首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu JW  Cocina AE  Chai J  Hay BA  Shi Y 《Molecular cell》2001,8(1):95-104
The inhibitor of apoptosis protein DIAP1 suppresses apoptosis in Drosophila, with the second BIR domain (BIR2) playing an important role. Three proteins, Hid, Grim, and Reaper, promote apoptosis, in part by binding to DIAP1 through their conserved N-terminal sequences. The crystal structures of DIAP1-BIR2 by itself and in complex with the N-terminal peptides from Hid and Grim reveal that these peptides bind a surface groove on DIAP1, with the first four amino acids mimicking the binding of the Smac tetrapeptide to XIAP. The next 3 residues also contribute to binding through hydrophobic interactions. Interestingly, peptide binding induces the formation of an additional alpha helix in DIAP1. Our study reveals the structural conservation and diversity necessary for the binding of IAPs by the Drosophila Hid/Grim/Reaper and the mammalian Smac proteins.  相似文献   

2.
Luque LE  Grape KP  Junker M 《Biochemistry》2002,41(46):13663-13671
The inhibitor of apoptosis (IAP) proteins are found in all animals and regulate apoptosis (programmed cell death) by binding and inhibiting caspase proteases. This inhibition is overcome by several apoptosis stimulators, including Drosophila Hid and mammalian Smac/DIABLO, which bind to 65-residue baculovirus IAP repeat (BIR) domains found in one to three copies in all IAPs. Virtually all BIRs contain three Cys and a His that bind zinc, a Gly in a tight turn, and an Arg. The functional and structural role of the Arg was investigated in isolated BIR domains from the baculovirus Orgyia pseudotsugata Op-IAP and the Drosophila DIAP1 proteins. Mutation of the Arg to either Ala or Lys abolished Hid and Smac binding to BIRs, despite the Hid/Smac binding site being located on the opposite side of the BIR domain from the Arg. The mutant BIR domains also exhibited weakened zinc binding, increased sensitivity to limited proteolysis, and altered circular dichroism spectra indicative of perturbed domain folding. Examination of known BIR structures indicates that the Arg side chain makes simultaneous bridging hydrogen bonds and a cation-pi interaction for which the Arg guanidino group is uniquely well suited. These interactions are likely critical for stabilizing the tertiary fold of BIR domains in all IAPs, explaining the conservation of this residue.  相似文献   

3.
The inhibitor of apoptosis (IAP) proteins bind and inhibit caspases via their baculovirus IAP repeat domains. Some of these IAPs are capable of ubiquitinating themselves and their interacting proteins through the ubiquitin-protein isopeptide ligase activity of their RING domain. The Drosophila IAP antagonists Reaper, Hid, and Grim can accelerate the degradation of Drosophila IAP1 and some mammalian IAPs by promoting their ubiquitin-protein isopeptide ligase activity. Here we show that Smac/DIABLO, a mammalian functional homolog of Reaper/Hid/Grim, selectively causes the rapid degradation of c-IAP1 and c-IAP2 but not XIAP and Livin in HeLa cells, although it efficiently promotes the auto-ubiquitination of them all. Smac binding to c-IAP via its N-terminal IAP-binding motif is the prerequisite for this effect, which is further supported by the findings that Smac N-terminal peptide is sufficient to enhance c-IAP1 ubiquitination, and Smac no longer promotes the ubiquitination of mutant c-IAP1 lacking all three baculovirus IAP repeat domains. In addition, different IAPs require the same ubiquitin-conjugating enzymes UbcH5a and UbcH6 for their ubiquitination. Taken together, Smac may serve as a key molecule in vivo to selectively reduce the protein level of c-IAPs through the ubiquitin/proteasome pathway.  相似文献   

