首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sterol synthesis by the mevalonate pathway is modulated, in part, through feedback-regulated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). In both mammals and yeast, a non-sterol isoprenoid signal positively regulates the rate of HMGR degradation. To define more precisely the molecule that serves as the source of this signal, we have conducted both pharmacological and genetic manipulations of the mevalonate pathway in yeast. We now demonstrate that farnesyl diphosphate (FPP) is the source of the positive signal for Hmg2p degradation in yeast. This FPP-derived signal does not act by altering the endoplasmic reticulum degradation machinery in general. Rather, the FPP-derived signal specifically modulates Hmg2p stability. In mammalian cells, an FPP-derived molecule also serves as a positive signal for HMGR degradation. Thus, both yeast and mammalian cells employ the same strategy for regulation of HMGR degradation, perhaps by conserved molecular processes.  相似文献   

2.
3-Hydroxy-3-methylglutaryl (HMG)-CoA reductase (HMGR), the rate-limiting enzymes of sterol synthesis, undergoes feedback-regulated endoplasmic reticulum degradation in both mammals and yeast. The yeast Hmg2p isozyme is subject to ubiquitin-mediated endoplasmic reticulum degradation by the HRD pathway. We had previously shown that alterations in cellular levels of the 15-carbon sterol pathway intermediate farnesyl pyrophosphate (FPP) cause increased Hmg2p ubiquitination and degradation. We now present evidence that the FPP-derived, 20-carbon molecule geranylgeranyl pyrophosphate (GGPP) is a potent endogenous regulator of Hmg2p degradation. This work was launched by the unexpected observation that GGPP addition directly to living yeast cultures caused high potency and specific stimulation of Hmg2p degradation. This effect of GGPP was not recapitulated by FPP, GGOH, or related isoprenoids. GGPP-caused Hmg2p degradation met all the criteria for the previously characterized endogenous signal. The action of added GGPP did not require production of endogenous sterol molecules, indicating that it did not act by causing the build-up of an endogenous pathway signal. Manipulation of endogenous GGPP by several means showed that naturally made GGPP controls Hmg2p stability. Analysis of the action of GGPP indicated that the molecule works upstream of retrotranslocation and can directly alter the structure of Hmg2p. We propose that GGPP is the FPP-derived regulator of Hmg2p ubiquitination. Intriguingly, the sterol-dependent degradation of mammalian HMGR is similarly stimulated by the addition of GGOH to intact cells, implying that a dependence on 20-carbon geranylgeranyl signals may be a common conserved feature of HMGR regulation that may lead to highly specific therapeutic approaches for modulation of HMGR.  相似文献   

3.
3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), the key regulatory enzyme in the mevalonate (MVA) pathway, is rapidly degraded in mammalian cells supplemented with sterols or MVA. This accelerated turnover was blocked by N-acetyl-leucyl-leucyl-norleucinal (ALLN), MG-132, and lactacystin, and to a lesser extent by N-acetyl-leucyl-leucyl-methional (ALLM), indicating the involvement of the 26 S proteasome. Proteasome inhibition led to enhanced accumulation of high molecular weight polyubiquitin conjugates of HMGR and of HMGal, a chimera between the membrane domain of HMGR and beta-galactosidase. Importantly, increased amounts of polyubiquitinated HMGR and HMGal were observed upon treating cells with sterols or MVA. Cycloheximide inhibited the sterol-stimulated degradation of HMGR concomitantly with a marked reduction in polyubiquitination of the enzyme. Inhibition of squalene synthase with zaragozic acid blocked the MVA- but not sterol-stimulated ubiquitination and degradation of HMGR. Thus, similar to yeast, the ubiquitin-proteasome pathway is involved in the metabolically regulated turnover of mammalian HMGR. Yet, the data indicate divergence between yeast and mammals and suggest distinct roles for sterol and nonsterol metabolic signals in the regulated ubiquitination and degradation of mammalian HMGR.  相似文献   

4.
NORK in legumes encodes a receptor-like kinase that is required for Nod factor signaling and root nodule development. Using Medicago truncatula NORK as bait in a yeast two-hybrid assay, we identified 3-hydroxy-3-methylglutaryl CoA reductase 1 (Mt HMGR1) as a NORK interacting partner. HMGR1 belongs to a multigene family in M. truncatula, and different HMGR isoforms are key enzymes in the mevalonate biosynthetic pathway leading to the production of a diverse array of isoprenoid compounds. Testing other HMGR members revealed a specific interaction between NORK and HMGR1. Mutagenesis and deletion analysis showed that this interaction requires the cytosolic active kinase domain of NORK and the cytosolic catalytic domain of HMGR1. NORK homologs from Lotus japonicus and Sesbania rostrata also interacted with Mt HMGR1, but homologous nonsymbiotic kinases of M. truncatula did not. Pharmacological inhibition of HMGR activities decreased nodule number and delayed nodulation, supporting the importance of the mevalonate pathway in symbiotic development. Decreasing HMGR1 expression in M. truncatula transgenic roots by RNA interference led to a dramatic decrease in nodulation, confirming that HMGR1 is essential for nodule development. Recruitment of HMGR1 by NORK could be required for production of specific isoprenoid compounds, such as cytokinins, phytosteroids, or isoprenoid moieties involved in modification of signaling proteins.  相似文献   

