首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study is to examine the characteristics of gait patterns in human preferred sideways locomotion at increasing speeds. Fifteen healthy young males were asked to step sideways on a treadmill at various speeds of 1.3–6.1 km/h. The times of foot contact and take-off were analyzed. Three gait patterns were observed. At slow speeds, all of the subjects performed a walk-like pattern. When the treadmill speed exceeded approximately 3.5 km/h, the subjects preferred gait patterns with a flight phase. Most of the subjects performed an asymmetric gait pattern that was similar to a forward gallop, whereas only two out of fifteen subjects performed a run-like gait pattern. Because the left and right legs are positioned along the movement direction, it might be more efficient to divide roles between the leading and trailing limbs at high speeds: the leading limb functions to produces breaking and vertical force, and the trailing limb mainly absorbs the impact of foot contact and generates propulsive forces.  相似文献   

2.
Footfall patterns and time sequence of activity are described for white rats conditioned to run freely in an activity wheel (which they drive). Motion is described in terms of soft contact, hard contact, soft contact, and flip phases. Duration of stride decreases and length of stride increases from walk to trot to canter to gallop. Myographic analysis shows that the brachialis has a major tonic function after it fires strongly during the flip phase and during much of the hard contact phase. Animals running at canter or gallop show major asymmetries between forelimb muscles on the first paw and on the lead paw sides.  相似文献   

3.
Gait analysis using small sensor units is becoming increasingly popular in the clinical context. In order to segment continuous movement from a defined point of the stride cycle, knowledge about footfall timings is essential. We evaluated the accuracy and precision of foot contact timings of a defined limb determined using an inertial sensor mounted on the pelvis of ten horses during walk and trot at different speeds and in different directions. Foot contact was estimated from vertical velocity events occurring before maximum sensor roll towards the contralateral limb. Foot contact timings matched data from a synchronised hoof mounted accelerometer well when velocity minimum was used for walk (mean (SD) difference of 15 (18)ms across horses) and velocity zero-crossing for trot (mean (SD) difference from -4 (14) to 12 (7)ms depending on the condition). The stride segmentation method also remained robust when applied to movement data of hind limb lame horses. In future, this method may find application in segmenting overground sensor data of various species.  相似文献   

4.
Mammalian locomotion is characterized by the frequent use of in-phase gaits in which the footfalls of the left and right fore- or hindlimbs are unevenly spaced in time. Although previous studies have identified a functional differentiation between the first limb (trailing limb) and the second limb (leading limb) to touch the ground during terrestrial locomotion, the influence of a horizontal branch on limb function has never been explored. To determine the functional differences between trailing and leading forelimbs during locomotion on the ground and on a horizontal branch, X-ray motion analysis and force measurements were carried out in two European red squirrels (Sciurus vulgaris, Rodentia). The differences observed between trailing and leading forelimbs were minimal during terrestrial locomotion, where both limbs fulfill two functions and go through a shock-absorbing phase followed by a generating phase. During locomotion on a horizontal branch, European red squirrels reduce speed and all substrate reaction forces transmitted may be due to the reduction of vertical oscillation of the center of mass. Further adjustments during locomotion on a horizontal branch differ significantly between trailing and leading forelimbs and include limb flexion, lead intervals, limb protraction and vertical displacement of the scapular pivot. Consequently, trailing and leading forelimbs perform different functions. Trailing forelimbs function primarily as shock-absorbing elements, whereas leading forelimbs are characterized by a high level of stiffness. This functional differentiation indicates that European red squirrels ‘test’ the substrate for stability with the trailing forelimb, while the leading forelimb responds to or counteracts swinging or snapping branches.  相似文献   

