首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
There are two genotypes of the diplomonad Spironucleus barkhanus. Based on sequence data from the small subunit ribosomal RNA gene the conspecificity of these two genotypes has been questioned. Therefore, we have sampled Spironucleus from 27 fish, representing 14 populations, five species, and four genera. Partial nucleotide sequences from the three genes; small subunit ribosomal DNA, glutamate dehydrogenase 1 and alpha-tubulin were compared. The pathogenic isolates of S. barkhanus, which causes systemic spironucleosis in Atlantic salmon, Chinook salmon, and Arctic charr, all farmed in sea water, were genetically very different from the commensal isolate found in wild freshwater populations of Arctic charr and grayling. The genetic distances between the genotypes were of the same magnitude as those separating species of Giardia. Based on these genetic and ecological data, the pathogenic genotype from farmed salmonids is described as a new species, Spironucleus salmonicida n. sp. Scanning and transmission electron microscopy showed no specific morphological or ultrastructural features distinguishing S. salmonicida n. sp. from S. barkhanus. The present study clearly demonstrates the value of applying genetics in identification of Spironucleus species. Phylogenetic analyses that included the isolates of S. salmonicida n. sp. did not change the phylogenetic relationship within the genus Spironucleus.  相似文献   

2.
A case of intracellular systemic infection with the diplomonad flagellate Spironucleus barkhanus in farmed Arctic char Salvelinus alpinus is described. The parasites were widely disseminated throughout the vasculature and in most organs. Aggregates of the parasites were seen within well-defined structures regarded as host cells in capillaries and sinusoids of the liver, spleen and head kidney. Intracellular infection with Spironucleus spp. has never previously been reported. The prevalence of infection and mortality in the affected farm was low. In contrast to systemic spironucleosis in farmed Atlantic salmon, and despite huge numbers of flagellates in the vasculature, the tissues of the organs were remarkably unaffected. The relatively few gross and histopathological lesions may indicate that Arctic char are more tolerant to this parasite than Atlantic salmon.  相似文献   

3.
The occurrence of Hexamita salmonis Moore, 1922 and Loma salmonae Putz, Hoffman and Dunbar, 1965 was investigated at 10 sites on the R. Itchen (five for brown trout only, three for rainbow trout only, and two for both brown trout and rainbow trout) and at three of its nine fish farms (two for rainbow trout, one for brown trout). Hexamita salmonis was recorded in brown trout from three river sites and the farm, and in rainbow trout from both farms and four river sites. Prevalence of Hexamita salmonis in farmed rainbow trout was higher than in farmed brown trout and was consistent with the former species being more susceptible to infection. H. salmonis was at significantly higher prevalence in rainbow trout from farm no. 5 than farm no. 2 for three size classes of fish. In wild brown trout and feral rainbow trout, the highest prevalences of H. salmonis were recorded at sites in the vicinity of farm no. 2. This distribution was consistent with an area of naturally high infection levels, and with infected fish unintentionally released from farm no. 2 serving as a source of infection, the infection subsequently becoming established in the river fish. Loma salmonae was recorded in wild brown trout and in rainbow trout from both farms. This appears to be the first recording of this parasite from British salmonids and also the first recording of the parasite from brown trout. The distribution of the parasite (particularly the prevalence being higher at farm no. 2 than farm no. 5) was consistent with it being introduced into the R. Itchen via rainbow trout from farm no. 2 (and probably no. 3) much of whose stock derived from imported Californian 'Shasta' rainbow trout.  相似文献   

4.
Diplomonad flagellates infect a wide range of fish hosts in aquaculture and in the wild in North America, Asia and Europe. Intestinal diplomonad infection in juvenile farmed trout can be associated with morbidity and mortality, and in Germany, diplomonads in trout are commonly reported, and yet are poorly characterised. We therefore undertook a comprehensive study of diplomonads from German rainbow trout Oncorhynchus mykiss, using scanning and transmission electron microscopy, and sequencing of the small subunit (ssu) rRNA gene. The diplomonad was identified as Spironucleus salmonis, formerly reported from Germany as Hexamita salmonis. Our new surface morphology studies showed that the cell surface was unadorned and a caudal projection was present. Transmission electron microscopy facilitated new observations of functional morphology, including vacuoles discharging from the body surface, and multi-lobed apices of the nuclei. We suggest the lobes form, via hydrostatic pressure on the nucleoplasm, in response to the beat of the anterior-medial flagella. The lobes serve to intertwine the nuclei, providing stability in the region of the cell exposed to internal mechanical stress. The ssu rRNA gene sequence clearly distinguished S. salmonis from S. barkhanus, S. salmonicida, and S. vortens from fish, and can be used for identification purposes. A 1405 bp sequence of the ssu rRNA gene from S. salmonis was obtained and included in a phylogenetic analysis of a selection of closely related diplomonads, showing that S. salmonis was recovered as sister taxon to S. vortens.  相似文献   

