首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of nine generations of 450r per generation of ancestral spermatogonial X irradiation of inbred rats on genetic parameters of body weight at 3, 6 and 10 weeks of age and of weight gains between these periods were studied. Covariances among relatives were estimated by mixed model and regression techniques in randomly selected lines with (R) and without (C) radiation history. Analyses of the data were based on five linear genetic models combining additive direct, additive indirect (maternal), dominance and environmental effects. Parameters in these models were estimated by generalized least-squares. A model including direct and indirect genetic effects fit more closely to the data in both R and C lines. Overdominance of induced mutations did not seem to be present. Ancestral irradiation increased maternal additive genetic variances of body weights and gains but not direct genetic variances. Theoretically, due to a negative direct-maternal genetic correlation, within full-sib family selection would be ineffective in increasing body weight at six weeks in both R and C lines. However, progress from mass selection would be expected to be faster in the R lines.  相似文献   

2.
The effectiveness of selection for high and low body weight at six weeks of age was studied in descendants of X-irradiated (R) and nonirradiated (C) inbred rats. There were two replicates of each of the direction of selection-irradiation treatments. In C lines, there were no consistent responses to selection, probably due to a low level of genetic variability. In R rats, selection was effective only for decreased body weight. The results of this experiment do not suggest the use of irradiation combined with selection as a means of enhancing responses to selection in animals.  相似文献   

3.
Cornell Control White Leghorn chicks were grown in a common environment to five weeks of age and selected for fast and slow gain in body weight from five to nine weeks of age at two temperatures, 21.1° (cold) and 32.2° (hot), during which time a constant 50% relative humidity was maintained. All lines were tested each generation in both temperature environments. Selection continued for four generations, with a second replicate started six weeks after the first replicate in each generation. In the hot environment, a 20% reduction (104 g) in five-to-nine-week weight gain was found. The responses to selection for fast and slow growth were symmetrical except in the first generation, when an outbreak of bronchitis confounded selection for body weight with selection for disease resistance and allowed little gain in the slow lines. No genotype-by-environment interactions were found, indicating that selection in either direction in either selection temperature produced equal responses in either test temperature. This suggests that any interactions observed between the growth of strains in tropical vs. temperate climates must be due to some difference between these environments other than the temperature differences studied.  相似文献   

4.
Abstract We examined the evolutionary response of wing area (a trait highly correlated with other measures of body size) to relative humidity (RH), temperature, and their interaction in Drosophila melanogaster , using replicated lines that had been allowed to evolve at low or high humidity at 18°C or at 25°C. We found that after 20 weeks of selection (5–10 generations), low RH lines had significantly greater wing areas than high RH lines in both sexes. This evolutionary response may have resulted from selection of larger flies with a smaller surface area for water loss relative to their weight, or as a correlated response to selection on some other unidentified trait. There were no evolutionary effects of temperature on wing area or cell density. This may have been due to the short duration of the selection experiment, and/or counteracting selection pressures on body size at warm temperature.  相似文献   

5.
Summary Two lines of mice were selected for high post-weaning weight gain (3 to 6 weeks) adjusted for 3 week weight. One line (F) was grown on freely available food and the other (S) on a feeding scale set at the same level for all mice. Food intake of the S line averaged 80% of the F line. The realised heritabilities after 6 generations of selection were 0.38±0.06 and 0.33±0.07 for the F and S lines, respectively. In generation 7, mice from the F and S lines and from an unselected control line (C) were compared on both free and set levels of feeding from 3 weeks to 9 weeks of age. Measurements taken were growth rate, appetite, food conversion efficiency (weight gain/food intake) and body composition (fat, protein, ash, water). The F and S lines grew more rapidly and efficiently than the C line on both levels of feeding, each line performing best on the level of feeding on which it was selected. The average genetic correlation between growth rates of the same line on the two feeding levels was 0.54±0.10. The F line grew 19% faster and was 9% more efficient than the S line on free feeding but the S line grew 15% faster and was 15% more efficient than the F line on set feeding. Relative to the C line, food intake per day on free feeding was 4% higher in the F line and 6% lower in the S line. There was no difference between the lines in food intake/g body weight. The rate of deposition of all body components increased in both selection lines. In the F, S and C lines respectively, efficiencies of gains in body components (102x gain/food) were 1.79, 1.31 and 1.06 for fat, 1.53, 1.63 and 1.22 for protein and 5.88, 6.45 and 4.98 for protein + water. Apparently energy lost as heat was reduced in both the F and S lines. The partitioning of energy retained was altered in favour of more fat in the F line and more protein in the S line.  相似文献   