5.
Gaits can be defined based upon specific interlimb coordination patterns characteristic of a limited range of speeds, with one or more defining variables changing discontinuously at a transition. With changing speed, horses perform a repertoire of gaits (walk, trot, canter and gallop), with transitions between them. Knowledge of the series of kinematic events necessary to realize a gait is essential for understanding the proximate mechanisms as well as the control underlying gait transitions. We studied the kinematics of the actual transition from trot to canter in miniature horses. The kinematics were characterized at three different levels: the whole-body level, the spatio-temporal level of the foot falls and the level of basic limb kinematics. This concept represents a hierarchy: the horse's center of mass (COM) moves forward by means of the coordinated action of the limbs and changes in the latter are the result of alterations in the basic limb kinematics. Early and short placement of the fore limb was observed before the dissociation of the footfalls of one of the diagonal limb pairs when entering the canter. Dissociation coincided with increased amplitude and wavelength of the oscillations of the trunk in the sagittal plane. The increased amplitude cannot be explained solely by the passive effects of acceleration or by neck and head movements which are inconsistent with the timing of the transition. We propose that the transition is initiated by the fore limb followed by subsequent changes in the hind limbs in a series of kinematic events that take about 2.5 strides to complete.  相似文献   

6.
Electrocardiograms by standard limb lead, augumented unipolar limb lead and AB (Apex-Base) lead were recorded from 24 unanesthetized adult cats from a SPF closed colony. The unanesthetized cats were held in the sternal position or in the right lateral recumbent position by means of a net. The mean electrical axes of P, QRS and T waves were calculated on the basis of values of I, II and III leads. The ECG patterns and mean electrical axes were compared between the sternal position and the right lateral recumbent position. The results are summarized as follows. The mean values of RR duration, P wave duration, QRS complex duration, T wave duration, PQ interval and QT interval were 0.432, 0.033, 0.027, 0.101, 0.076 and 0.183 seconds, respectively. The values of duration, interval and amplitude were not prominently influenced by the change in posture. The ECG shape had a definite configuration on each lead except that leads I and a VL showed unstable patterns. Notches and R' waves appeared in every lead in many cases. There was a positive linear correlation between RR and QT duration: r = 0.798 in the sternal position and r = 0.525 in the right lateral recumbent position. The angle of QRS mean electrical axis on the horizontal plane was 66.90 degrees +/- 26.05 (SD) in the sternal position and 41.84 degrees +/- 75.23 (SD) in the right lateral recumbent position. The P and T mean electrical axes showed small variations.  相似文献   

7.
Seven species of ground-dwelling birds (body mass range: 0.045-90 kg) were filmed while walking and running on a treadmill. High-speed light films were also taken of humans to compare kinematic patterns of avian with human bipedalism. Consistent patterns of stride frequency, stride length, step length, duty factor and limb excursion were observed in all species, with most of the variation among species being due to differences in body size. In general, smaller bipeds have higher stride frequencies (α M −0.18), shorter stride lengths (α M 0.38) and more limited ranges of speed within each gait than large bipeds. After normalizing for size (based on Froude number, after Alexander, 1977), remaining kinematic variation is largely due to interspecific differences in posture and relative limb segment lengths. For their size, smaller bipeds have greater step lengths, limb excursion angles and duty factors than large bipeds because of their more crouched posture and greater effective limb length. The most notable differences in limb kinematics between birds and humans occur at the walk-run transition and are maintained as running speed increases. Change of gait is smooth and difficult to discern in birds, but distinct in humans, involving abrupt decreases in step length and duty factor (time of contact) and a corresponding increase in limb swing time. These differences appear to reflect a spring-like run that is stiff in humans (favouring elastic energy recovery) but more compliant in birds (increasing time of ground contact). Differences between birds and humans in balance of the body's centre of mass not only affect femoral orientation and motion, but also affect pattern of limb excursion with speed.  相似文献   

8.
9.
Abstract

Objective: This study aimed to investigate the foot contact time differences between obese and non-obese subjects during walking when crossing obstacles.

Methods: Ninety-eight postmenopausal women were assigned to four groups, and their plantar pressure temporal data were collected using a two-step protocol during walking when crossing an obstacle set at 30% height of lower limb length of each subject. The initial, final, and duration of contact of 10?foot areas were measured.