5.
Spironucleus barkhanus isolated from the blood of Arctic charr Salvelinus alpinus from a marine fish farm were genetically compared with S. barkhanus isolated from the gall bladder of wild Arctic charr. The wild Arctic charr were caught in the lake used as the water source for the hatchery from which the farmed fish originated. Sequencing of the small subunit ribosomal RNA gene (SSU rDNA) from these 2 populations showed that the isolates obtained from farmed and wild Arctic charr were only 92.7 % similar. Based on the sequence differences between these isolates, it is concluded that the parasites isolated from the farmed fish have not been transmitted from wild Arctic charr in the hatchery's fresh water source. It is therefore most likely that the farmed fish were infected by S. barkhanus after they were transferred to seawater. S. barkhanus isolated from diseased farmed Arctic charr were 99.7% similar to the isolates obtained from diseased farmed Chinook (Canada) and Atlantic salmon (Norway). The high degree of sequence similarity between S. barkhanus from farmed Arctic charr, Chinook and Atlantic salmon indicates that systemic spironucleosis may be caused by specific strains/variants of this parasite. The genetic differences between the isolates of farmed and wild fish are of such magnitude that their conspecificity should be questioned.  相似文献   

6.
The host specificity and distribution of Eubothrium crassum (Bloch, 1779) and Eubothrium salvelini (Schrank, 1790), morphologically fairly similar pseudophyllidean tapeworms parasitizing salmonid fish, were critically assessed on the basis of morphological and genetic evaluation of extensive material collected from different definitive hosts and geographical regions in Europe. Eubothrium crassum occurs in fish of the genera Salmo, i.e. salmon (S. salar - both freshwater and marine), sea trout (S. trutta trutta), brown trout (S. trutta fario), and lake trout (S. trutta lacustris), and also in Danubian salmon (Hucho hucho) and vendace (Coregonus albula). Eubothrium salvelini parasitizes Arctic char (Salvelinus alpinus) and brook trout (Salvelinus fontinalis) in Europe, and also whitefish (Coregonus wartmanni). Rainbow trout (Oncorhynchus mykiss), which is not a native European fish species, was found to be a suitable definitive host for both Eubothrium species, which may occur simultaneously in the same fish. Previous records of E. crassum in Arctic char and brook trout, and those of E. salvelini in fish of the genus Salmo were most probably misidentifications. Most studies of Eubothrium have involved salmonids from the northern part of Europe, with few records from southern and south-eastern Europe. This study also confirmed the reliability of the morphology of the apical disc for the discrimination of E. crassum and E. salvelini.  相似文献   

7.
Studies on genetic changes in farmed fish populations are reviewed, and the potential interactions between wild and farm escapee, and between wild and stocked, fish populations are discussed. Examples of the application of genetic markers in studies concerning survival and reproduction of stocked fish, and genetic and ecological interactions between stocks, are given for brook trout, Salvelinus fontinalis , brown trout, Salmo trutta , rainbow trout, Salmo gairdneri , cod, Gadus morhua , Guadalupe bass, Micropterus treculi , walleye, Stizostedion vitreum vitreum and chum salmon, Oncorhynchus keta . The various studies produced different results. Evidence for successful reproduction and genetic interactions between released and wild stocks have been found in a few cases. Stocked genetic material sometimes had a lower reproductive success than wild material. In one case the transplanted genetic material failed to acclimatize, and was apparently lost from the genepool in two generations. Investigations on the genetic and ecological interactions between wild and farmed populations are of great importance to the preservation of wild populations and their genetic resources.  相似文献   