5.
The isoprenoid pathway in yeasts is important not only for sterol biosynthesis but also for the production of nonsterol molecules, deriving from farnesyl diphosphate (FPP), implicated in N -glycosylation and biosynthesis of heme and ubiquinones. FPP formed from mevalonate in a reaction catalyzed by FPP synthase (Erg20p). In order to investigate the regulation of Erg20p in Saccharomyces cerevisiae , we searched for its protein partners using a two-hybrid screen, and identified five interacting proteins, among them Yta7p. Subsequently, we showed that Yta7p was a membrane-associated protein localized both to the nucleus and to the endoplasmic reticulum. Deletion of YTA7 affected the enzymatic activity of cis -prenyltransferase (the enzyme that utilizes FPP for dolichol biosynthesis) and the cellular levels of isoprenoid compounds. Additionally, it rendered cells hypersensitive to lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) that acts upstream of FPP synthase in the isoprenoid pathway. While HMGR is encoded by two genes, HMG1 and HMG2 , only HMG2 overexpression was able to restore growth of the yta7 Δ cells in the presence of lovastatin. Moreover, the expression level of the S. cerevisiae YTA7 gene was altered upon impairment of the isoprenoid pathway not only by lovastatin but also by zaragozic acid, an inhibitor of squalene synthase. Altogether, these results provide substantial evidence of Yta7p involvement in the regulation of isoprenoid biosynthesis.  相似文献   

6.
In mammalian cells, the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), which catalyzes the rate-limiting step in the mevalonate pathway, is ubiquitylated and degraded by the 26 S proteasome when mevalonate-derived metabolites accumulate, representing a case of metabolically regulated endoplasmic reticulum-associated degradation (ERAD). Here, we studied which mevalonate-derived metabolites signal for HMGR degradation and the ERAD step(s) in which these metabolites are required. In HMGR-deficient UT-2 cells that stably express HMGal, a chimeric protein between β-galactosidase and the membrane region of HMGR, which is necessary and sufficient for the regulated ERAD, we tested inhibitors specific to different steps in the mevalonate pathway. We found that metabolites downstream of farnesyl pyrophosphate but upstream to lanosterol were highly effective in initiating ubiquitylation, dislocation, and degradation of HMGal. Similar results were observed for endogenous HMGR in cells that express this protein. Ubiquitylation, dislocation, and proteasomal degradation of HMGal were severely hampered when production of geranylgeranyl pyrophosphate was inhibited. Importantly, inhibition of protein geranylgeranylation markedly attenuated ubiquitylation and dislocation, implicating for the first time a geranylgeranylated protein(s) in the metabolically regulated ERAD of HMGR.  相似文献   

7.
8.
Mevalonic aciduria (MA) and hyper-IgD and periodic fever syndrome (HIDS) are two inherited disorders both caused by depressed mevalonate kinase (MK) activity. MK is the first enzyme to follow the highly regulated 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase (HMGR), which catalyzes the rate-limiting step in the isoprenoid/cholesterol biosynthesis pathway. In fibroblasts of MA patients, but not of HIDS patients, HMGR activity is elevated under normal growth conditions. This activity is down-regulated when cells are supplemented with the isoprenoid precursors geraniol, farnesol, and geranylgeraniol, and a mixture of 25-hydroxycholesterol and cholesterol. This indicates that the regulation of the pathway in these cells is not disturbed. The elevated HMGR activity is probably due to a shortage of non-sterol isoprenoid end products, as indicated by normal HMGR mRNA levels in MA fibroblasts. Furthermore, the HMGR activity in MA cells was more sensitive to geranylgeraniol suppression and less sensitive to sterol suppression than the HMGR activity in low density lipoprotein receptor-deficient cells. HMGR activity in MA cells was down-regulated also by addition of its product mevalonate to the culture medium. Thus, it appears that the elevation of mevalonate levels, which are high in MA patients and moderate in HIDS patients, allows the cells to compensate for the depressed MK activity. Indeed, the isoprenylation of Ras and RhoA protein appeared normal in HIDS and MA fibroblasts under normal conditions but showed increased sensitivity toward inhibition of HMGR by simvastatin. Our results indicate that MK-deficient cells maintain the flux through the isoprenoid/cholesterol biosynthesis pathway by elevating intracellular mevalonate levels.  相似文献   

