首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In 4-cell embryos (but not in blastocysts), Triton X-100, a non-ionic detergent, stimulated leucine, phenylalanine, methionine and glutamic acid transport from 1.6 to 3.2-fold. All of these amino acids were transported exclusively by a sodium-independent mechanism. Triton X-100, however, did not stimulate the transport of other amino acids tested in 4-cell embryos. Furthermore, phenylalanine transport rates were stimulated about 2-fold at the 4-cell stage by all of the non-ionic and zwitterionic detergents tested at concentrations which were approximately one-tenth of the critical micellar concentration for each detergent. These concentrations did not block development, disrupt the cells, or make the cell membranes freely permeable. At the blastocyst stage, Z312, a zwitterionic detergent, inhibited the transport of phenylalanine and alanine and stimulated the transport of lysine, a pattern previously found to be linked to the sodium-dependent amino acid transport mechanism. We suggest that Z312 may be acting upon some component of sodium-dependent amino acid transport in blastocysts. The non-ionic and zwitterionic detergents seemed to have a common effect on amino acid transport in 4-cell embryos but elicited varied transport responses from blastocysts. These differential responses to detergents by blastocysts may reflect intrinsic changes in membrane composition and/or organization which occur during the normal course of preimplantation development.  相似文献   

3.
Hamster embryo development to the blastocyst stage in vitro can be modulated by amino acids. This series of experiments employed both empirically and statistically designed approaches to elucidate which of 20 amino acids inhibit or stimulate development and to devise a complement of amino acids that best supports in vitro development of hamster 1-cell embryos. Development and/or mean cell number were significantly inhibited by the presence of leucine, tyrosine, valine, isoleucine, phenylalanine, arginine, methionine, or cysteine (at 0.5 mM) and isoleucine, phenylalanine, or tryptophan (at 0.05 mM). Three amino acids—glutamine, taurine, and glycine—were stimulatory and in combination improved development; the culture medium containing these amino acids was designated Hamster Embryo Culture Medium-5. Moreover, addition of another eight amino acids—asparagine, aspartic acid, serine, glutamic acid, histidine, lysine, proline and cysteine (medium designated HECM-6)—had a significant stimulatory effect on development over previously formulated culture media for hamster embryos. These results demonstrated that amino acids, alone and in combination, can markedly stimulate or inhibit hamster embryo development in vitro up to the blastocyst stage. Embryo transfer experiments showed that HECM-5 and ?6 (chemically defined, protein-free culture media) supported normal preimplantation embryo development in vitro. This study also indicates that empirically designed embryo culture media formulations can be as effective as those obtained by application of statistical methodologies. © 1995 wiley-Liss, Inc.  相似文献   

4.
A low molecular weight somatomedin inhibitory serum fraction (SI), obtained from streptozotocin-induced diabetic rats, causes morphological abnormalities and growth reduction in mouse embryos grown in whole embryo culture (WEC). These abnormalities are thought to be caused, at least in part, by a failure of the visceral yolk sac (VYS) to properly degrade proteins, a process that normally provides the conceptus with amino acids and peptides for de novo protein synthesis (histiotrophic nutrition). To test this hypothesis, embryos exposed to the SI were provided with a mixture of ten essential amino acids (supplemented group) in an attempt to circumvent SI-induced VYS dysfunction. Results showed that 82.4% (14/17) of embryos in the amino acid-supplemented group exhibited improved growth and development compared to those embryos exposed to medium containing the SI alone (unsupplemented group). Supplemented embryos showed greater expansion of the brain regions, improved visceral arch development, and increased protein content compared to nonsupplemented SI-treated embryos. However, these parameters were still reduced compared to controls. VYSs from both the unsupplemented and amino acid-supplemented groups were identical with respect to alterations in morphology and increased protein content compared to VYSs from conceptuses cultured in control medium (with or without amino acid supplementation). The improvement in embryonic growth and development due to amino acid supplementation in spite of VYS abnormalities supports the hypothesis that nutritional deprivation is one aspect of SI-induced teratogenesis.  相似文献   

5.
Amino acid metabolism of the porcine blastocyst   总被引:1,自引:0,他引:1  
The pattern of depletion and appearance of a mixture of amino acids by single porcine blastocysts incubated in two different media has been determined non-invasively using high performance liquid chromatography. Zygotes were produced by the in vitro fertilisation of in vitro-matured, abattoir-derived immature oocytes and cultured in medium NCSU 23 with or without amino acids. Embryos grown in the absence of amino acids up to the blastocyst stage were transferred to amino acid-containing culture medium for measurement of turnover (Experiment 1). Blastocysts grown in NCSU 23+amino acids were transferred into fresh droplets of the same medium (Experiment 2). Although the specific pattern of amino acid production and depletion varied between experiments, a general pattern emerged, with arginine being significantly depleted (p<0.001) and alanine consistently appearing in the media, in quantities that varied depending with culture conditions. The data suggest that arginine is important during porcine blastocyst development, most likely contributing to the formation of nitric oxide and polyamines and that alanine is produced as a means of disposing of excess amino groups. A model for the interactions of amino acids during porcine early embryo development is proposed. The profile of amino acid metabolism by porcine blastocysts is qualitatively and quantitatively similar to that given by human embryos during the morula:blastocyst transition suggesting that the porcine blastocyst is a good model for the human.  相似文献   