4.
5.
Inhibitor of apoptosis (IAP) proteins suppress apoptosis and inhibit caspases. Several IAPs also function as ubiquitin-protein ligases. Regulators of IAP auto-ubiquitination, and thus IAP levels, have yet to be identified. Here we show that Head involution defective (Hid), Reaper (Rpr) and Grim downregulate Drosophila melanogaster IAP1 (DIAP) protein levels. Hid stimulates DIAP1 polyubiquitination and degradation. In contrast to Hid, Rpr and Grim can downregulate DIAP1 through mechanisms that do not require DIAP1 function as a ubiquitin-protein ligase. Observations with Grim suggest that one mechanism by which these proteins produce a relative decrease in DIAP1 levels is to promote a general suppression of protein translation. These observations define two mechanisms through which DIAP1 ubiquitination controls cell death: first, increased ubiquitination promotes degradation directly; second, a decrease in global protein synthesis results in a differential loss of short-lived proteins such as DIAP1. Because loss of DIAP1 is sufficient to promote caspase activation, these mechanisms should promote apoptosis.  相似文献   

6.
Inhibitors of apoptosis proteins (IAPs) interact with caspases and inhibit their protease activity, whereas the IAP-inhibitory proteins Smac/DIABLO in mammals and Reaper, Hid, and Grim in flies relieve IAP-mediated inhibition to induce cell death. Here we describe the functional characterization of the novel Drosophila cell death protein Sickle (Skl), which binds to IAPs and neutralizes their apoptotic inhibitory activity. Skl exhibits no sequence homology to Reaper, Hid, Grim, or Smac/DIABLO, except within the 4 residue N-terminal IAP binding motif. Skl interacts with Drosophila and mammalian IAPs and can promote caspase activation in the presence of IAPs. Consistent with these findings, expression of Skl in Drosophila and mammalian cell lines or in Drosophila embryos induces apoptosis. Skl can also synergize with Grim to induce cell death in the Drosophila eye imaginal disc. Based on biochemical and structural data, the N terminus of Skl, like that of the mammalian Smac/DIABLO, is absolutely required for its apoptotic and caspase-promoting activities and its ability to interact with IAPs. These findings point to conservation in the structure and function of the IAP-inhibitory proteins across species and suggest the existence of other family members.  相似文献   

7.
Mammalian mitochondrial IAP binding proteins   总被引:24,自引:0,他引:24  
Four mitochondrial proteins have been identified that immunoprecipitate with the mammalian inhibitor of apoptosis (IAP) protein XIAP. Each of them interacts via a processed amino terminus that resembles those of the insect pro-apoptotic IAP binding proteins Grim, HID, Reaper, and Sickle. Two, Diablo/Smac and HrtA2/Omi, have been extensively characterized. Both Diablo and HtrA2 can bind to IAPs and promote apoptosis when over-expressed in transfected cells, but unlike the insect IAP antagonists, to date there is scant evidence that they are important regulators of apoptosis in more physiological circumstances.  相似文献   

8.
Direct IAP binding protein with low pI/second mitochondrial activator of caspases, HtrA2/Omi and GstPT/eRF3 are mammalian proteins that bind via N-terminal inhibitor of apoptosis protein (IAP) binding motifs (IBMs) to the baculoviral IAP repeat (BIR) domains of IAPs. These interactions can prevent IAPs from inhibiting caspases, or displace active caspases, thereby promoting cell death. We have identified several additional potential IAP antagonists, including glutamate dehydrogenase (GdH), Nipsnap 3 and 4, CLPX, leucine-rich pentatricopeptide repeat motif-containing protein and 3-hydroxyisobutyrate dehydrogenase. All are mitochondrial proteins from which N-terminal import sequences are removed generating N-terminal IBMs. Whereas most of these proteins have alanine at the N-terminal position, as observed for previously described antagonists, GdH has an N-terminal serine residue that is essential for X-linked IAP (XIAP) interaction. These newly described IAP binding proteins interact with XIAP mainly via BIR2, with binding eliminated or significantly reduced by a single point mutation (D214S) within this domain. Through this interaction, many are able to antagonise XIAP inhibition of caspase 3 in vitro.  相似文献   