Results: Leading limb: (1) the heel groups initiated foot contact using the heel, and the non-heel groups initiated contact using the metatarsals; (2) heel obese subjects showed an earlier initial contact and a longer contact duration of metatarsals 2–3; (3) non-heel obese subjects showed an earlier midfoot initial contact. Regarding the trailing limb: (4) heel obese subjects showed an earlier midfoot initial contact and a longer contact duration of metatarsal 5; (5) non-heel obese subjects showed an earlier initial contact and a longer contact duration of metatarsals 4–5.

Conclusions: (1) The non-heel groups’ foot rollover pattern may result from an attempt of rapidly restoring stability; (2) the heel obese subjects seem to regulate their plantar foot muscles to overcome their overweight; (3) the overweight of the non-heel obese subjects leads to a quicker backward foot roll-over from the metatarsals to the heel; (4) the overweight of the heel obese subjects can distort their footprints and/or their higher inertia may precipitate an anticipation of the midfoot contact, which can also explain the result observed for 5.  相似文献   

10.
The feet and gaits of many camels Camelus dromedarius were studied and filmed in Mauritania, Africa. The camel has a digitigrade stance, large feet to support the animal in soft sand, and soles of flexible pads that step readily onto small stones where necessary. The walking stride is long and slow, with the body supported for much of each stride on the two right or two left legs. The pattern of supporting legs was significantly different in slow compared to fast walking camels, and in young compared to adult camels and compared to adults pulling water at the wells. There was no difference in pattern in one individual's walk, when it was either loaded or unloaded. The angles that the leg bones made with each other and with the horizon are depicted for the walk and the pace. The camel is the only animal which paces often and never trots. The pace is an unstable gait only suitable for flat terrain such as that in deserts. It may have evolved from the pace-like walk which is by far the dominant gait in this animal, which spends most of each day walking from plant to plant browsing or grazing. The pace is not used by all camelids, as one author has claimed. The pace and the gallop were only used by the camels at wells, when the animals were chased from the water by men.  相似文献   

11.
Primate quadrupedal kinematics differ from those of other mammals. Several researchers have suggested that primate kinematics are adaptive for safe travel in an arboreal, small-branch niche. This study tests a compatible hypothesis that primate kinematics are related to their limb mass distribution patterns. Primates have more distally concentrated limb mass than most other mammals due to their grasping hands and feet. Experimental studies have shown that increasing distal limb mass by adding weights to the limbs of humans and dogs influences kinematics. Adding weights to distal limb elements increases the natural period of a limb's oscillation, leading to relatively long swing and stride durations. It is therefore possible that primates' distal limb mass is responsible for some of their unique kinematics. This hypothesis was tested using a longitudinal ontogenetic sample of infant baboons (Papio cynocephalus). Because limb mass distribution changes with age in infant primates, this project examined how these changes influence locomotor kinematics within individuals. The baboons in this sample showed a shift in their kinematics as their limb mass distributions changed during ontogeny. When their limb mass was most distally concentrated (at young ages), stride frequencies were relatively low, stride lengths were relatively long, and stance durations were relatively long compared to older ages when limb mass was more proximally concentrated. These results suggest that the evolution of primate quadrupedal kinematics was tied to the evolution of grasping hands and feet.  相似文献   

