首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Melon seedlings (Cucumis melo L. cv.Galia) were grown hydroponically to study the effect of salinity (80 mmol/LNaCl) on phosphate (Pi) uptake and translocation at two levels of Pi (25 μmol/L and 1 mmol/L). Net uptake rates of Pi were determined by depletionof the medium and by plant content. Salinity decreased Pi uptake at low Pi (high affinity uptake mechanism), 25 μmol/L, although no specific competitive inhibition of Pi uptake by Cl was observed. When plants were grown with high Pi (1 mmol/L), the uptake of Pi through the low affinity system was increased by 80 mmol/L NaCl. Salinity also reduced the phosphorus flux, as Pi, through the xylem. It is hypothesised that high levels of NaCl decrease the mobility of Pi stored in vacuoles, and as a result, inhibit export from this storage compartment to other parts of the plant.  相似文献   

2.
Phosphorus (P) acquisition, cycling and use efficiency has been investigated intensively with herbaceous plants. It is known that local as well as systemic signalling contributes to the control of P acquisition. Woody plants are long‐lived organisms that adapt their life cycle to the changing environment during their annual growth cycle. Little is known about P acquisition and P cycling in perennial plants, especially regarding storage and mobilisation, its control by systemic and environmental factors, and its interaction with the largely closed ecosystem‐level P cycle. The present report presents a view on open questions on plant internal P cycling in woody plants.  相似文献   

3.
Root cells take up K+ from the soil solution, and a fraction of the absorbed K+ is translocated to the shoot after being loaded into xylem vessels. K+ uptake and translocation are spatially separated processes. K+ uptake occurs in the cortex and epidermis whereas K+ translocation starts at the stele. Both uptake and translocation processes are expected to be linked, but the connection between them is not well characterized. Here, we studied K+ uptake and translocation using Rb+ as a tracer in wild‐type Arabidopsis thaliana and in T‐DNA insertion mutants in the K+ uptake or translocation systems. The relative amount of translocated Rb+ to the shoot was positively correlated with net Rb+ uptake rates, and the akt1 athak5 T‐DNA mutant plants were more efficient in their allocation of Rb+ to shoots. Moreover, a mutation of SKOR and a reduced plant transpiration prevented the full upregulation of AtHAK5 gene expression and Rb+ uptake in K+‐starved plants. Lastly, Rb+ was found to be retrieved from root xylem vessels, with AKT1 playing a significant role in K+‐sufficient plants. Overall, our results suggest that K+ uptake and translocation are tightly coordinated via signals that regulate the expression of K+ transport systems.  相似文献   

4.
水稻铁吸收、转运及调控的分子机制研究进展   总被引:1,自引:0,他引:1  
郭明欣  郑玲  赵旭升 《遗传》2017,39(5):388-395
铁是水稻生长和发育所必需的营养元素之一。研究表明,水稻既可以以螯合物的形式从土壤中吸收Fe3+、Fe2+,又可以直接转运根际土壤中游离的Fe2+。科研人员已经鉴定了很多参与铁离子吸收和转运的重要分子元件,包括转运蛋白、酶、螯合物等,同时也挖掘了部分调控这些分子元件表达的上游基因。碱性土壤的高pH值影响水稻对铁离子的吸收和利用,因此,科研人员通过改良碱性土壤中铁离子的利用效率来改良水稻的耐碱性,并取得了一定的成效。本文主要对上述内容进行了综述,并对该领域未来的研究方向进行了展望。  相似文献   