9.
10.
11.
N Campos  A Boronat 《The Plant cell》1995,7(12):2163-2174
The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) catalyzes the synthesis of mevalonate. This is the first committed step of isoprenoid biosynthesis. A common feature of all known plant HMGR isoforms is the presence of two highly conserved hydrophobic sequences in the N-terminal quarter of the protein. Using an in vitro system, we showed that the two hydrophobic sequences of Arabidopsis HMGR1S function as internal signal sequences. Specific recognition of these sequences by the signal recognition particle mediates the targeting of the protein to microsomes derived from the endoplasmic reticulum. Arabidopsis HMGR is inserted into the microsomal membrane, and the two hydrophobic sequences become membrane-spanning segments. The N-terminal end and the C-terminal catalytic domain of Arabidopsis HMGR are positioned on the cytosolic side of the membrane, whereas only a short hydrophilic sequence is exposed to the lumen. Our results suggest that the plant HMGR isoforms known to date are primarily targeted to the endoplasmic reticulum and have the same topology in the membrane. This reinforces the hypothesis that mevalonate is synthesized only in the cytosol. The possibility that plant HMGRs might be located in different regions of the endomembrane system is discussed.  相似文献   

12.
In eukaryotic cells all isoprenoids are synthesized from a common precursor, mevalonate. The formation of mevalonate from 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) is catalyzed by HMG-CoA reductase and is the first committed step in isoprenoid biosynthesis. In mammalian cells, synthesis of HMG-CoA reductase is subject to feedback regulation at multiple molecular levels. We examined the state of feedback regulation of the synthesis of the HMG-CoA reductase isozyme encoded by the yeast gene HMG1 to examine the generality of this regulatory pattern. In yeast, synthesis of Hmg1p was subject to feedback regulation. This regulation of HMG-CoA reductase synthesis was independent of any change in the level of HMG1 mRNA. Furthermore, regulation of Hmg1p synthesis was keyed to the level of a nonsterol product of the mevalonate pathway. Manipulations of endogenous levels of several isoprenoid intermediates, either pharmacologically or genetically, suggested that mevalonate levels may control the synthesis of Hmg1p through effects on translation.  相似文献   

13.
14.
The integral ER membrane protein HMG-CoA reductase (HMGR) is a key enzyme of the mevalonate pathway from which sterols and other essential molecules are produced. HMGR degradation occurs in the ER and is regulated by mevalonate-derived signals. Little is known about the mechanisms responsible for regulating HMGR degradation. The yeast Hmg2p isozyme of HMGR undergoes regulated degradation in a manner very similar to mammalian HMGR, allowing us to isolate mutants deficient in regulating Hmg2p stability. We call these mutants cod mutants for the control of HMG-CoA reductase degradation. With this screen, we have identified the first gene of this class, COD1, which encodes a P-type ATPase and is identical to SPF1. Our data suggested that Cod1p is a calcium transporter required for regulating Hmg2p degradation. This role for Cod1p is distinctly different from that of the well-characterized Ca(2+) P-type ATPase Pmr1p which is neither required for Hmg2p degradation nor its control. The identification of Cod1p is especially intriguing in light of the role Ca(2+) plays in the regulated degradation of mammalian HMGR.  相似文献   

15.
Currently, statins are the only drugs acting on the mammalian isoprenoid pathway. The mammalian genes in this pathway are not easily amenable to genetic manipulation. Thus, it is difficult to study the effects of the inhibition of various enzymes on the intermediate and final products in the isoprenoid pathway. In fission yeast, antifungal compounds such as azoles and terbinafine are available as inhibitors of the pathway in addition to statins, and various isoprenoid pathway mutants are also available. Here in these mutants, treated with statins or antifungals, we quantified the final and intermediate products of the fission yeast isoprenoid pathway using liquid chromatography-mass spectrometry/mass spectrometry. In hmg1-1, a mutant of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), ergosterol (a final sterol product), and squalene (an intermediate pathway product), were decreased to approximately 80% and 10%, respectively, compared with that of wild-type cells. Consistently in wild-type cells, pravastatin, an HMGR inhibitor decreased ergosterol and squalene, and the effect was more pronounced on squalene. In hmg1-1 mutant and in wild-type cells treated with pravastatin, the decrease in the levels of farnesyl pyrophosphate and geranylgeranyl pyrophosphate respectively was larger than that of ergosterol but was smaller than that of squalene. In Δerg6 or Δsts1 cells, mutants of the genes involved in the last step of the pathway, ergosterol was not detected, and the changes of intermediate product levels were distinct from that of hmg1-1 mutant. Notably, in wild-type cells miconazole and terbinafine only slightly decreased ergosterol level. Altogether, these studies suggest that the pleiotropic phenotypes caused by the hmg1-1 mutation and pravastatin might be due to decreased levels of isoprenoid pyrophosphates or other isoprenoid pathway intermediate products rather than due to a decreased ergosterol level.  相似文献   