6.
Summary This study aimed to test the hypothesis that if animals were fed the same amount over the same time period, selection of the fastest growers would result in a change in the partitioning of metabolisable energy toward more protein and less fat deposition. Two mouse lines (S1 and S2) were selected for high 5 to 9 week weight gain corrected to mean 5 week weight. Appetite variation between mice was eliminated by feeding a fixed amount to each mouse daily. After 6 generations of selection, the lines were compared with an unselected control (C) on restricted and ad libitum levels of feeding for growth rate, appetite, food conversion efficiency and chemical body composition.Realised heritabilities of 5 to 9 week gain were 0.36+ 0.05 and 0.19±0.04 for S1 and S2 respectively. Nine week weights were increased by an average of 13% on both feeding levels. Most of this increase, particularly in S2, occurred before 5 weeks and was therefore outside the period of measurement used in selection. On ad libitum feeding, selection increased food intake per unit time by 6% but there was no increase per unit body weight. Food conversion efficiency (gain/food) increased by 12%. Compared with controls at 9 weeks, 3% more of the body weights of selected mice was fat and 1% less was protein. These differences were reduced but were still in the same direction when comparisons were made at the same body weight. Thus the expected change in energy partitioning toward greater protein and less fat deposition in the S lines did not occur.It was concluded that the increased growth and energy retention in the S lines was brought about by a reduction in maintenance requirement. To achieve the desired change in energy partitioning using a similar selection scheme, higher levels of dietary protein should be fed, and some measure of protein deposition rather than growth rate used as the selection criterion.  相似文献   

7.
Summary Body composition was studied in three lines of mice, one selected for high (H) and one for low (L) 8 week weight, and one maintained as an unselected control (C). After 25 generations 8 week weights were 41.2g, 30.6 g and 20.5g for the H, C and L lines. Mice were sampled from the lines and analysed for fat, protein, ash and water at generations 14 and 25. Apart from fat in the H line, there was little alteration due to selection in the relationships between individual body components and total body weight. In the H line, the contribution of fat to body weight gain was considerably increased. Although leaner than the C and L mice at low body weights, H line mice rapidly became fatter with increasing body weight. Selection appeared to reduce the body weight at which fat was deposited at its maximum rate in the H line. The H and C lines were equally fat at body weights of 29.0 g and 21.6 g at generations 14 and 25 respectively. Body weights at points of inflection of the growth curves of the H, C and L lines at generation 25 were 18.3 g, 14.3 g and 12.8 g. The implications of these findings for meat species slaughtered at set weights are discussed.  相似文献   

8.
Evidence for correlated responses to selection was investigated in lines of rats selected for 13 generations for high (U line) and low (D line) 3-9-week gain in comparison with random-bred control lines (R and C lines). The increase in 3-9-week gain in the U lines was shown to be due largely to an increase in 9-week weight, although 3-week weight also increased in these lines. In the D lines, where a marked decrease in 3-9-week gain was observed, this was found to be due to a large decrease in 9-week weight and no detectable change in 3-week weight. The average 2-week litter weight, a measure of the lactational performance of the dam, was significanly greater in the U lines than in the D lines. Selection for 3-9-week gain in these lines of rats led to changes of litter size at birth in the same direction as that of selection. This resulted in a significantly higher litter size in the U lines than in the D lines. The number of rats alive 2 and 9 weeks of age and the percentage of mated females pupping were similar in the U and D lines but lower in these lines than the random bred C lines, providing evidence for a reduction of "fitness" in the selected lines. Carcass composition was studied for all lines at the 11th generation of selection. Carcass composition, in terms of water, fat, ash and protein, was similar in the R and C lines. The U lines had more water and lesss fat than the R or C line. The D lines had similar carcass composition to the R and C lines. It is suggested that these selected and random-bred lines of rats are potentially useful animals to investigate further the developmental and physiological mechanisms which control growth.  相似文献   