5.
6.
Nitrate uptake and reduction in higher and lower plants   总被引:25,自引:1,他引:24  
The nitrogen compounds nitrate and ammonium are the minerals that plants need in large quantities and which limit their growth in temperate zones. The nitrate assimilation pathway starts with nitrate uptake followed by nitrate reduction resulting in ammonium which is fixed into the amino acids glutamine and glutamate in most plants. This review concentrates on nitrate uptake and nitrate reduction with respect to higher and lower plants. The physiology and the progress in molecular approaches of both processes are considered. For nitrate uptake the well‐established uptake systems are discussed and special attention is drawn to nitrate sensing and the nitrate carrier. Knowledge, particularly on nitrate sensing is rare, but it seems to be the first step in a signal transduction chain triggered by nitrate. Therefore further work should consider this topic more frequently. For nitrate reductase the focus is on the post‐translational modification as a regulatory tool for nitrate assimilation, on the intersections of carbon and nitrogen metabolism and on the molecular approaches. A few remarks on how environmental conditions affect nitrate assimilation are also included. Further progress is needed to understand the transduction of positive and negative signals from the environment affecting the expression of genes coding for the nitrate assimilating pathway.  相似文献   

7.
The root system of wheat seedlings ( Triticum aestivum L. SUN 9E) was pruned to two seminal roots. One of the roots was supplied with different levels of NO3, the other was deprived of N. Root respiration and the increment of C and N in roots and shoots were measured to determine the C/N ratio of the phloem sap feeding the N-deprived roots. Thus it was possible to determine translocation of N from the shoots to the roots. It was calculated that the C/N ratio of phloem sap feeding roots of plants growing at optimal and suboptimal N supply was ca 54. A supra-optimal N supply reduced, whilst shading increased, the C/N ratio of phloem sap. At optimal N supply 11% of all N transported to the shoots was retranslocated to the roots. Both a supra-optimal and a limiting N supply increased translocation of N back to the roots to 18% of the N translocated to the shoot, whilst shading of the plants decreased the proportion cycled to 7%. At the optimal N supply, 40% more N was translocated to the roots from the shoot than was incorporated by them. At a lower supply of N, 80% more N was imported from the shoots than was incorporated by these roots. It is suggested that the distribution of N between roots and shoots predominantly occurs in the shoots. The specific mass transfer rate in seminal roots was determined. The highest value was found for roots grown with an optimal N supply: 1.1 mg carbohydrate s−1 cm−2 (sieve tube) which is well within the range observed for other plant organs. Roots supplied with NO3 produced more and longer laterals than N-deprived roots. It is suggested that this is due to the effect of NO3 on import of carbon and other components transported in the mass flow with carbon.  相似文献   

8.
Selenite can be a dominant form of selenium (Se) in aerobic soils; however, unlike selenate, the mechanism of selenite uptake by plants remains unclear. Uptake, translocation and Se speciation in wheat (Triticum aestivum) supplied with selenate or selenite, or both, were investigated in hydroponic experiments. The kinetics of selenite influx was determined in short-term (30 min) experiments. Selenium speciation in the water-extractable fraction of roots and shoots was determined by HPLC-ICPMS. Plants absorbed similar amounts of Se within 1 d when supplied with selenite or selenate. Selenate and selenite uptake were enhanced in sulphur-starved and phosphorus-starved plants, respectively. Phosphate markedly increased K(m) of the selenite influx. Selenate and selenite uptake were both metabolically dependent. Selenite was rapidly converted to organic forms in roots, with limited translocation to shoots. Selenomethionine, selenomethionine Se-oxide, Se-methyl-selenocysteine and several other unidentified Se species were detected in the root extracts and xylem sap from selenite-treated plants. Selenate was highly mobile in xylem transport, but little was assimilated to organic forms in 1 d. The presence of selenite decreased selenate uptake and xylem transport. Selenite uptake is an active process likely mediated, at least partly, by phosphate transporters. Selenite and selenate differ greatly in the ease of assimilation and xylem transport.  相似文献   