12.
This study investigated the effects of rider weight in the BW ratio (BWR) range common for Icelandic horses (20% to 35%), on stride parameters in tölt in Icelandic horses. The kinematics of eight experienced Icelandic school horses were measured during an incremental exercise test using a high-speed camera (300 frames/s). Each horse performed five phases (642 m each) in tölt at a BWR between rider (including saddle) and horse starting at 20% (BWR20) and increasing to 25% (BWR25), 30% (BWR30), 35% (BWR35) and finally 20% (BWR20b) was repeated. One professional rider rode all horses and weight (lead) was added to saddle and rider as needed. For each phase, eight strides at speed of 5.5 m/s were analyzed for stride duration, stride frequency, stride length, duty factor (DF), lateral advanced placement, lateral advanced liftoff, unipedal support (UPS), bipedal support (BPS) and height of front leg action. Stride length became shorter (Y=2.73−0.004x; P<0.01) and more frequent (Y=2.56+0.002x; P<0.001) with added weight. Duty factor and BPS increased with increased BWR (P<0.001), whereas UPS decreased (P<0.001). Lateral advanced timing of limb placement and liftoff and height of front leg action were not affected by BWR (P>0.05). In conclusion, increased BWR decreased stride length and increased DF proportionally to the same extent in all limbs, whereas BPS increased at the expense of decreased UPS. These changes can be expected to decrease tölt quality when subjectively evaluated according to the breeding goals for the Icelandic horse. However, beat, symmetry and height of front leg lifting were not affected by BWR.  相似文献   

13.
Inertial sensors are now sufficiently small and lightweight to be used for the collection of large datasets of both humans and animals. However, processing of these large datasets requires a certain degree of automation to achieve realistic workloads. Hidden Markov models (HMMs) are widely used stochastic pattern recognition tools and enable classification of non-stationary data. Here we apply HMMs to identify and segment into strides, data collected from a trunk-mounted six degrees of freedom inertial sensor in galloping Thoroughbred racehorses. A data set comprising mixed gait sequences from seven horses was subdivided into training, cross-validation and independent test set. Manual gallop stride segmentations were created and used for training as well as for evaluating cross-validation and test set performance. On the test set, 91% of the strides were accurately detected to lie within +/- 40 ms (< 10% stride time) of the manually segmented stride starts. While the automated system did not miss any of the strides, it identified additional gallop strides at the beginning of the trials. In the light of increasing use of inertial sensors for ambulatory measurements in clinical settings, automated processing techniques will be required for efficient data processing to enable instantaneous decision making from large amounts of data. In this context, automation is essential to gain optimal benefits from the potentially increased statistical power associated with large numbers of strides that can be collected in a relatively short period of time. We propose the use of HMM-based classifiers since they are easy to implement. In the present study, consistent results across cross-validation and test set were achieved with limited training data.  相似文献   

14.

Background

Participatory methods are increasingly used in international human development, but scientific evaluation of their efficacy versus a control group is rare. Working horses support families in impoverished communities. Lameness and limb abnormalities are highly prevalent in these animals and a cause for welfare concern. We aimed to stimulate and evaluate improvements in lameness and limb abnormalities in horses whose owners took part in a 2-year participatory intervention project to reduce lameness (PI) versus a control group (C) in Jaipur, India.

Methodology/Principal Findings

In total, 439 owners of 862 horses participated in the study. PI group owners from 21 communities were encouraged to meet regularly to discuss management and work practices influencing lameness and poor welfare and to track their own progress in improving these. Lameness examinations (41 parameters) were conducted at the start of the study (Baseline), and after 1 year and 2 years. Results were compared with control horses from a further 21 communities outside the intervention. Of the 149 horses assessed on all three occasions, PI horses showed significantly (P<0.05) greater improvement than C horses in 20 parameters, most notably overall lameness score, measures of sole pain and range of movement on limb flexion. Control horses showed slight but significantly greater improvements in four parameters, including frog quality in fore and hindlimbs.