9.
Summary A bidirectional selection experiment for 8-week body weight in chickens was conducted. In addition to 27 generations of selection, random samples were chosen from each selected line in generations 6, 13, 19 and 26 to initiate lines in which selection was relaxed. Genetic change was evident in the selected high-weight line through the first 75% of the study after which response in the direction opposing selection occurred. Selection for low body weight resulted in considerable reduction in body size, particularly in the last quarter of the study. Correlated responses evaluated were body weight at several ages, conformation, age at onset of lay, various reproductive and egg quality traits and ratio (female: male) of some traits. Data from lines where selection was relaxed indicated that natural selection opposed artificial selection with the effects greater in later generations.  相似文献   

10.
Summary Selection was practised for improved feed efficiency (gain/feed intake) of mice on two alternative feeding regimes. In one set of lines animals were fed ad libitum, in the other set they were individually fed a fixed amount of feed (about 10% below the control ad libitum intake) which was not changed over generations. For each treatment, a pair of replicate lines (E) were selected on efficiency from 3–5 weeks of age for 8 generations and another pair (L) from 5–7 weeks for 7 generations. A control line was maintained for both E and L lines. In terminal generations mice from each line were tested on each feeding regime, and carcasses of ad libitum fed mice were analysed.The realized heritability (within families) for efficiency averaged 13%, without much variation over treatments. In the E lines efficiency increased by about 18% of the control mean and in the L lines by about 60%, although absolute changes were small, and responses were similar on the two feeding regimes. Weights at the start of test decreased in the E lines and increased in the L lines; weights at the end of test increased in both.When tested on the alternative regimes, no interactions were detected for live weights, weight gains or efficiency; selection under fixed intake led to the same increase in appetite as did that under ad libitum.There were no interactions for carcass composition. Selection for efficiency led to an increase in fatness on both selection regimes and both weight ranges.  相似文献   

11.
Medrano JF  Gall GA 《Genetics》1976,83(2):393-407
Growth rate, body composition, cell number, cell size, and the activity of four dehydrogenase enzymes were studied from 10 to 25 days of age in one control (1C) and three lines (3, 9, 10) of Tribolium castaneum that had been subjected to long term selection for large 21-day pupae weight.—Selected lines were two- to three-fold larger in size than the control line throughout development. No major differences in percent of protein were detected among the lines but at any particular age, the selected lines were found to have a higher fat content than the control line. The differences in fat content were closely correlated with development such that all the lines reached very similar levels of percent of fat just prior to pupation. Water content showed an inverse relation to percent of fat.—Selection was observed to have caused major changes in the cellular response to growth. The selected lines had an average of from 17% to 48% larger cells (measured as protein/DNA) and were found to have from 37 to 62% more cells (measured as total DNA) than the control line at all ages from 10 to 19 days of age. In addition, the selected lines had a higher RNA content at all ages studied and higher RNA:DNA ratios at the young ages. In contrast the enzyme activities of ICDH and LDH were 60% lower. The results are interpreted as indicating that a more efficient metabolic machinery had evolved in the rapidly growing selected lines.  相似文献   

12.
Brian P. Bradley 《Genetics》1980,95(4):1033-1042
Populations of Drosophila melanogaster in constant 25° and fluctuating 20/29° environments showed increases in developmental stability, indicated by decreases in bilateral asymmetry of sterno-pleural chaeta number. In both environments, rates of decrease in asymmetry were greater under natural selection (control lines) than under artificial stabilizing selection. Overall mean asymmetry was greater in the fluctuating environment.—There was no evidence that decreased asymmetry was due to heterozygosity, and the decline in asymmetry was not explained by the decline in chaeta number in the lines under only natural selection. However, the decline was consistent with changes in total phenotypic variance and environmental variance.—The divergence between lines after 39 generations of selection was seen in differences in asymmetry and also in the genotype-environment interaction expressed in cross-culturing experiments.  相似文献   

