首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Early embryonic swimming is widespread among marine invertebrates, but quantitative information about swimming behaviors is scarce. Swimming may affect encounters with predators, positioning in the water column, and nutrient absorption. Measured rates and patterns of swimming and sinking for blastulae of four eastern Pacific echinoid species show that sinking speeds equal or exceed swimming speeds. Swimming speed scaled negatively with embryo size, though sinking speed did not scale with size. Analysis of swimming paths of Strongylocentrotus franciscanus revealed a temperature dependency in swimming pattern that affected speed of upward movement. Sinking speeds were significantly greater at 10 degrees C than at 14 degrees C for blastulae of all four species examined. In Dendraster excentricus, killing the blastulae annulled this temperature effect, indicating an active density regulation by these embryos. Finally, measurements of particle velocities around sinking and swimming D. excentricus blastulae show that swimming creates a more localized disturbance than sinking. Embryonic swimming may therefore decrease rather than increase encounters with pelagic predators. Results from subsequent experiments in which embryos were reared in low-oxygen environments suggest that any oxygen-absorption advantages of swimming have little, if any, effect on the development of D. excentricus embryos.  相似文献   

2.
The purpose of the present study was to examine the effect of water temperature on the human body during low-intensity prolonged swimming. Six male college swimmers participated in this study. The experiments consisted of breast stroke swimming for 120 minutes in 23 degrees C, 28 degrees C and 33 degrees C water at a constant speed of 0.4 m.sec-1 in a swimming flume. The same subjects walked on a treadmill at a rate of approximately 50% of maximal oxygen uptake (VO2max) at the same relative intensity as the three swimming trials. Rectal temperature (Tre) in 33 degrees C water was unchanged during swimming for 120 minutes. Tre during treadmill walking increased significantly compared to the three different swimming trials. Tre, mean skin temperature (Tsk) and mean body temperature (Tb) in 23 degrees C and 28 degrees C water decreased significantly more than in both the 33 degrees C water and walking on land. VO2 during swimming in 23 degrees C water increased more than during swimming in the 28 degrees C and 33 degrees C trials; however, there were no significant differences in VO2 between the 23 degrees C swimming trial and treadmill walking. Heart rate (HR) during treadmill walking on land increased significantly compared with HR during the three swimming trials. Plasma adrenaline concentration at the end of the treadmill walking was higher than that at the end of each of the three swimming trials. Noradrenaline concentrations at the end of swimming in the 23 degrees C water and treadmill walking were higher than those during the other two swimming trials. Blood lactate concentration during swimming in 23 degrees C water was higher than that during the other two swimming trials and walking on land. These results suggest that the balance of heat loss and heat production is maintained in the warm water temperature. Therefore, a relatively warm water temperature may be desirable when prolonged swimming or other water exercise is performed at low intensity.  相似文献   

3.
Swimming performance of zebrafish Danio rerio males and females initially reared in four different temperatures was assessed by measuring their relative critical swimming speed after acclimation to a common temperature. Males reared at 31° C achieved higher swimming speeds than females reared at the same temperature. Morphometric measurements indicate differences in body shape between sexes that could account for the difference in swimming speed.  相似文献   

4.
The Patagonian blennie Eleginops maclovinus is a coastal and estuarine species, important in recreational and commercial fisheries, and with aquaculture potential. This study assessed the effect of temperature on feeding and the allocation of energy in growth and swimming in a sub-Antarctic population. For growth experiments, two groups of 8 juveniles were reared at 4 and 10?°C (corresponding to winter and summer habitat temperatures, respectively) for 3?months. Swimming experiments were conducted at 5 and 10?°C, measuring the oxygen consumption before and after forced swimming for 1?min at a speed of 10 total lengths (TL)/s. Temperature affects growth. TL increased 0.09?cm at 4?°C versus 0.30?cm at 10?°C. Body mass grew 0.49?g at 4?°C versus 1.65?g at 10?°C, whereas the Fulton’s condition factor increased 0.021 at 4?°C versus 0.080 at 10?°C. The ingested food was more than twofold higher at 10 than at 4?°C, while the feces produced at 4?°C was about twofold higher. The scope between baseline and peak oxygen consumption after forced swimming was affected by temperature, being 4.51 at 5?°C and 3.03 at 10?°C. The percentage energy expenditure until the return of baseline oxygen consumption values showed a marked temperature effect, being higher at 5?°C. We propose the existence of a trade-off in the allocation of energy between swimming activity and growth, with proportionally more energy being consumed at low temperatures for swimming than for other physiological functions like growth.  相似文献   