8.
Sea trout are the sea-going migratory form of the freshwater brown trout (Salmo trutta L.) and since 1989 there have been marked declines in their stocks on the west coasts both of Scotland and Ireland. Various factors have been attributed as possible causal agents in these stock declines, including fresh water acidification, overfishing, climatic fluctuations, habitat degradation and sea lice parasitic burdens. The putative impact of infestations of sea trout by the ectoparasitic copepod sea louse, Lepeophtheirus salmonis (Krøyer), has featured prominently in the controversy, especially with regard to the role of inshore commercial salmon farms as a possible source of infestation of wild salmonids by sea lice. This study focused on the population genetics of L. salmonis around the coasts of Scotland: We sampled fish from wild and cultured stocks and included salmon (Salmo salar L.), rainbow trout (Oncorhynchus mykiss Walbaum) and sea trout as host species. Analyses of allozyme variation of sea lice were confined to data for two polymorphic loci (Fum, Got-2) and conformed to our initial expectation — that the inclusion of a planktonic larval phase in the life cycle of the copepod, in addition to the high mobility of the host fish, would enhance gene flow and preclude genetic differentiation of L. salmonis populations as a result of random drift alone. DNA polymorphism was quantified by means of PCR and RAPD analysis. Six primers were screened for 16 samples (from wild and farmed salmon, wild sea trout and farmed rainbow trout) — including the east, north and west coasts of Scotland — and the data analyzed by AMOVA (Analysis of Molecular Variance). In contrast to the allozyme results, the RAPD analysis showed striking patterns of genetic differentiation around the coasts of Scotland. The overall pattern was one of genetic homogeneity of L. salmonis populations sampled from wild salmon and sea trout. All of the L. salmonis samples taken from farmed salmon and rainbow trout did, however, show highly significant levels of genetic differentiation, both between wild and farmed salmonids and among the various farms themselves. Evidence of high levels of small-scale spatial or temporal heterogeneity of RAPD marker band frequencies was shown for the one farm from which repeat samples (July and November, 1995) were analysed. Samples of sea lice taken from west coast wild sea trout subjected to RAPD analysis also revealed the occurrence of putative “farm markers” in some individual parasites, indicating that they had possibly originated from salmon farms.  相似文献   

9.
Changes in abiotic and biotic factors between seasons in subarctic lake systems are often profound, potentially affecting the community structure and population dynamics of parasites over the annual cycle. However, few winter studies exist and interactions between fish hosts and their parasites are typically confined to snapshot studies restricted to the summer season whereas host‐parasite dynamics during the ice‐covered period rarely have been explored. The present study addresses seasonal patterns in the infections of intestinal parasites and their association with the diet of sympatric living Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) in Lake Takvatn, a subarctic lake in northern Norway. In total, 354 Arctic charr and 203 brown trout were sampled from the littoral habitat between June 2017 and May 2018. Six trophically transmitted intestinal parasite taxa were identified and quantified, and their seasonal variations were contrasted with dietary information from both stomachs and intestines of the fish. The winter period proved to be an important transmission window for parasites, with increased prevalence and intensity of amphipod‐transmitted parasites in Arctic charr and parasites transmitted through fish prey in brown trout. In Arctic charr, seasonal patterns in parasite infections resulted mainly from temporal changes in diet toward amphipods, whereas host body size and the utilization of fish prey were the main drivers in brown trout. The overall dynamics in the community structure of parasites chiefly mirrored the seasonal dietary shifts of their fish hosts.  相似文献   

10.
Studies of infectious salmon anaemia virus (ISAV), an important pathogen of farmed salmon in Norway, Scotland, the Faeroe Islands, Ireland, Canada, the USA and Chile, suggest that natural reservoirs for this virus can be found on both sides of the North Atlantic. Based on existing information about ISAV it is believed to be maintained in wild populations of trout and salmon in Europe. It has further been suggested that ISAV is transmitted between wild hosts, mainly during their freshwater spawning phase in rivers, and that wild salmonids, mainly trout, are possible carriers of benign wild-type variants of ISAV. Change in virulence is probably a result of deletions of amino acid segments from the highly polymorphic region (HPR) of benign wild-type isolates after transmission to farmed salmon. Hence, it has been suggested that the frequency of new outbreaks of ISA in farmed salmon could partly reflect natural variation in the prevalence of ISAV in wild populations of salmonids. The aims of the present study were to screen for ISAV in wild salmonids during spawning in rivers and to determine the pathogenicity of resultant isolates from wild fish. Tissues from wild salmonids were screened by RT-PCR and real-time PCR. The prevalence of ISAV in wild trout Salmo trutta varied from 62 to 100% between tested rivers in 2001. The prevalence dropped in 2002, ranging from 13 to 36% in the same rivers and to only 6% in 2003. All ISAV were nonpathogenic when injected into disease-free Atlantic salmon, but were capable of propagation, as indicated by subsequent viral recovery. However, non-pathogenic ISAV has also been found in farmed salmon, where a prevalence as high as 60% has been registered, but with no mortalities occurring. Based on the results of the present and other studies, it must be concluded that vital information about the importance of wild and man-made reservoirs for the emergence of ISA in salmon farming is still lacking. This information can only be gained by further screening of possible reservoirs, combined with the development of a molecular tool for typing virulence and the geographical origin of the virus isolates.  相似文献   