9.
Brassica rapa L. plants were grown hydroponically for 5 or 6 weeks at 20°C and then half batches of plants were transferred to tanks in which the root temperature was lowered decrementally over 1 h to 7°C. Changes in nitrate uptake rate (NUR) and nitrate transfer from roots were studied in relation to transpiration and root pressure xylem exudation flow rates over a 48- or 72-h period. The response of plants following the root temperature decrease was biphasic. During phase 1, NUR and water and solute flow rates through the root decreased sharply. Coping mechanisms came into operation during phase 2, and tended to offset the effects of low temperature. The 3-h cold-treated roots exhibited a very low NUR but 48-h cold-treated roots partly recovered their ability to absorb nitrate. Transpiration rate decreased more slowly (during 24 h) than both root xylem exudation and parameters of root conductivity (during 6 h). Beyond these respective times, transpiration rate was balanced while root xylem exudation clearly increased, but without returning to the level of control plants. Nitrate transfer to the root xylem was strongly and rapidly affected by low root temperature, but the subsequent readjustment was such that no or little difference compared with the control was apparent after 48 h. Water and solute flows were strongly decreased when nitrate was replaced by chloride in the culture solution during exudation sampling. The major role of nitrate in root hydraulic conductivity and root xylem exudation is discussed.  相似文献   

10.
Abstract: The current view of sulfur nutrition is based on the source‐to‐sink relationship of carbohydrates. SO42‐ reduction is thought to occur mainly in leaves. Surplus reduced sulfur must be transported out of the leaves, loaded into the phloem and transported to other tissues, in particular tissues assumed to be sink organs. However, it has not been proved that tissues which are sinks for carbohydrates are also sink organs for reduced sulfur. It is evident that sinks must communicate with sources, and vice versa, to signal demand and to transport the surplus of reduced sulfur that is produced. The demand‐driven control model of sulfur nutrition proposes that the tripeptide glutathione is the signal which regulates S nutrition of the whole plant at the level of SO42‐ uptake. Acclimatization to environmental changes has been shown to result in several changes in S nutrition of deciduous trees: (i) Drought stress diminished SO42‐ transport into the xylem, although the GSH content in lateral roots remained unaffected, possibly due to an overall reduction in water status. (ii) Flooding decreased APS reductase activity in the anoxic roots. This may be due to enhanced GSH transport to the roots, but it is more likely to be the result of a change in metabolism leading to diminished energy gain in the roots. (iii) Mycorrhization enhanced the GSH content in the phloem, while SO42‐ uptake was not affected. This clearly goes against the demand‐driven control model. (iv) Under both short‐ and long‐term exposure to elevated pCO2, the APS reductase activity in leaves and lateral roots did not correlate with the GSH contents therein. Therefore, it must be assumed that, under these conditions, regulation of S nutrition goes beyond the demand‐driven control model, and occurs within the network of other nutrient metabolism. (v) Atmospheric S in the form of H2S enhanced the reduced sulfur content of the phloem and lateral roots. Under these conditions, the SO42‐ loaded into the xylem decreased. It would appear that the demand‐driven control model of sulfur nutrition is not always valid in the case of deciduous trees.  相似文献   

11.
The translocation of manganese (Mn), nickel (Ni), cobalt (Co), zinc (Zn) and cadmium (Cd) in white lupin (Lupinus albus cv. Amiga) was compared considering root-to-shoot transport, and redistribution in the root system and in the shoot, as well as the content at different stages of cluster roots and in other roots. To investigate the redistribution of these heavy metals, lupin plants were labelled via the root for 24 h with radionuclides and subsequently grown hydroponically for several weeks. 54Mn, 63Ni and 65Zn were transported via the xylem to the shoot. 63Ni and 65Zn were redistributed afterwards via the phloem from older to younger leaves, while 54Mn remained in the oldest leaves. A strong retention in the root was observed for 57Co and 109Cd. Cluster roots contained higher concentrations of all heavy metals than noncluster roots. Concentrations were generally higher at the beginning of cluster root development (juvenile and immature stages). Mature cluster roots also contained high levels of 54Mn and 57Co, but only reduced concentrations of 63Ni, 65Zn and 109Cd.  相似文献   