9.
Bruce is a large protein (530 kDa) that contains an N-terminal baculovirus IAP repeat (BIR) and a C-terminal ubiquitin conjugation domain (E2). BRUCE upregulation occurs in some cancers and contributes to the resistance of these cells to DNA-damaging chemotherapeutic drugs. However, it is still unknown whether Bruce inhibits apoptosis directly or instead plays some other more indirect role in mediating chemoresistance, perhaps by promoting drug export, decreasing the efficacy of DNA damage-dependent cell death signaling, or by promoting DNA repair. Here, we demonstrate, using gain-of-function and deletion alleles, that Drosophila Bruce (dBruce) can potently inhibit cell death induced by the essential Drosophila cell death activators Reaper (Rpr) and Grim but not Head involution defective (Hid). The dBruce BIR domain is not sufficient for this activity, and the E2 domain is likely required. dBruce does not promote Rpr or Grim degradation directly, but its antiapoptotic actions do require that their N termini, required for interaction with DIAP1 BIR2, be intact. dBruce does not block the activity of the apical cell death caspase Dronc or the proapoptotic Bcl-2 family member Debcl/Drob-1/dBorg-1/Dbok. Together, these results argue that dBruce can regulate cell death at a novel point.  相似文献   

10.
The mitochondrial ARTS protein promotes apoptosis through targeting XIAP   总被引:9,自引:0,他引:9  
ARTS is an unusual septin-like mitochondrial protein that was originally shown to mediate TGF-beta-induced apoptosis. Recently, we found that ARTS is also important for cell killing by other pro-apoptotic factors, such as arabinoside, etoposide, staurosporine and Fas. In Drosophila, the IAP antagonists Reaper, Hid and Grim are essential for the induction of virtually all apoptotic cell death. We found that mutations in peanut, which encodes a Drosophila homologue of ARTS, can dominantly suppress cell killing by Reaper, Hid and Grim, indicating that peanut acts downstream or in parallel to these. In mammalian cells, ARTS is released from mitochondria upon pro-apoptotic stimuli and then binds to XIAP. Binding of ARTS to XIAP is direct, as recombinant ARTS and XIAP proteins can bind to each other in vitro. ARTS binding to XIAP is specific and related to its pro-apoptotic function, as mutant forms of ARTS (or related septins) that fail to bind XIAP failed to induce apoptosis. ARTS leads to decreased XIAP protein levels and caspase activation. Our data suggest that ARTS induces apoptosis by antagonizing IAPs.  相似文献   

11.
Yoo SJ 《Molecules and cells》2005,20(3):446-451
Diap1 is an essential Drosophila cell death regulator that binds to caspases and inhibits their activity. Reaper, Grim and Hid each antagonize Diap1 by binding to its BIR domain, activating the caspases and eventually causing cell death. Reaper and Hid induce cell death in a Ring-dependent manner by stimulating Diap1 auto-ubiquitination and degradation. It was not clear that how Grim causes the ubiquitination and degradation of Diap1 in Grim-dependent cell death. We found that Grim stimulates poly-ubiquitination of Diap1 in the presence of UbcD1 and that it binds to UbcD1 in a GST pull-down assay, so presumably promoting Diap1 degradation. The possibility that dBruce is another E2 interacting with Diap1 was examined. The UBC domain of dBruce slightly stimulated poly-ubiquitination of Diap1 in Drosophila extracts but not in the reconstitution assay. However Grim did not stimulate Diap1 poly-ubiquitination in the presence of the UBC domain of dBruce. Taken together, these results suggest that Grim stimulates the poly-ubiquitination and presumably degradation of Diap1 in a novel way by binding to UbcD1 but not to the UBC domain of dBruce as an E2.  相似文献   

12.
13.
Grim is a Drosophila inhibitor of apoptosis (IAP) antagonist that directly interferes with inhibition of caspases by IAPs. Expression of Grim, or removal of DIAP1, is sufficient to activate apoptosis in fly cells. Transient expression of Grim in mammalian cells induces apoptosis, arguing for the conservation of apoptotic pathways, but cytoplasmic expression of the mammalian IAP antagonist Diablo/smac does not. To understand why, we compared Grim and Diablo. Although they have the same IAP binding specificity, only Grim promoted XIAP ubiquitination and degradation. Grim also synergized with XIAP to promote an increase in total cellular ubiquitination, whereas Diablo antagonized this activity. Surprisingly, Grim-induced ubiquitination of XIAP did not require the IAP RING finger. Analysis of a Grim mutant that promoted XIAP degradation, but was not cytotoxic, suggests that Grim killing in transient assays is due to a combination of IAP depletion, blocking of IAP-mediated caspase inhibition, and at least one other unidentified function. Unlike transiently transfected cells, inducible mammalian cell lines can sustain continuous expression of Grim and selective degradation of XIAP without undergoing apoptosis, demonstrating that down-regulation and antagonism of IAPs is not sufficient to cause apoptosis of mammalian cells.  相似文献   