Conclusions/Significance

This participatory intervention succeeded in improving lameness and some limb abnormalities in working horses, by encouraging changes in management and work practices which were feasible within owners’ socioeconomic and environmental constraints. Demonstration of the potentially sustainable improvements achieved here should encourage further development of participatory intervention approaches to benefit humans and animals in other contexts.  相似文献   

15.
Armadillos comprise a particular group of armoured animals whose functional morphology of locomotion remains unclear. For the first time, the kinematic patterns of Dasypus novemcinctus are analysed. Eight specimens of nine-banded armadillos were studied at a research institute in São Paulo State, Brazil. The individuals were induced to cross a horizontal corridor and each gait performed during the time each of them was kept inside this structure was recorded to a detailed analysis posteriorly performed in a computer program. Four parameters regarding speed range were considered: stride frequency (Hz) (1/stride period), stride length (m), speed (ms−1) and duty factor (%). A total of 89 strides have been analysed among symmetrical (60.6%) and asymmetrical gaits (39.4%), and six footfall patterns were here reported as follows: lateral sequences (symmetrical), transverse gallop, canter, bound, half-bound and crutch walk (asymmetrical). This kind of analysis implements our knowledge on the locomotory aspects of these animals, hence contributing to the improvement of our knowledge on this still poorly known group.  相似文献   

16.
The purpose of the study reported here was to determine conditions for electrocardiographic monitoring in the G?ttingen minipig in view of its use as a second non-rodent species in toxicology studies. Electrocardiograms were recorded from conscious minipigs (6/sex) maintained in a sling. The three standard bipolar limb leads (I, II, III), the three augmented unipolar limb leads (aVR, aVL, aVF), the triangular Nehb-Sp?ri leads (dorsal, axial, ventral) and their corresponding unipolar leads were recorded, and automated analysis of amplitudes and intervals was made. Major QRS patterns were not observed for any of the bipolar and unipolar leads. For triangular leads, the amplitude of waves was higher than that for limb leads, and the rS pattern dominated for dorsal, axial ventral and aV(F)-Ventral leads. The qR pattern dominated in the aV(R)-dorsal lead, whereas consistency and dominant patterns were not observed for the aV(L)-axial lead. For limb leads, the position of the electrode affected the ECG. Electrodes placed on the cubital and stifle joints were the preferred positions since the P- and R-waves were clearly identifiable with amplitudes > 0.2 mV. Also, the T-wave amplitude was (positive or negative) > 0.2 mV in at least two leads, making the determination of the QT-interval accurate. For the triangular leads, the position of the electrode had less influence on the amplitude of deflections. However, if the axial lead is to be used for calculation of intervals and amplitudes, the xyphoid process is the preferred position. In conclusion, the triangular lead system is recommended for recording ECGs in minipigs. Limb leads could be used in connection. The cubital and stifle joints for standard limb leads and the neck, sacrum, and xyphoid process for triangular leads are the preferred positions for electrodes.  相似文献   

17.

Background

This study aims to examine age-related and obstacle height-related differences in movements while stepping over obstacles.

Methods

The participants included 16 elderly and nine young women. Obstacles that were either 5 or 20 cm high were positioned at the center of a 4-m walking path. The participants were instructed to walk along the path as quickly as possible. The participants’ movements were analyzed using a three-dimensional motion analysis system that recorded their movements as they walked and stepped over the obstacles.

Results and conclusions

Seven joint angles and the distances between the ground and six markers were examined in the initial contact and swing instants of the leading and trailing limbs. In the initial contact instant, the elderly women prepared for stepping with a lower toe height than the young women when stepping over the 20-cm obstacle. Trunk rotation was greater in the young women than in the elderly women. In the swing instant, the elderly women showed greater ankle dorsiflexion and hip adduction angles for the leading limb when stepping over the 20-cm obstacle. They moved the trailing limb with increased ankle dorsiflexion, knee flexion, hip flexion, and foot inversion to ensure that they did not touch the obstacle as they stepped over it. These movement patterns are characteristic of elderly individuals who cannot easily lift their lower limbs because of decreased lower-limb strength.  相似文献   