12.
Cytokinins, a group of mobile phytohormones, play an important role in plant growth and development, and their activity is finely controlled by environmental factors in the control of morphogenic and metabolic adaptations. Inorganic nitrogen sources, such as nitrate, are a major factor regulating gene expression of adenosine phosphate-isopentenyltransferase (IPT), a key enzyme of cytokinin biosynthesis. Modulation of IPT and macronutrient transporter gene expression in response to nitrate, sulphate and phosphate, and cytokinin-dependent repression of the transporter genes suggest that cytokinins play a critical role in balancing acquisition and distribution of macronutrients. Biased distribution of trans-zeatin (tZ)-type cytokinins in xylem and N(6)-(Delta(2)-isopentenyl)adenine (iP)-type cytokinins in phloem saps suggest that, in addition to acting as local signals, cytokinins communicate acropetal and systemic long-distance signals, and that structural side chain variations mediate different biological messages. The compartmentalization of tZ- and iP-type cytokinins implies the involvement of a selective transport system. Recent studies have raised the possibility of subsets of the purine permease family as a transporter of cytokinin nucleobases and equilibrative nucleoside transporters (ENT) for cytokinin nucleosides. These biochemical and transgenic data suggest that AtENT6, an Arabidopsis ENT, could also participate in cytokinin nucleoside transport with a preference for iP riboside in vascular tissue.  相似文献   

13.
The fluxes of carbohydrates across the plasma membranes of higher-plant cells are catalysed mainly by monosaccharide and disaccharide-H+ symporters. cDNAs encoding these different transporters have been cloned recently and the functions and properties of the encoded proteins have been studied extensively in heterologous expression systems. Several of the proteins have been identified biochemically in these expression systems and their location in plants has been shown immunohistochemically or with transgenic plants which were transformed with reporter genes, expressed under the control of the promoters of individual transporter genes. In this paper we summarize the current knowledge on the molecular biology and biochemistry of higher-plant sugar transport proteins.  相似文献   

14.
15.
Transport of hormones in the phloem of higher plants   总被引:9,自引:0,他引:9  
Evidence for the translocation of auxins, gibberellins, cytokinins and abscisic acid and some of its metabolites in the phloem is reviewed. Problems associated with collection of sieve tube exudates and analysis of samples are discussed as are some of the possible functions of the translocated hormones.  相似文献   

16.
This study aimed to assess the effects of four contrasting proteinogenic amino acids on copper (Cu) uptake and translocation in maize (Zea mays L.) seedlings grown in a modified Hoagland solution. Glycine, aspartic acid and lysine at three concentrations (10, 25 and 100 μM) did not have any significant effect on Cu uptake and translocation in maize seedlings over a two-day experimental period. However, cysteine (a reductive amino acid) at the three concentrations increased very significantly (P < 0.01) Cu accumulations in the root symplast and the shoots of maize seedlings in comparison to the control. Cu uptake in the whole plant and Cu translocation from root to shoot were also increased in the cysteine treatments. In the 25 μM cysteine treatment, where cysteine was in moderate excess, the Cu uptake in the whole plant and Cu translocation from root to shoot were significantly (P < 0.01) higher than those of the 10 or 100 μM cysteine treatments, where the concentration of cysteine was equivalent to that of Cu(II) or in great excess according to the stoichiometry of the redox reaction of cysteine with Cu(II). It is hypothesized that the cysteine-induced oxidation state alteration from Cu(II) to Cu(I) could be responsible for the increased Cu uptake and Cu translocation, on the ground that Cu(I), as free cuprous ion or cysteine cuprous complex, may be more available to maize roots than Cu(II).  相似文献   