6.
Two protein families that represent major components of essential amino acid transport in insects have been identified. They are annotated as the SLC6 and SLC7 families of transporters according to phylogenetic proximity to characterized amino acid transporters (HUGO nomenclature). Members of these families have been identified as important apical and basolateral parts of transepithelial essential amino acid absorption in the metazoan alimentary canal. Synergistically, they play critical physiological roles as essential substrate providers to diverse metabolic processes, including generic protein synthesis. This review briefly clarifies the requirements for amino acid transport and a variety of amino acid transport mechanisms, including the aforementioned families. Further it focuses on the large group of Nutrient Amino acid Transporters (NATs), which comprise a recently identified subfamily of the Neurotransmitter Sodium Symporter family (NSS or SLC6). The first insect NAT, cloned from the caterpillar gut, has a broad substrate spectrum similar to mammalian B(0) transporters. Several new NAT-SLC6 members have been characterized in an effort to explore mechanisms for the essential amino acid absorption in model dipteran insects. The identification and functional characterization of new B(0)-like and narrow specificity transporters of essential amino acids in fruit fly and mosquitoes leads to a fundamentally important insight: that NATs evolved and act together as the integrated active core of a transport network that mediates active alimentary absorption and systemic distribution of essential amino acids. This role of NATs is projected from the most primitive prokaryotes to the most complex metazoan organisms, and represents an interesting platform for unraveling the molecular evolution of amino acid transport and modeling amino acid transport disorders. The comparative study of NATs elucidates important adaptive differences between essential amino acid transportomes of invertebrate and vertebrate organisms, outlining a new possibility for selective targeting of essential amino acid absorption mechanisms to control medically and economically important arthropods and other invertebrate organisms.  相似文献   

7.
Membrane proteins are essential to move amino acids in or out of plant cells as well as between organelles. While many putative amino acid transporters have been identified, function in nitrogen movement in plants has only been shown for a few proteins. Those studies demonstrate that import systems are fundamental in partitioning of amino acids at cellular and whole plant level. Physiological data further suggest that amino acid transporters are key-regulators in plant metabolism and that their activities affect growth and development. By contrast, knowledge on the molecular mechanisms of cellular export processes as well as on intracellular transport of amino acids is scarce. Similarly, little is known about the regulation of amino acid transporter function and involvement of the transporters in amino acid signaling. Future studies need to identify the missing components to elucidate the importance of amino acid transport processes for whole plant physiology and productivity.  相似文献   

8.
Up to 40% of cattle embryos die within 3 weeks of fertilization while they are nutritionally dependent on the maternal environment provided by the oviduct and uterine fluids for their development and survival. Despite this dependence there is limited information on the composition of these fluids in cattle. Amino acids are essential for the normal growth and development of the early embryo, acting as precursors of proteins and nucleic acids and as energy sources, osmolytes and signaling molecules. The objective of this study was to measure and compare the amino acid concentrations of oviduct and uterine fluid and blood plasma on different days of the estrous cycle. Oviduct fluid was collected in situ from anaesthetised heifers on Days 0, 2, 3, 4 and 6 and uterine fluid on Days 6, 8 and 14 of the estrous cycle and the concentrations of 19 amino acids determined. Glycine was the most abundant amino acid in both oviduct and uterine fluid. However, the concentrations of many amino acids differed between oviduct and uterus and many were present at higher concentrations in oviduct and uterine fluid than in blood plasma. Oviduct fluid concentrations of amino acids were not affected by day of cycle in contrast to uterine fluid for which there was a day of cycle effect on most of the amino acids. These results provide novel information on the amino acid concentrations in the maternal environment of the early cattle embryo and could form the basis for devising improved media for the production of embryos in vitro.  相似文献   

9.
Co-cultures of embryos with somatic cells, usually in the form of monolayers, or conditioned medium from these somatic cells, results in development past the early stage blocks and the formation of hatched blastocysts. Optimum rates of development are not achieved, however, and the task is to investigate components of the oviduct that are obligatory or facilitative for embryo development. Glycine and alanine are amino acids present in much higher concentrations in oviduct fluid than in serum or culture media. Glycoproteins specifically produced by the oviduct around oestrus bind to embryos and aid development but are absent from most culture media. These glycoproteins are induced by oestrogen in vivo but not in vitro. It is our contention that co-cultures of mammalian embryos should include appropriate concentrations of amino acids and a source of embryotrophic glycoproteins as an additive or by including stromal cells in addition to epithelial cells.  相似文献   

