not only in skin and intestinal mucus but also in serum, suggesting that mucosal and systemic adaptive immune responses were elicited by oral immunization. In challenge experiment, groups of fish immunized with 10?, 10?, and 2 × 10? PFU of rVHSV-ΔNV-EGFP/fish showed 25%, 50%, and 70% of relative percent survival (RPS), respectively. The RPSs were elevated to 60%, 75%, and 90% by a boost immunization in fish boost immunized with 10?, 10?, and 2 × 10? PFU of rVHSV-ΔNV-EGFP, respectively. The cumulative mortality of fish in the control groups was 100%. Conclusionly, the present results demonstrate that the NV gene knock-out recombinant VHSV administered orally to olive flounder can induce dose- and boosting-dependent VHSV-neutralizing antibody in mucus and serum, and can provide a high protection in olive flounder against a virulent VHSV challenge.  相似文献   

14.
Snakehead rhabdovirus (SHRV) affects warm water fish in Southeast Asia and belongs to the genus Novirhabdovirus by virtue of its nonvirion gene (NV). Because SHRV grows best at temperatures between 28 and 31 degrees C, we were able to use the T7 expression system to produce viable recombinant SHRV from a cloned cDNA copy of the viral genome. Expression of a positive-strand RNA copy of the 11, 550-nucleotide SHRV genome along with the viral nucleocapsid (N), phosphoprotein (P), and polymerase (L) proteins resulted in the generation of infectious SHRV in cells preinfected with a vaccinia virus vector for T7 polymerase expression. Recombinant virus production was verified by detection of a unique restriction site engineered into the SHRV genome between the NV and L genes. Since we were now able to begin examining the function of the NV gene, we constructed a recombinant virus containing a nonsense mutation located 22 codons into the coding sequence of the NV protein. The NV knockout virus was produced at a concentration as high as that of wild-type virus in cultured fish cells, and the resulting virions appeared to be identical to the wild-type virions in electron micrographs. These initial studies suggest that NV has no critical function in SHRV replication in cultured fish cells.  相似文献   

15.
Varicella-zoster virus (VZV) open reading frame 63 (ORF63), located between nucleotides 110581 and 111417 in the internal repeat region, encodes a nuclear phosphoprotein which is homologous to herpes simplex virus type 1 (HSV-1) ICP22 and is duplicated in the terminal repeat region as ORF70 (nucleotides 118480 to 119316). We evaluated the role of ORFs 63 and 70 in VZV replication, using recombinant VZV cosmids and PCR-based mutagenesis to make single and dual deletions of these ORFs. VZV was recovered within 8 to 10 days when cosmids with single deletions were transfected into melanoma cells along with the three intact VZV cosmids. In contrast, VZV was not detected in transfections carried out with a dual deletion cosmid. Infectious virus was recovered when ORF63 was cloned into a nonnative AvrII site in this cosmid, confirming that failure to generate virus was due to the dual ORF63/70 deletion and that replication required at least one gene copy. This requirement may be related to our observation that ORF63 interacts directly with ORF62, the major immediate-early transactivating protein of VZV. ORF64 is located within the inverted repeat region between nucleotides 111565 and 112107; it has some homology to the HSV-1 Us10 gene and is duplicated as ORF69 (nucleotides 117790 to 118332). ORF64 and ORF69 were deleted individually or simultaneously using the VZV cosmid system. Single deletions of ORF64 or ORF69 yielded viral plaques with the same kinetics and morphology as viruses generated with the parental cosmids. The dual deletion of ORF64 and ORF69 was associated with an abnormal plaque phenotype characterized by very large, multinucleated syncytia. Finally, all of the deletion mutants that yielded recombinants retained infectivity for human T cells in vitro and replicated efficiently in human skin in the SCIDhu mouse model of VZV pathogenesis.  相似文献   

16.
Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus that causes high mortality in cultured flounder. Naturally occurring VHSV strains vary greatly in virulence. Until now, little has been known about genetic alterations that affect the virulence of VHSV in flounder. We recently reported the full-genome sequences of 18 VHSV strains. In this study, we determined the virulence of these 18 VHSV strains in flounder and then the assessed relationships between differences in the amino acid sequences of the 18 VHSV strains and their virulence to flounder. We identified one amino acid substitution in the phosphoprotein (P) (Pro55-to-Leu substitution in the P protein; PP55L) that is specific to highly virulent strains. This PP55L substitution was maintained stably after 30 cell passages. To investigate the effects of the PP55L substitution on VHSV virulence in flounder, we generated a recombinant VHSV carrying PP55L (rVHSV-P) from rVHSV carrying P55 in the P protein (rVHSV-wild). The rVHSV-P produced high level of viral RNA in cells and showed increased growth in cultured cells and virulence in flounder compared to the rVHSV-wild. In addition, rVHSV-P significantly inhibited the induction of the IFN1 gene in both cells and fish at 6 h post-infection. An RNA-seq analysis confirmed that rVHSV-P infection blocked the induction of several IFN-related genes in virus-infected cells at 6 h post-infection compared to rVHSV-wild. Ectopic expression of PP55L protein resulted in a decrease in IFN induction and an increase in viral RNA synthesis in rVHSV-wild-infected cells. Taken together, our results are the first to identify that the P55L substitution in the P protein enhances VHSV virulence in flounder. The data from this study add to the knowledge of VHSV virulence in flounder and could benefit VHSV surveillance efforts and the generation of a VHSV vaccine.  相似文献   

17.
18.
Infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) are two salmonid rhabdoviruses replicating at low temperatures (14 to 20 degrees C). Both viruses belong to the Novirhabdovirus genus, but they are only distantly related and do not cross antigenically. By using a recently developed reverse-genetic system based on IHNV (S. Biacchesi et al., J. Virol. 74:11247-11253, 2000), we investigated the ability to exchange IHNV glycoprotein G with that of VHSV. Thus, the IHNV genome was modified so that the VHSV G gene replaced the complete IHNV G gene. A recombinant virus expressing VHSV G instead of IHNV G, rIHNV-Gvhsv, was generated and was shown to replicate as well as the wild-type rIHNV in cell culture. This study was extended by exchanging IHNV G with that of a fish vesiculovirus able to replicate at high temperatures (up to 28 degrees C), the spring viremia of carp virus (SVCV). rIHNV-Gsvcv was successfully recovered; however, its growth was restricted to 14 to 20 degrees C. These results show the nonspecific sequence requirement for the insertion of heterologous glycoproteins into IHNV virions and also demonstrate that an IHNV protein other than the G protein is responsible for the low-temperature restriction on growth. To determine to what extent the matrix (M) protein interacts with G, a series of chimeric pIHNV constructs in which all or part of the M gene was replaced with the VHSV counterpart was engineered and used to recover the respective recombinant viruses. Despite the very low percentage (38%) of amino acid identity between the IHNV and VHSV matrix proteins, viable chimeric IHNVs, harboring either the matrix protein or both the glycoprotein and the matrix protein from VHSV, were recovered and propagated. Altogether, these data show the extreme flexibility of IHNV to accommodate heterologous structural proteins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号