5.
The effects of acute and developmental temperature on maximum burst swimming speed, body size, and myofibrillar ATPase activity were assessed in tadpoles of the Pacific tree frog, Hyla regilla. Tadpoles from field-collected egg masses were reared in the laboratory at 15 degrees (cool) and 25 degrees C (warm). Body size, maximum burst swimming speed from 5 degrees to 35 degrees C, and tail myofibrillar ATPase activity at 15 degrees and 25 degrees C were measured at a single developmental stage. Burst speed of both groups of tadpoles was strongly affected by test temperature (P<0. 001). Performance maxima spanned test temperatures of 15 degrees -25 degrees C for the cool group and 15 degrees -30 degrees C for the warm group. Burst speed also depended on developmental temperature (P<0.001), even after accounting for variation in body size. At most test temperatures, the cool-reared tadpoles swam faster than the warm-reared tadpoles. Myofibrillar ATPase activity was affected by test temperature (P<0.001). Like swimming speed, enzyme activity was greater in the cool-reared tadpoles than in the warm-reared tadpoles, a difference that was significant when assayed at 15 degrees C (P<0. 01). These results suggest a mechanism for developmental temperature effects on locomotor performance observed in other taxa.  相似文献   

6.
Threespine sticklebacks (Gasterosteus aculeatus) that had been reared in the laboratory under natural photoperiods were acclimated to 23 degrees and 8 degrees C in late spring under increasing day lengths and again in late fall under decreasing day lengths. The parents of these fish were from the anadromous Isle Verte population. In the spring, cold- and warm-acclimated fish grew at the same rates and attained similar condition factors (mass L(-3)), although food intake was considerably higher at 23 degrees C. As both groups had similar increases in mass and condition, the higher axial muscle activities of citrate synthase and phosphofructokinase (measured at 20 degrees C) after cold acclimation were likely a direct response to temperature. Multiple regression analysis showed that axial muscle levels of cytochrome C oxidase and citrate synthase were correlated with the burst swimming speeds of the spring sticklebacks, while growth rates were positively correlated with lactate dehydrogenase levels in pectoral and axial muscles and creatine kinase levels in the axial muscle. In the fall, the fish in both acclimation groups grew little, although they fed at similar rates as in the spring experiment. Overall, the sticklebacks showed lower burst swimming speeds in the fall. In both spring and fall, the burst speeds of cold- and warm-acclimated sticklebacks only differed at warm temperatures. In the spring experiment, the cold-acclimated fish swam faster, whereas in the fall experiment the warm-acclimated fish swam faster despite their lower percentage of axial muscle. Swimming speeds were measured both at a fish's acclimation temperature and after 12 h at the other temperature. Cold-acclimated sticklebacks seem to have more facility in rapidly adjusting to warm temperatures when they have experienced increasing rather than decreasing day lengths, perhaps as a result of the requirements of the spring migration to the intertidal breeding grounds.  相似文献   

7.
Swimming speeds and flagellar rotation rates of individual free-swimming Vibrio alginolyticus cells were measured simultaneously by laser dark-field microscopy at 25, 30, and 35 degrees C. A roughly linear relation between swimming speed and flagellar rotation rate was observed. The ratio of swimming speed to flagellar rotation rate was 0.113 microns, which indicated that a cell progressed by 7% of pitch of flagellar helix during one flagellar rotation. At each temperature, however, swimming speed had a tendency to saturate at high flagellar rotation rate. That is, the cell with a faster-rotating flagellum did not always swim faster. To analyze the bacterial motion, we proposed a model in which the torque characteristics of the flagellar motor were considered. The model could be analytically solved, and it qualitatively explained the experimental results. The discrepancy between the experimental and the calculated ratios of swimming speed to flagellar rotation rate was about 20%. The apparent saturation in swimming speed was considered to be caused by shorter flagella that rotated faster but produced less propelling force.  相似文献   