10.
11.
小鼠胚胎体外发育培养基中氨基酸含量变化   总被引:1,自引:0,他引:1  
通过检测哺乳动物早期胚胎体外发育过程中可以消耗或生成某些氨基酸的含量,可以了解胚胎的发育潜能。利用反相高效液相色谱法(RP-HPLC)检测KSOMaa培养基中17种氨基酸含量的变化,了解昆明小白鼠(Mus musculus)植入前胚胎体外培养过程中氨基酸含量的变化,旨在寻找一种能有效支持昆明小鼠胚胎体外发育的培养基氨基酸组成,优化小鼠胚胎体外培养体系。将180枚原核胚分为9组,体外培养至囊胚,分别于胚胎发育不同时期取样做高效液相色谱分析。这些氨基酸在胚胎发育不同时期的培养基中含量变化可分为5种类型:①在2细胞期增加但在4细胞期、8~16细胞期减少,囊胚期又增加的氨基酸(甘氨酸、亮氨酸、苏氨酸、缬氨酸、苯丙氨酸、酪氨酸);②在胚胎发育各个时期均下降(谷氨酸、甲硫氨酸、精氨酸、组氨酸);③在胚胎发育各个时期均增加(丝氨酸、赖氨酸、丙氨酸);④2细胞期含量减少而在其他时期持续增加(天冬氨酸、脯氨酸、色氨酸);⑤囊胚期减少,其他时期都有增加(异亮氨酸)。  相似文献   

12.
Our understandings of the molecular and cellular mechanisms underlying tubal transport of embryos are poor. This study describes the essential role of the molecules on the zona pellucida (ZP) in the tubal transport of mouse embryos. The bovine and porcine embryos that were interspecifically transferred to the mouse oviduct were selectively retained in the oviduct and rarely transported to the uterus. Antiserum ZP3-9 against synthetic peptides that are specific for mouse ZP3, significantly interfered with tubal transport of the treated embryos. The treatment of mouse embryos with antiserum ZP2-20 against the synthetic peptides, deduced from the sequences that are conserved in the structure of ZP2 from mouse and human, also inhibited their tubal transport. Among various proteolytic and glycosidic enzymes, treatments with trypsin and beta-glucosidase prior to transfer to the oviduct, significantly interfered with the tubal transport of the enzyme-treated mouse embryos. We hypothesize that species-specific epitopes on the ZP may be recognized by the oviductal cilia and/or the epithelial cells of ducts for tubal transport.  相似文献   

13.
Uptake of L-alanine, L-lysine, and choline into both preantral and antral mouse oocytes was enhanced by follicular cells. Follicular cells also enhanced glycine uptake into oocytes at the preantral stage of development, but no effect of these cells was observed at the antral stage. Glycine uptake was predominantly Na+ dependent and inhibited almost completely by 10 mM sarcosine, moderately by proline and its analog pipecolate, and poorly or not at all by other amino acids. By these criteria, glycine transport was mainly via system Gly in follicular cells and the oolemma at both the preantral and antral stages. Moreover, an increase in glycine transport via the oolemma between the preantral and antral stages was more than threefold larger than was the increase in transport of alanine or lysine. This relatively large increase in glycine-specific transport in the oolemma appears to obscure the ability of follicular cells to enhance glycine uptake into antral oocytes. In contrast to other amino acids, leucine uptake into oocytes was not enhanced by follicular cells unless 14 other amino acids were also present at their concentrations in mouse serum. An inhibitor of gap junctional communication, 18-alpha-glycyrrhetinic acid, abolished follicular cell-enhanced uptake of glycine and choline into preantral oocytes. Therefore, the extent to which follicular cells enhance uptake of a particular amino acid into oocytes depends on at least three physiologically important variables. Namely, enhancement may depend on the stage of follicular development, the presence of other amino acids in the environment, and gap junctional communication.  相似文献   