14.
The Drosophila inhibitor of apoptosis protein DIAP1 ensures cell viability by directly inhibiting caspases. In cells destined to die this IAP-mediated inhibition of caspases is overcome by IAP-antagonists. Genetic evidence indicates that IAP-antagonists are non-equivalent and function synergistically to promote apoptosis. Here we provide biochemical evidence for the non-equivalent mode of action of Reaper, Grim, Hid and Jafrac2. We find that these IAP-antagonists display differential and selective binding to specific DIAP1 BIR domains. Consistently, we show that each DIAP1 BIR region associates with distinct caspases. The differential DIAP1 BIR interaction seen both between initiator and effector caspases and within IAP-antagonist family members suggests that different IAP-antagonists inhibit distinct caspases from interacting with DIAP1. Surprisingly, we also find that the caspase-binding residues of XIAP predicted to be strictly conserved in caspase-binding IAPs, are absent in DIAP1. In contrast to XIAP, residues C-terminal to the DIAP1 BIR1 domain are indispensable for caspase association. Our studies on DIAP1 and caspases expose significant differences between DIAP1 and XIAP suggesting that DIAP1 and XIAP inhibit caspases in different ways.  相似文献   

15.
Reaper, Hid, and Grim are three Drosophila cell death activators that each contain a conserved NH(2)-terminal Reaper, Hid, Grim (RHG) motif. We have analyzed the importance of the RHG motifs in Reaper and Grim for their different abilities to activate cell death during development. Analysis of chimeric R/Grim and G/Reaper proteins indicated that the Reaper and Grim RHG motifs are functionally distinct and help to determine specific cell death activation properties. A truncated GrimC protein lacking the RHG motif retained an ability to induce cell death, and unlike Grim, R/Grim, or G/Reaper, its actions were not efficiently blocked by the cell death inhibitors, Diap1, Diap2, p35, or a dominant/negative Dronc caspase. Finally, we identified a second region of sequence similarity in Reaper, Hid, and Grim, that may be important for shared RHG motif-independent activities.  相似文献   

16.
Members of the Inhibitor of Apoptosis Protein (IAP) family block activation of the intrinsic cell death machinery by binding to and neutralizing the activity of pro-apoptotic caspases. In Drosophila melanogaster, the pro-apoptotic proteins Reaper (Rpr), Grim and Hid (head involution defective) all induce cell death by antagonizing the anti-apoptotic activity of Drosophila IAP1 (DIAP1), thereby liberating caspases. Here, we show that in vivo, the RING finger of DIAP1 is essential for the regulation of apoptosis induced by Rpr, Hid and Dronc. Furthermore, we show that the RING finger of DIAP1 promotes the ubiquitination of both itself and of Dronc. Disruption of the DIAP1 RING finger does not inhibit its binding to Rpr, Hid or Dronc, but completely abrogates ubiquitination of Dronc. Our data suggest that IAPs suppress apoptosis by binding to and targeting caspases for ubiquitination.  相似文献   

17.
Chai J  Yan N  Huh JR  Wu JW  Li W  Hay BA  Shi Y 《Nature structural biology》2003,10(11):892-898
The inhibitor of apoptosis protein DIAP1 inhibits Dronc-dependent cell death by ubiquitinating Dronc. The pro-death proteins Reaper, Hid and Grim (RHG) promote apoptosis by antagonizing DIAP1 function. Here we report the structural basis of Dronc recognition by DIAP1 as well as a novel mechanism by which the RHG proteins remove DIAP1-mediated downregulation of Dronc. Biochemical and structural analyses revealed that the second BIR (BIR2) domain of DIAP1 recognizes a 12-residue sequence in Dronc. This recognition is essential for DIAP1 binding to Dronc, and for targeting Dronc for ubiquitination. Notably, the Dronc-binding surface on BIR2 coincides with that required for binding to the N termini of the RHG proteins, which competitively eliminate DIAP1-mediated ubiquitination of Dronc. These observations reveal the molecular mechanisms of how DIAP1 recognizes Dronc, and more importantly, how the RHG proteins remove DIAP1-mediated ubiquitination of Dronc.  相似文献   