8.
A three-dimensional tracking microscope was used to quantify the effects of temperature (50 to 80 degrees C) and pH (2 to 4) on the motility of Sulfolobus acidocaldarius, a thermoacidophilic archaeon. Swimming speed and run time increased with temperature but remained relatively unchanged with increasing pH. These results were consistent with reported changes in the rate of respiration of S. acidocaldarius as a function of temperature and pH. Cells exhibited a forward-biased turn angle distribution with a mean of 54 degrees. Cell trajectories during a run were in the shape of right-handed helices. A cellular dynamics simulation was used to test the hypothesis that a population of S. acidocaldarius cells could distribute preferentially in a spatial temperature gradient due to variation in swimming speed. Simulation results showed that a population of cells could migrate from a higher to a lower temperature in the presence of sharp temperature gradients. This simulation result was achieved without incorporating the ability of cells to sense a temporal thermal gradient; thus, the response was not thermotactic. We postulate that this temperature-sensitive motility is one survival mechanism of S. acidocaldarius that allows this organism to move away from lethal hot spots in its hydrothermal environment.  相似文献   

9.
This is the first report on the effects of a single bout of swimming to exhaustion in cold water on rat erythrocyte deformability, aggregation and fatty acid composition in erythrocyte membranes. The results indicate that there was a significant decrease in body temperature of experimental rats swimming in water at 4 degrees C and 25 degrees C when compared to the control. Erythrocyte aggregation indices did not change after swimming in water at 4 degrees C whereas erythrocyte deformability increased at shear stress 1,13 [Pa] and 15,96 [Pa]. Physical effort performed in water at 4 degrees C when compared to the control group resulted in an increase in monounsaturated and polyunsaturated n-3 fatty acid content in erythrocyte membranes that influenced the increase in their fluidity and permeability even though that of polyunsaturated n-6 fatty acids decreased. Physical effort performed in 25 degrees C water resulted in an increase in saturated fatty acid content and a decrease in all polyunsaturated fatty acids and polyunsaturated n-6 fatty acids when compared to the control group. Swimming of untrained old rats in cold water affected rheological properties oferythrocytes in a negligible way while changes in the fatty acid composition of erythrocyte membranes were more pronounced.  相似文献   

10.
Video measurements were used to monitor the temperature acclimatizedswimming speeds (24 hours exposure) of 11 species of marinedinoflagellates, some represented by different clones, on atemperature gradient plate. Although the inherent variabilityamong individuals within a population under the same treatmentwas high, each species or clone could be represented by a responsescatter plot that characterized its temperature-dependent swimmingability. A curve-fitting treatment of the data demonstratedthe similarity of the swimming speed versus temperature responsesfor repetitive trials on a single clone or for different clonesand the diversity of the swimming speed versus temperature responsesamong different species. Comparisons among populations includedviable temperature range, maximum swimming speed and responsecurve shape. All species swam over a broader temperature rangethan that over which growth was detected. Maximum swimming speedwithin the measured group occurred at a cell length of -35 µgThis possible optimum in cell size may result from the hydrodynamiccharacteristics of dinoflagellate swimming. Swimming speed variationamong dinoflagellate species can influence the competitive interactionswithin the group or with other kinds of phytoplankton and canaffect predator-prey interactions with herbivores.  相似文献   

11.
Synopsis Observations on continuously swimming tunas were used to determine effects of temperature upon volitional locomotory activity and to determine upper and lower lethal temperatures. Experimental subjects were 10 skipjack tuna, Katsuwonus pelamis, 9 kawakawa, Euthynnus affinis, and 3 yellowfin tuna, Thunnus albacares.Our results: lower and upper lethal temperatures for the euthynnids (K. pelamis and E. affinis) were 15° and 33° C, respectively. Swimming speed for the euthynnids did not decrease with temperature within most of the zone of thermal tolerance; we observed either temperature independence or increases in speed as the temperature decreased. Yellowfin tuna swam slower as the water temperature decreased, but swimming speed changes lagged behind the water temperature changes. This effect was most certainly due to the large thermal inertia that is a property of tunas. The lag between swim speed and water temperature was eliminated by utilizing an estimate of red muscle temperature, rather than water temperature, as a covariate. Yellowfin tuna swim speed was best correlated with red muscle temperature rather than ambient water or brain temperatures.  相似文献   