11.
We report on the construction of a linkage map for brown trout (Salmo trutta) and its comparison with those of other tetraploid-derivative fish in the family Salmonidae, including Atlantic salmon (Salmo salar), rainbow trout (Oncorhynchus mykiss), and Arctic char (Salvelinus alpinus). Overall, we identified 37 linkage groups (2n = 80) from the analysis of 288 microsatellite polymorphisms, 13 allozyme markers, and phenotypic sex in four backcross families. Additionally, we used gene-centromere analysis to approximate the position of the centromere for 20 linkage groups and thus relate linkage arrangements to the physical morphology of chromosomes. Sex-specific maps derived from multiple parents were estimated to cover 346.4 and 912.5 cM of the male and female genomes, respectively. As previously observed in other salmonids, recombination rates showed large sex differences (average female-to-male ratio was 6.4), with male crossovers generally localized toward the distal end of linkage groups. Putative homeologous regions inherited from the salmonid tetraploid ancestor were identified for 10 pairs of linkage groups, including five chromosomes showing evidence of residual tetrasomy (pseudolinkage). Map alignments with orthologous regions in Atlantic salmon, rainbow trout, and Arctic char also revealed extensive conservation of syntenic blocks across species, which was generally consistent with chromosome divergence through Robertsonian translocations.  相似文献   

12.
Habitat utilization and the life history of browntrout Salmo trutta and Arctic charr Salvelinus alpinus were investigated in fivesympatric populations and five allopatric brown troutpopulations in Høylandet catchment, a atmosphaericlow deposition area in Mid Norway. There was asignificant inverse correlation in abundance ofepibenthic Arctic charr and brown trout in theselakes, indicating that the latter species is dominant.The largest numbers of sympatric brown trout andArctic charr were caught in epibenthic habitat. In twolakes, brown trout to some extent also occurredpelagically, while pelagic individuals of Arctic charrwere found in all five lakes. The main food items forboth epibenthic and pelagic brown trout wereterrestrial surface insects and chironomid pupae.Zooplankton was the primary food item for Arctic charrin both habitats. Although the age distribution wasvery different in the populations, neither speciesseem to suffer from recruitment failure. There was nosignificant difference in survival rates betweensympatric populations of brown trout and Arctic charr.We found a significant inverse correlation betweenepibenthic catches of brown trout and the mean weightof 4+ fish, the most abundant age group. However, ifusing weight data for three-year-old fish, no suchrelationship was found for Arctic charr. Brown troutand Arctic charr reached asymptotic lengths of197–364 mm and 259–321 mm, respectively. Both speciestypically reached sexual maturity at age 2–3, and nomaturation-induced mortality was evident. We concludethat fish populations in Høylandet lakes areregulated throughout their lifes by inter- andintraspecific competition.  相似文献   

13.
Size and frequency of occurrence of prey of brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.) were recorded in 13 Norwegian lakes during 1973–1990. Piscivores usually comprised less than 5% of the total population. Arctic charr were less piscivorous than brown trout. Trout and charr became piscivorous at 13 and 16 cm length, respectively. These size thresholds were similar to those of other facultative piscivorous freshwater fish species. When present, three-spined sticklebacks, Gasterosteus aculeatus (L.), were preferred by all length groups of piscivorous brown trout and Arctic charr. Length of prey increased with increasing predator length, and the mean body length of prey was about 33 and 25% of predator length for trout and charr, respectively. Yearlings of charr were not recorded as prey.  相似文献   