14.
Perinatal changes in the uptake of amino acids were measured in slices of fetal (15- and 19-day) and newborn (4-, 24-, and 48-hr-old) mouse brain. Uptake increased with age; smaller changes occurred with basic and neutral amino acid transport systems, and the largest changes occurred in fetal brain with amino acids of putative neurotransmitter function (taurine, glycine, GABA, and the acidic amino acids). The pattern of increase in uptake was similar at high and at low external amino acid concentrations. Developmental changes in tissue content of Na+, K+, or ATP were small during this period, and so are unlikely to be responsible for the observed changes in uptake. It appears that by the 15th day of fetal life, the transport systems for essential amino acids are fairly well developed in the brain, and the transport systems for neurotransmitter amino acids are not so well developed, but undergo a rapid increase in the 15–19-day period. From birth to adulthood, the concentrative capacity of slices of mouse brain for nonessential (putative neurotransmitter) amino acids is much greater than for essential amino acids.This research was supported in part by NIH Grant No. RR05707.  相似文献   

15.
16.
The mutant mouse strain HPH2 (hyperphenylalaninemia) was isolated after N-ethyl-N-nitrosourea (ENU) mutagenesis on the basis of delayed plasma clearance of an injected load of phenylalanine. Animals homozygous for the recessive hph2 mutation excrete elevated concentrations of many of the neutral amino acids in the urine, while plasma concentrations of these amino acids are normal. In contrast, mutant homozygotes excrete normal levels of glucose and phosphorus. These data suggest an amino acid transport defect in the mutant, confirmed in a small reduction in normalized values of 14C-labeled glutamine uptake by kidney cortex brush border membrane vesicles (BBMV). The hyperaminoaciduria pattern is very similar to that of Hartnup Disorder, a human amino acid transport defect. A subset of Hartnup Disorder cases also show niacin deficiency symptoms, which are thought to be multifactorially determined. Similarly, the HPH2 mouse exhibits a niacin-reversible syndrome that is modified by diet and by genetic background. Thus, HPH2 provides a candidate mouse model for the study of Hartnup Disorder, an amino acid transport deficiency and a multifactorial disease in the human. Received: 16 May 1996 / Accepted: 25 September 1996  相似文献   

17.
Aphids are well‐known for their symbiotic relationship with intracellular bacteria of the genus Buchnera (γ‐Proteobacteria). The symbiosis has a nutritional basis in that the bacteria supplement the aphid diet of phloem sap through the provision of essential amino acids. To date, few studies have considered the spatial complexity of the association, particularly the delineation of the symbiosis into embryo and maternal compartments. Here, we generate aposymbiotic (bacteria‐free) embryos of the black bean aphid, Aphis fabae (Scopoli) (Hemiptera: Aphididae), as our experimental model and demonstrate that embryos reared in culture media require an external supply of essential amino acids. Analysis of individual amino acid deletions from the culture medium indicate that the key individual amino acids for embryo growth are phenylalanine and valine derived from the maternal tissues, and tryptophan derived from Buchnera. These results are discussed in relation to our current limited understanding of nutrient supply to aphid embryos.  相似文献   

18.
The uptake of l-methionine-methyl-3H and l-leucine-3H from completely defined medium into acid-soluble fractions of preimplantation mouse embryos has been studied. Late four-cell embryos and early blastocysts raised in vitro can concentrate both amino acids by processes which exhibit saturable, Michaelis-Menten type kinetics, characteristic of carrier-mediated active transport systems. This uptake is temperature-sensitive and inhibited by certain amino acids which compete for the same uptake sites. Methionine uptake seems to be mediated by a single transport system (Km = 6.25 × 10?5M) at the four-cell stage. Complex kinetics suggest that two distinct transport systems exist at the early blastocyst stage (Km = 6.25 × 10?5M; 8.9 × 10?4M). Vmax values (mg/embryo/15 min) for methionine and leucine transport increase significantly from the late four-cell stage to the blastocyst stage, suggesting that additional carriers are produced or activated during development.Most importantly, leucine and methionine transport is Na+-independent at the four-cell stage, methionine transport is partially dependent at the morula stage, and both amino acids are completely Na+-dependent at the blastocyst stage. The cumulative results suggest that preimplantation embryos accumulate leucine and methionine by specific, chemically mediated, active transport systems. The qualitative and quantitative developmental changes in cell membrane function may represent preparatory steps for subsequent growth of embryonic and/or trophoblastic cells.  相似文献   

19.
Two-cell mouse conceptuses were cultured in media that contained various concentrations of inorganic ions and amino acids. Substrates of the amino acid transport system Gly were detrimental to development at slightly hyposmotic concentrations of other ions. In contrast, these amino acids increased the frequency at which two-cell conceptuses developed into blastocysts at total ion concentrations of 355 to 405 mM. Data reported elsewhere is consistent with the possibility that the total ion concentration in oviductal fluid exceeds 360 mM, whereas the concentration of glycine in this fluid may be on the order of 10 mM. Therefore, a high ion concentration and glycine may counteract the potentially harmful effects of each other in situ. Like some marine organisms, preimplantation mouse conceptuses may use glycine as an intracellular osmolite because accumulation of inorganic ions could perturb the activities of some enzymes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号