12.
In littoral zones of aquatic systems, submerged macrophytes have marked structural variation that can modify the foraging activity of planktivores. Swimming and feeding behavior of Pseudorasbora parva and Rasbora daniconius (Cyprinidae) on their prey Daphnia pulex and Artemia salina, respectively, was studied in a series of laboratory experiments with varying stem densities. A range of stem densities was tested for each of the two species to compare the effect of simulated macrophytes on prey attack rates and swimming speed, average stem distance (D) was measured in fish body lengths for each of the two fish species. We found that, with reducing average stem distance, the attack rate decreased in the similar trend and this trend was similar for both fish species. However, the species differed in the degree to which swimming activity was hindered at increased stem densities, and this was due to species-specific differences in the distance moved with one tail beat. Therefore, we conclude that the reductions in swimming speed with reduced average stem distance are due to the differences in fish movement per tail beat.  相似文献   

13.
In Lake Constance from September 1986 to May 1988 13 adult lake dwelling brown trout ( Sulmo trutta L.) were tagged with ultrasonic transmitters and tracked almost continuously for up to 13 days. Two behaviour types were observed: (a) random movement in locally restricted areas and (b) excursions of up to 40 km distance. Swimming activity during the day was significantly higher than at night in most experiments. In summer swimming depth ranged between 8 and 16 m, and in winter between 0 and 3m. The preferred water temperature was about 14°C in the thermally stratified waterbody. During the experiments mean swimming speed ranged between 0.3 km h−1 (0.1 bodylengths s−1) and 0.9 km h−1 (0.6 bodylengths s−1).  相似文献   

14.
Effects of elevated water temperature on the critical swim speeds of rainbow trout, Salmo gairdneri, were investigated. Trout acclimated to 10°C were exposed to 10, 15, 20 and 20°C while swimming and at rest. Initial swim speed of 20 cms−1 was increased in 10 cms−1 increments every 20 min until the fish fatigued. Critical swim speeds were calculated in absolute values (cms−1) and relative performance values (body lengths s−1). Critical swim speeds were similar at 10, 15 and 25°C. Swimming performance was significantly decreased at 25°C. Performance measured as critical swim speed was unaffected by temperature elevations up to 10°C above acclimation temperature of 10°C.  相似文献   

15.
We conducted a seasonal survey of the swimming behaviour of Chironomus acerbiphilus larvae in volcanic Lake Katanuma from April 1998 to December 2001. Swimming C. acerbiphilus density was much higher than other chironomid species in lakes. All C. acerbiphilus larvae (1st through 4th instars) swam, but the earlier instars (especially the 1st) had the greatest densities and fluctuations. First instars were never found in the benthic population. This result indicates that the 1st-instar larvae are planktonic. Low water temperature (below about 10 °C) resulted in the seasonal disappearance of swimming chironomid larvae. Chemical factors – oxygen depletion or presence of hydrogen sulfide – also restricted the distribution of swimming and benthic larvae. Larvae were distributed only in the oxygen-rich part of the lake bottom and swam only in the oxygen-rich layer of the water column. The density of older swimming C. acerbiphilus (3rd and 4th instars) tended to increase with increasing benthic larval densities. The chemical stress of oxygen depletion or presence of hydrogen sulfide during holomixis within and after the stratification period leads to conspicuous swimming behaviour of benthic C. acerbiphilus larvae. Almost all C. acerbiphilus larvae died on this occasion.  相似文献   

16.
Young adult male rats were treated with isoproterenol during the day to induce high levels of pineal N-acetyltransferase (NAT) activity and melatonin. Roughly 2 hr later when pineal NAT activity and melatonin levels were elevated, animals were given either an injection of a calcium channel blocker, i.e., either nifedipine or verapamil, or diluent. The rats were then forced to swim for 10 min in room temperature (22 degrees C) water. Fifteen minutes after swimming onset, pineal glands were collected for measurement of NAT activity and melatonin. Swimming caused a dramatic reduction in pineal melatonin content without influencing NAT activity. Nifedipine substantially and verapamil completely blocked the drop in pineal melatonin levels due to swimming without influencing NAT activity. The results suggest that calcium may be somehow directly or indirectly involved in melatonin release from the rat pineal gland.  相似文献   