17.
We investigated the degree to which developing fruit compete directly with leaves for mineral nutrients, e.g. phosphate coming up from the roots. When soybean ( Glycine max (L.) Merrill cv. Anoka) explants cut at mid-late podfill were given a 15-min pulse of 32Pi via the cut stem and then transferred to distilled water, 75% of the 32P accumulated in the leaves and 21% in stem and petiole during the first hour. The amount of 32P entering the seeds was low (1%) initially, but thereafter increased to 30% in 48 h. An accumulation of 32P in the seed coats preceded its entry into the embryos. Disruption (with hot steam) of the phloem between the leaf and the pods after pulse labelling indicated that more than 80% of the 32Pi pulse moved to the leaf before redistribution to the pods. Increasing "sink" size by adjusting the pod load from 1 to 2–3 did not increase the 32P accumulated by the pods proportionally. Conversely, excision of the seeds after pulse labelling did not prevent translocation of 32P out of the leaves. These results suggest that the rate of transport of phosphate to the pods at mid-late podfill is controlled primarily by factors in the leaves. The results are consistent with the observation that the relative size of the sink (pod load) does not regulate leaf senescence.  相似文献   

18.
Pate  John S.  Jeschke  W. Dieter 《Plant and Soil》1993,155(1):273-276
Xylem sap of sinker (tap) root, cluster feeding roots, lateral roots and from an age series of main stem extensions of 6-year trees of Banksia prionotes was collected and analyzed for principal organic and inorganic solutes. During the phase of root uptake activity in winter and spring, cluster roots were principal xylem donors of malate, phosphate, chloride, sodium, potassium and amino acid N whereas other parts of the root served as major sources to the shoot of other cations, nitrate and sulphate. Sinker root xylem sap was at all times less concentrated in solutes than that of lateral roots into which cluster roots were voiding exported solutes. Phosphate was abstracted from xylem by stem tissue during winter and it and a range of other solutes released back to xylem immediately prior to extension growth of the shoot in summer. Phloem sap collected from mid regions of stems was unusually low in potassium and phosphate relative to chloride and sulphate in comparison with phloem sap of other species, and its low potassium: sodium ratio relative to xylem indicated poor discrimination against sodium during phloem loading. Data are discussed in relation to the asynchronous seasonal cycles of nutrient uptake and shoot growth.  相似文献   

19.
Sodium partitioning within the shoot of soybean   总被引:14,自引:0,他引:14  
Uptake and partitioning of Na+ and Cl in plants of soybean ( Glycine max L. Merr. cv. Hodgson) exposed to moderate NaCl concentrations were studied over an 8-day period. Plants showed marked retention of Na+ in the stems and low transport to laminae of young leaves. The xylem sap ascending the main axis was progressively depleted in Na+. The oldest leaf greatly contributed to Na+ depletion of the sap flowing to younger leaves. These results in combination with estimates of phloem recirculation indicated that Na+ accumulation in the young leaf was prevented both by depletion of Na+ from the xylem stream, and by a high recirculation of Na+ via the phloem. However, this protection of young leaves was effective only for very mild salinity treatment.  相似文献   

20.
Boron mobility in plants   总被引:2,自引:0,他引:2  
Boron (B) is a micronutrient essential for the normal growth of monocots, dicots. conifers, ferns and several diatom species. Boron deficiency causes many anatomical, physiological and biochemical changes, making it difficult to identify a primary role for it: however, evidence does indicate that B is involved at the membrane level. Whatever the role(s). it likely involves the complexation of B with compounds containing cis -hydroxyl groups. Boron deficiency in crops is more widespread than deficiency of any other micronutrient. Nutritional disorders in vegetables include brown heart in rutabaga, turnip and radish roots, and hollow stem in cauliflower and broccoli. The occurrence of these disorders even when B is in ample supply suggests that they are physiological in nature and related to the mobility of B in the plant. The distribution of B is related to the loss of water from shoot organs, suggesting that it is primarily xylem-mobile with limited retranslocation in phloem. However, research has shown that B is present in the phloem, albeit at low concentration, and that it is generally retranslocated in the phloem to satisfy the demands of sink organs that do not readily transpire. Further progress into the mechanism(s) of B retranslocation will be facilitated by insights into the role and metabolism of B in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号