13.
Summary Five generations of divergent selection for plasma concentration of insulin-like growth factor-1 (IGF-1) and for 12-week body weight were carried out in mice, including randomly selected control lines for each trait. All lines were replicated once (12 lines in total). Each replicate line consisted of eight male and eight female parents per generation. Litter size was standardized to eight pups at birth. Mass selection was applied in the selected lines and within-family random selection in the control lines. Blood was taken from the orbital sinus of individual mice at 12 weeks of age for IGF-1 assay. Realized heritabilities were 0.10±0.01 for IGF-1 and 0.41 ± 0.02 for 12-week weight. The realized genetic correlation between IGF-1 and 12-week weight was 0.58 ± 0.01, with a phenotypic correlation of 0.38. Although the genetic correlation between IGF-1 and body weight in mice is moderately positive, 12-week weight responded 3.5 times as fast to weight selection as to selection for IGF-1.  相似文献   

14.
Summary Results are presented from two replicated three-breed cross diallels that were conducted after 20 generations of selection for purebred performance in mice. The selection criteria for the different lines were: litter size at birth (LS), weaning weight at 4 weeks (WW), weight gain from week 4 to week 6 (WG), and body fat content at week 6 (FT). Additionally, a random-mating control line (C) was kept. Significant maternal heterosis was found in litter size and weaning weight. Estimates of maternal heterosis in litter size were very high, ranging from 17 to 50% of the mean of the corresponding single crosses. Maternal heterosis in weaning weight usually was negative and ranged from +9 to -11%. Significant maternal heterosis in feed efficiency and weaning weight could only be found in a few cases. Total performance of three-breed crosses was highly superior to that of single crosses and purebreds. Means of the corresponding purebreds or single crosses were of little use in predicting three-breed cross performance.  相似文献   

15.
Sharp PM 《Genetics》1984,106(4):601-612
The effect of full-sib inbreeding on competitive male-mating ability (CI♂) in Drosophila melanogaster was investigated in two experiments. In the first, five inbred lines (with reserves) were assessed up to 18 generations. Linear inbreeding depression, of 5.9% per 10% increase in homozygosity, was observed. In a second experiment, 21 inbred lines were tested after three generations of full-sib mating (without reserves), and the decline with inbreeding was more severe, the male competitive index (CI♂) decreasing by 10.7% per 10% increase in F. The difference between these results is attributed to natural selection acting on variation within the inbred lines in extent of homozygosity, which can arise because of the peculiarly strong influence of linkage in Drosophila. Furthermore, differentiation between the lines may have reflected this variation rather than the various effects of different alleles fixed.—These results imply that the genetic variation in male-mating ability is largely due to dominance (no epistasis was detected) and are consonant with the proposition that intermale sexual selection is a very important component of fitness in D. melanogaster . There was no evidence of a positive correlation between male body size and competitive mating ability.  相似文献   

16.
Replicated bidirectional selection (with control lines) for nest-building behavior in Mus musculus, where nesting scores consisted of the total weight of cotton pulled through the cage lid during four days of testing, yielded an eight-fold difference between high and low lines after 15 generations of selection. The overall realized heritability pooled across lines and replicates was 0.18 ± 0.02 (0.15 ± 0.03 for high nesting scores and 0.23 ± 0.04 for low nesting scores), or 0.28 ± 0.05 when adjusted for within-family selection. Across the 15 generations and the entire experiment, average body weight and number of infertile matings increased, while average litter size decreased, although these changes were not consistent across lines. Inbreeding could account for average decreases in the fertility traits, but there was also a correlated response to selection, since both high lines showed increased litter size and decreased infertile matings.  相似文献   