17.
Swimming endurance of whiteleg shrimp, Litopenaeus vannamei exposed to various temperatures (15, 20, and 25 degrees C) and salinities (15, 32, and 40 per thousand) was determined in a swimming channel against one of five flow velocities (5.41, 6.78, 8.21, 10.11, and 11.47 cm s(-1)) for up to 9000 s. No shrimp swam the full 9000 s throughout the experiment. The swimming endurance decreased as swimming speed was increased at any of the temperatures and salinities tested and was significantly affected by temperature and salinity (P<0.05). The power model (nu x t(b) = a) showed a better fit to the relationship between swimming endurance (t, in s) and swimming speed (nu, in cm s(-1)) at any of the temperatures and salinities tested. The swimming ability index (SAI), defined as SAI = integral(0)(9000) vdt x 10(-4) (cm), was found to be temperature- and salinity-dependent in L. vannamei. The optimum temperature and salinity and corresponding maximum SAI were Topt = 21.3 degrees C and SAI(max21.3) = 7.37 cm; Sopt = 27.6 per thousand and SAI(max27.6) = 7.47 cm, respectively. The range of temperatures and salinities within which SAI is >90% of the maximum was estimated between 17.6 and 24.9 degrees C and between 18.5 and 36.7 per thousand, respectively. The results suggest that the power model fits well to the observed endurance estimates and the SAI is a good index to quantitatively describe the overall swimming ability of L. vannamei. Furthermore, temperature and salinity can limit the swimming performance of L. vannamei.  相似文献   

18.
Some penaeids are active swimmers, undertaking migrations of hundreds of nautical miles. At present, however, very little is known of swimming ability in penaeid shrimps. The aim of the present study is to investigate swimming endurance of whiteleg shrimp, Litopenaeus vannamei, against one of five flow velocities (5.41, 6.78, 8.21, 10.11, and 11.47 cm s(-1)) for up to 9000 s at 20 degrees C in a swimming channel. Body mass, hemolymph total protein concentration, and hemolymph glucose level were measured before swimming and immediately following swimming to evaluate physiological effect of swimming in L. vannamei. No shrimp swam the full 9000 s at any of the velocities tested. The swimming endurance decreased as swimming speed was increased. The relationship between swimming endurance (t, in s) and swimming speed (v, in cm s(-1)) can be described by the Curve Estimation: v.t0.38 = 159.64 (R2 = 0.94). The swimming ability index (SAI), defined as SAI = integral 0-9000 vdt x 10(-4) (cm) was found to be 7.28 cm for the shrimp tested. Swimming to fatigue leads to severe loss of body mass, hemolymph total protein concentration, and hemolymph glucose level in L. vannamei (P < 0.05). Furthermore, these decreases and swimming speed showed significantly polynomial relationships (P < 0.05). The results suggest that the power model fits well to the observed endurance estimates and the SAI is a good index to quantitatively describe the overall swimming ability of L. vannamei. Furthermore, hemolymph total protein concentration may be used as a rapid and reliable indicator to assess the penaeid shrimps' swimming speed and hence swimming ability.  相似文献   

19.
The swimming velocity and the amplitude of the helical swimming path of T. pyriformis-NT1 cells grown at 20 degrees C (Tg 20 degrees C) and 38 degrees C (Tg 38 degrees C) were monitored between 0 and 40 degrees C in the presence and absence of electric fields. Within physiological limits the swimming velocity increased and the amplitude decreased as temperature was raised. The temperature profiles of these properties were not linear, and showed discontinuities at different temperatures for the different cultures. The break points in Arrhenius plots of the resting potential, regenerative spike magnitude, repolarization time, swimming velocity and swimming amplitude are tabulated and compared. The initial breakpoints upon cooling were clustered about the breakpoints in fluorescence polarization of D.P.H. in extracted phospholipids, and around the transition temperatures estimated from the literature for the pellicular membrane of these cells. The average of the initial breakpoints on cooling was 22.9 degrees C for Tg 38 degrees C cells and 13.7 degrees C for Tg 20 degrees C cells, a shift of 9.2 degrees C. Unlike Paramecium there is no depolarizing receptor potential in Tetrahymena upon warming. It is suggested that this may be the basis of a behavioural difference between Tetrahymena and Paramecium--namely that in Tetrahymena maximum swimming velocity occurs above growth temperature whereas in Paramecium the two points coincide. Swimming velocity and resting potential were correlated with membrane fluidity within physiological limits, but for other parameters the relationship with fluidity was more complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The mean swimming speed of a suspension of human sperms has been estimated by applying a kinetic theory and using an image analysing computer. This technique allowed the study of the evolution of motility in terms of temperature: the global swimming speed significantly increases from 22 degree C to 31 degrees C, and then remains rather constant. However the percentage increases are very varying according to samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号