18.
B. Gutnik  J. Skirius  G. Hudson  D. Gale   《HOMO》2004,54(3):215-228
The maximal torque effect of the middle portion of action of the deltoid muscle while raising an outstretched upper limb was measured from left and right sides of normal untrained young adults and of the same age elite athletes. Seventeen strongly right-handed untrained males and females and 10 elite tennis players were tested. All participants were required to raise (abduct) one arm (right and then left, or vice versa) as fast as possible with maximal amplitude while standing on an electronic platform scale which measured to 0.001 kg. An assumed force at the centre of mass of the entire upper limb was considered. The force consisted of two components, namely static weight force of the upper limb and a dynamic force component created by upward acceleration of the limb. Using regression equations and scaling methods the static weight of the upper limb was derived and combined with the dynamic component to produce the total force, applied to the centre of mass of the limb. The total force multiplied by the distance from the centre of mass to point of rotation of the limb equated to the torque produced by deltoid muscle. Using video system analyses the angle of abduction was measured for each individual exercise. The additional anthropometrical tests identified proportionality and body mass indices for each participant.

There was no significant difference in dynamic force and torque between left and right limb from the three groups. Sportsmen demonstrated greater lateral abduction when performing the exercise from the dominant side of the body. Sportsmen also demonstrated greater range of abduction, bigger dynamic force and torque on both sides in comparison to untrained adults. Remarkably, the absolute and relative length of arms of athletes were shorter in comparison to untrained males, but the radius of gyration from the stretched upper limb (from its centre of gravity to the shoulder joint) were greater. This phenomenon may be due to distal shifting of the gravity center of the entire upper limb in elite athletes, perhaps, because greater investment of the distal portion of the limb with skeletal muscle tissue.  相似文献   


19.
A reanalysis of locomotor data from functional, energetic, mechanical and ecological perspectives reveals that limb posture has major effects on limb biomechanics, energy-saving mechanisms and the costs of locomotion. Regressions of data coded by posture (crouched vs. erect) reveal nonlinear patterns in metabolic cost, limb muscle mass, effective mechanical advantage, and stride characteristics. In small crouched animals energy savings from spring and pendular mechanisms are inconsequential and thus the metabolic cost of locomotion is driven by muscle activation costs. Stride frequency appears to be the principal functional parameter related to the decreasing cost of locomotion in crouched animals. By contrast, the shift to erect limb postures invoked a series of correlated effects on the metabolic cost of locomotion: effective mechanical advantage increases, relative muscle masses decrease, metapodial limb segments elongate dramatically (as limbs shift from digitigrade to unguligrade designs) and biological springs increase in size and effectiveness. Each of these factors leads to decreases in the metabolic cost of locomotion in erect forms resulting from real and increasing contributions of pendular savings and spring savings. Comparisons of the relative costs and ecological relevance of different gaits reveal that running is cheaper than walking in smaller animals up to the size of dogs but running is more expensive than walking in horses. Animals do not necessarily use their cheapest gaits for their predominant locomotor activity. Therefore, locomotor costs are driven more by ecological relevance than by the need to optimize locomotor economy.  相似文献   

20.
Falls and injuries due to falls are a major health concern, and accidental slips are a leading cause of falls during gait. Understanding how the body reacts to an unexpected slip can aid in developing intervention techniques to reduce the number of injuries due to falls. In this study, muscle activation patterns, specifically those of the trailing (non-slipping) limb, were studied in unexpected slips of 24 young and 24 middle-aged adults. The typical reaction of the trailing limb is swing phase interruption in an attempt to arrest the slip. Variables examined were the reactive muscle activation onset, peak electromyography (EMG) magnitude, and time-to-peak of the vastus lateralis and medial hamstring of the trailing limb. Statistical analysis was performed to determine the effects of slip severity, quantified by peak slip velocity, and age on outcome variables. As slip severity increased, the reactive activation onset of the medial hamstring was significantly faster and there was a trend approaching significance for the onset of the vastus lateralis. Additionally, the peak magnitude and time-to-peak of the vastus lateralis increased with slip severity. No significant effects of age were found on any of the output variables. These findings may aid in development of perturbation-based paradigms, as it may be possible to “tune” the postural control system to generate an appropriate response to unexpected slips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号