17.
Selection based upon testicular diameter adjusted for body weight at 6, 10 and 14 weeks of age was used to produce two lines of sheep, with either high or low testicular size. Ten generations of selection were carried out and the estimate of the realized heritability of the selection criterion was 0.53 +/- 0.01. There were significant positive correlated responses to selection for testicular diameter at 6, 10 and 14 weeks of age, but the correlated responses in body weight at these ages were negative. In mature females, there were significant negative correlated responses to selection in premating body weight in the 1st, 2nd and 3rd breeding season and in the day of the first oestrus in the 2nd breeding season. Litter size per ewe mated had a small positive correlated response to selection in the second breeding season. This latter response appeared to be due to a positive correlated response in fertility, ewes from the High-line having a significantly higher probability of conceiving to a single mating than those from the Low-line. There was no significant correlated response in ovulation rate or litter size per ewe lambing and the genetic correlation between these traits and the selection criterion is likely to be close to zero. This may be due to the adjustment for body weight used, but it is possible that, in any event, body weight in young rams may be a better predictor of female ovulation rate than testicular diameter. These results do not rule out the possibility that testicular size in rams older than those selected would provide a good predictor of genetic merit for female ovulation rate.  相似文献   

18.
Data were analysed from a divergent selection experiment for an indicator of body composition in the mouse, the ratio of gonadal fat pad to body weight (GFPR). Lines were selected for 20 generations for fat (F), lean (L) or were unselected (C), with three replicates of each. Selection was within full-sib families, 16 families per replicate for the first seven generations, eight subsequently. At generation 20, GFPR in the F lines was twice and in the L lines half that of C. A log transformation removed both asymmetry of response and heterogeneity of variance among lines, and so was used throughout. Estimates of genetic variance and heritability (approximately 50%) obtained using REML with an animal model were very similar, whether estimated from the first few generations of selection, or from all 20 generations, or from late generations having fitted pedigree. The estimates were also similar when estimated from selected or control lines. Estimates from REML also agreed with estimates of realised heritability. The results all accord with expectations under the infinitesimal model, despite the four-fold changes in mean. Relaxed selection lines, derived from generation 20, showed little regression in fatness after 40 generations without selection.  相似文献   

19.
Two experiments were conducted to measure milk yield as a correlated response to selection for increased 12-day litter weight (maternal lines) for 13 generations and increased and decreased body weight gain from 21 to 42 days of age (postweaning gain lines) for 12 to 14 generations. Milk yield was measured from day 6 to day 21 of lactation by separating litters from their dams for 6 h, then weighing litters before and after a 1.5 h suckling period. Average total milk production was 30.3 +/- 0.9 g and 28.6 +/- 1.1 g in maternal and control lines, respectively. This difference was not significant (P greater than 0.05). Differences among gain lines were significant (P less than 0.01) in the second experiment with average production of 44.1 +/- 1.4 g for increased gain lines, 22.5 +/- 0.9 g for the decreased gain line and 31.2 +/- 1.0 g for the control. These results indicated that response to selection for increased 12-day litter weight was not associated with increases in milk yield, but sizable changes inmilk yield accompanied bi-directional selection for early postweaning gain.  相似文献   

20.
P. D. Keightley  M. J. Evans    W. G. Hill 《Genetics》1993,135(4):1099-1106
To assess the potential to generate quantitative genetic variation by insertional mutagenesis in a vertebrate, lines of mice in which many provirus vector inserts segregated at a low initial frequency on an inbred background (insert lines) were subjected to divergent artificial selection on body weight at 6 weeks and responses and heritability estimates compared to control lines lacking inserts. Heritability estimates were more than 1.5 times greater in the insert lines than in the controls, but because the phenotypic variance was substantially higher in the insert lines the genetic variance was about 3 times greater. Realized heritability estimates tended to be lower than heritabilities estimated by an animal model which utilizes information in covariances between all relatives in the data set. A surprisingly large response to selection occurred in the inbred control line. Insert lines were about 20% less fertile than controls. Division of the selection lines into inbred sublines in the later generations of the experiment revealed substantially greater variation among sublines of the insert lines than among the controls. Heritabilities were similar to typical estimates for the trait in outbred populations. In conclusion, there was clear evidence of extra variation deriving from inserts, which has yet to be attributed to individual genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号