14.
Salmon lice Lepeophtheirus salmonis Kr?yer have caused disease problems in farmed Atlantic salmon Salmo salar L. since the mid-1970s in Norway. High infection intensities and premature return of wild sea trout Salmo trutta L. were first reported in 1992. Later emaciated wild Atlantic salmon smolts carrying large amounts of lice have been observed both in fjords and offshore. The Norwegian Animal Health Authority regulations to control the problem, which came into operation in 1998, included compulsory louse level monitoring in farms and maximum legal numbers of lice per fish. Here, we present a model of salmon louse egg production in Norway and show that the effect of the current public management strategy is critically dependent on the yearly increase in salmon production. This is because the infection pressure is the product of the number of fish in the system, and the number of lice per fish. Due to the much larger number of farmed than wild salmonids, it is highly likely that lice originating from farmed salmon infect wild stock. Estimated tolerance limits for wild salmonids vary widely, and the level of louse egg production in farms which would be needed to decimate wild populations is not known. Two possible thresholds for total lice egg production are investigated: (1) 1986 to 1987 level (i.e. before adverse effects on sea trout were recorded), and (2) a level corresponding to a doubling of the estimated natural infection pressure. The farm lice per fish limits that would have to be observed to keep louse production within the 2 thresholds are calculated for the period 1986 to 2005. A steady decrease in the permitted number of lice per fish may keep the total louse production stable, but the number of salmon required for verification of lice numbers will increase as the prevalence to be verified is decreased. At threshold (2), the model estimated that lice limits should have been 0.05 louse per fish in 1999. This would require 60 fish from each pen to be collected, anaesthetised and examined for a good estimate at a confidence level of 95%. Such sample numbers are likely to be opposed by farmers. The use of national delousing programs to solve the problem is discussed.  相似文献   

15.
The present study describes the use of molecular methods in studying infectious salmon anaemia virus (ISAV), an important pathogen of farmed salmon in Norway, Scotland, the Faeroe Islands, Canada, USA and Chile. The nucleotide sequences of the haemagglutinin gene (HA) from 70 ISAV isolates have been analysed for phylogenetic relationship and the average mutation rate of nucleotide substitutions calculated. The isolates constitute 2 major groups, 1 European and 1 North American group. The isolate from Chile is closely related to the North American isolates. The European isolates can be further divided into 3 separate groups reflecting geographical distribution, time of collection, and transmission connected with farming activity. Based on existing information about infectious salmon anaemia (ISA) and new information emerging from the present study, it is hypothesised that: (1) ISAV is maintained in wild populations of trout and salmon in Europe; (2) it is transmitted between wild hosts mainly during their freshwater spawning phase in rivers; (3) wild salmonids, mainly trout, possibly carry benign wild-type ISAV isolates; (4) a change (mutation) in virulence probably results from deletions of amino acid segments from the highly polymorphic region (HPR) of benign wild-type isolates; (5) ISA emerges in farmed Atlantic salmon when mutated isolates are transmitted from wild salmonids or, following mutation of benign isolates, in farmed salmon after transmission from wild salmonids; (6) farming activity is an important factor in transmission of ISAV between farming sites in addition to transmission of ISAV from wild salmonids to farmed salmon; (7) transmission of ISAV from farmed to wild salmonids probably occurs less frequently than transmission from wild to farmed fish due to lower frequency of susceptible wild individuals; (8) the frequency of new outbreaks of ISA in farmed salmon probably reflects natural variation in the prevalence of ISAV in wild populations of salmonids.  相似文献   

16.
Growing interest of Arctic char (Salvelinus alpinus) aquaculture in Europe, and the fact that it can easily hybridize with brook trout (Salvelinus fontinalis) resulting in fertile progeny, led us to investigate fish from the farmed stocks. Chromosomes of sampled Arctic char were examined using conventional and molecular cytogenetic (FISH) techniques in order to determine possible contamination of genomic elements of brook trout. Investigated fish possessed karyotypes composed of 80–82 chromosomes and up to three chromosome fragments. Using staining methods and FISH approach enabled identification of the brook trout chromosomes in the eight out of twenty‐two examined Arctic char. Specific location of AT‐, GC‐ positive and NOR sites observed on chromosomes as well as chromosome fragments in the karyotypes of several individuals points on past chromosomal rearrangements in fish from examined broodstock. Based on our results, it may be assumed that individuals with the brook trout genomic elements, although phenotypically identified as Arctic chars, were hybrids. Our results highlights that special care should be taken to protect gene pools of brook trout and Arctic char in farms where both species are cultured.  相似文献   