18.
We cloned a novel inhibitor of apoptosis protein (IAP) family member, BmIAP, from Bombyx mori BmN cells. BmIAP contains two baculoviral IAP repeat (BIR) domains followed by a RING domain. BmIAP shares striking amino acid sequence similarity with lepidopteran IAPs, SfIAP and TnIAP, and with two baculoviral IAPs, CpIAP and OpIAP, suggesting evolutionary conservation. BmIAP blocks programmed cell death (apoptosis) in Spodoptera frugiperda Sf-21 cells induced by p35 deficient Autographa californica nucleopolyhedrovirus (AcMNPV). This anti-apoptotic function requires both the BIR domains and RING domain of BmIAP. In mammalian cells, BmIAP inhibits Bax induced but not Fas induced apoptosis. Further biochemical data suggest that BmIAP is a specific inhibitor of mammalian caspase-9, an initiator caspase in the mitochondria/cytochrome-c pathway, but not the downstream effector proteases, caspase-3 and caspase-7. These results suggest that suppression of apoptosis by lepidopteran IAPs in insect cells may involve inhibition of an upstream initiator caspase in the conserved mitochondria/cytochrome-c pathway for apoptosis.  相似文献   

19.
Inhibitor of apoptosis (IAP) proteins inhibit caspases, a function counteracted by IAP antagonists, insect Grim, HID, and Reaper and mammalian DIABLO/Smac. We now demonstrate that HtrA2, a mammalian homologue of the Escherichia coli heat shock-inducible protein HtrA, can bind to MIHA/XIAP, MIHB, and baculoviral OpIAP but not survivin. Although produced as a 50-kDa protein, HtrA2 is processed to yield an active serine protease with an N terminus similar to that of Grim, Reaper, HID, and DIABLO/Smac that mediates its interaction with XIAP. HtrA2 is largely membrane-associated in healthy cells, with a significant proportion observed within the mitochondria, but in response to UV irradiation, HtrA2 shifts into the cytosol, where it can interact with IAPs. HtrA2 can, like DIABLO/Smac, prevent XIAP inhibition of active caspase 3 in vitro and is able to counteract XIAP protection of mammalian NT2 cells against UV-induced cell death. The proapoptotic activity of HtrA2 in vivo involves both IAP binding and serine protease activity. Mutations of either the N-terminal alanine of mature HtrA2 essential for IAP interaction or the catalytic serine residue reduces the ability of HtrA2 to promote cell death, whereas a complete loss in proapoptotic activity is observed when both sites are mutated.  相似文献   

20.
Many inhibitor of apoptosis (IAP) family proteins inhibit apoptosis. IAPs contain N-terminal baculovirus IAP repeat domains and a C-terminal RING ubiquitin ligase domain. Drosophila IAP DIAP1 is essential for the survival of many cells, protecting them from apoptosis by inhibiting active caspases. Apoptosis initiates when proteins such as Reaper, Hid, and Grim bind a surface groove in DIAP1 baculovirus IAP repeat domains via an N-terminal IAP-binding motif. This evolutionarily conserved interaction disrupts DIAP1-caspase interactions, unleashing apoptosis-inducing caspase activity. A second Drosophila IAP, DIAP2, also binds Rpr and Hid and inhibits apoptosis in multiple contexts when overexpressed. However, due to a lack of mutants, little is known about the normal functions of DIAP2. We report the generation of diap2 null mutants. These flies are viable and show no defects in developmental or stress-induced apoptosis. Instead, DIAP2 is required for the innate immune response to Gram-negative bacterial infection. DIAP2 promotes cytoplasmic cleavage and nuclear translocation of the NF-kappaB homolog Relish, and this requires the DIAP2 RING domain. Increasing the genetic dose of diap2 results in an increased immune response, whereas expression of Rpr or Hid results in down-regulation of DIAP2 protein levels. Together these observations suggest that DIAP2 can regulate immune signaling in a dose-dependent manner, and this can be regulated by IBM-containing proteins. Therefore, diap2 may identify a point of convergence between apoptosis and immune signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号