17.
We tested the importance of thermal adaptations and energy efficiency in relation to the geographical distribution of two competing freshwater salmonid fish species. Presence–absence data for Arctic char and brown trout were obtained from 1502 Norwegian lakes embracing both temperature and productivity gradients. The distributions were contrasted with laboratory‐derived temperature scaling models for food consumption, growth and energy efficiency. Thermal performances of the two species were almost identical. However, Arctic char exhibited double the growth efficiency (per unit of food) and appear to have out‐competed brown trout from cold, low‐productivity lakes, perhaps by scramble competition. Brown trout, for which previous reports have shown to be aggressive and dominant, have likely excluded the more energy‐efficient Arctic char from relatively warm, productive lakes, perhaps by contest competition. Competitive interaction changing in outcome with lake productivity, rather than thermal performance, is likely a major determinant of the range distribution of the two species. Our study highlights the need for more focus on choice of relevant ecophysiological traits in ecological climate impact studies and species distribution modelling.  相似文献   

18.
In Chilean Patagonia relatively pristine aquatic environments are being modified by the introduction of exotic salmonids, initially through their deliberate release for sport fishing since the early twentieth century, and more recently via the accidental escape from fish farms. There is therefore a need to reliably distinguish between naturally reproducing and fugitive salmonids associated with the Chilean salmonid farming industry, the second largest in the world. We tested the ability of stable isotope analysis (SIA) and analysis of scale growth profiles to discriminate between farmed and free-living salmonids sampled around the Island of Chiloé. Juvenile Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) from aquaculture facilities were significantly more enriched in δ15N and lipid-corrected δ13C than river-caught individuals. Scale growth slopes during the first year in freshwater were significantly higher in farmed than in wild-caught rainbow trout, indicating faster somatic growth under hatchery conditions. Stable isotopes analysis classified 94% of juvenile Atlantic salmon and rainbow trout to their correct farm or free-living groups. Our results, therefore, can help to elucidate the origin and spread of exotic invasive salmonids in Chile, and address one of the biggest threats to native freshwater fishes in Patagonia and other temperate zones of the Southern Hemisphere.  相似文献   

19.
The dietary habits and feeding rates of wild and stocked brown trout were compared for populations in a number of Irish lakes. Wild trout and stocked fish, which had been present in a fishery for 12 months or longer, tend to feed on the same dietary items at similar rates. Stocked fish in their immediate post-planting period (1–14 days) ate less than both the wild trout and established planted fish. In some instances recently stocked fish appear to have a preference for surface food items. They also consumed stones and detritic material. Data indicate that stocked fish adopted a natural diet in less than 5 months. Results are discussed in relation to angling crops of wild and stocked fish and the comparative success of autumn and spring plantings of salmonids.  相似文献   

20.
Movement of live animals is a key contributor to disease spread. Farmed Atlantic salmon Salmo salar, rainbow trout Onchorynchus mykiss and brown/sea trout Salmo trutta are initially raised in freshwater (FW) farms; all the salmon and some of the trout are subsequently moved to seawater (SW) farms. Frequently, fish are moved between farms during their FW stage and sometimes during their SW stage. Seasonality and differences in contact patterns across production phases have been shown to influence the course of an epidemic in livestock; however, these parameters have not been included in previous network models studying disease transmission in salmonids. In Scotland, farmers are required to register fish movements onto and off their farms; these records were used in the present study to investigate seasonality and heterogeneity of movements for each production phase separately for farmed salmon, rainbow trout and brown/sea trout. Salmon FW-FW and FW-SW movements showed a higher degree of heterogeneity in number of contacts and different seasonal patterns compared with SW-SW movements. FW-FW movements peaked from May to July and FW-SW movements peaked from March to April and from October to November. Salmon SW-SW movements occurred more consistently over the year and showed fewer connections and number of repeated connections between farms. Therefore, the salmon SW-SW network might be treated as homogeneous regarding the number of connections between farms and without seasonality. However, seasonality and production phase should be included in simulation models concerning FW-FW and FW-SW movements specifically. The number of rainbow trout FW-FW and brown/sea trout FW-FW movements were different from random. However, movements from other production phases were too low to discern a seasonal pattern or differences in contact pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号