16.
There is keen interest in the role of the isoprenoids farnesylpyrophosphate (FPP) and geranylgeranylpyrophosphate (GGPP) in protein prenylation and cell function in Alzheimer’s disease (AD). We recently reported elevated FPP and GGPP brain levels and increased gene expression of FPP synthase (FPPS) and GGPP synthase (GGPPS) in the frontal cortex of AD patients. Cholesterol levels and gene expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase were similar in AD and control samples, suggesting that homeostasis of FPP and GGPP but not cholesterol is specifically targeted in brain tissue of AD patients (Neurobiol Dis 2009 35:251–257). In the present study, it was determined if cellular levels of FPP, GGPP, and cholesterol affect beta-amyloid (Aβ) abundance in SH-SY5Y cells, expressing human APP695. Cells were treated with different inhibitors of the mevalonate/isoprenoid/cholesterol pathway. FPP, GGPP, cholesterol, and Aβ1-40 levels were determined, and activities of farnesyltransferase and geranylgeranyltransferase I were measured. Inhibitors of different branches of the mevalonate/isoprenoid/cholesterol pathway as expected reduced cholesterol and isoprenoid levels in neuroblastoma cells. Aβ1–40 levels were selectively reduced by cholesterol synthesis inhibitors but not by inhibitors of protein isoprenylation, indicating that changes in cholesterol levels per se and not isoprenoid levels account for the observed modifications in Aβ production.  相似文献   

17.
Plants produce diverse isoprenoids, which are synthesized in plastids, mitochondria, endoplasmic reticulum (ER), and the nonorganellar cytoplasm. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the synthesis of mevalonate, a rate-limiting step in the cytoplasmic pathway. Several branches of the pathway lead to the synthesis of structurally and functionally varied, yet essential, isoprenoids. Several HMGR isoforms have been identified in all plants examined. Studies based on gene expression and on fractionation of enzyme activity suggested that subcellular compartmentalization of HMGR is an important intracellular channeling mechanism for the production of the specific classes of isoprenoids. Plant HMGR has been shown previously to insert in vitro into the membrane of microsomal vesicles, but the final in vivo subcellular localization(s) remains controversial. To address the latter in Arabidopsis (Arabidopsis thaliana) cells, we conducted a multipronged microscopy and cell fractionation approach that included imaging of chimeric HMGR green fluorescent protein localizations in transiently transformed cell leaves, immunofluorescence confocal microscopy in wild-type and stably transformed seedlings, immunogold electron microscopy examinations of endogenous HMGR in seedling cotyledons, and sucrose density gradient analyses of HMGR-containing organelles. Taken together, the results reveal that endogenous Arabidopsis HMGR is localized at steady state within ER as expected, but surprisingly also predominantly within spherical, vesicular structures that range from 0.2- to 0.6-microm diameter, located in the cytoplasm and within the central vacuole in differentiated cotyledon cells. The N-terminal region, including the transmembrane domain of HMGR, was found to be necessary and sufficient for directing HMGR to ER and the spherical structures. It is believed, although not directly demonstrated, that these vesicle-like structures are derived from segments of HMGR-ER. Nevertheless, they represent a previously undescribed subcellular compartment likely capable of synthesizing mevalonate, which provides new evidence for multiorganelle compartmentalization of the isoprenoid biosynthetic pathways in plants.  相似文献   

18.
Molecular Cloning of a HMG-CoA Reductase Gene from Eucommia ulmoides Oliver   总被引:6,自引:0,他引:6  
Jiang J  Kai G  Cao X  Chen F  He D  Liu Q 《Bioscience reports》2006,26(2):171-181
The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes the conversion of HMG-CoA to mevalonate, which is the first committed step in the pathway for isoprenoid biosynthesis in plants. A full-length cDNA encoding HMGR (designated as EuHMGR, GenBank Accession No. AY796343) was isolated from Eucommia ulmoides by rapid amplification of cDNA ends (RACE). The full-length cDNA of EuHMGR comprises 2281 bp with a 1770-bp open reading frame (ORF) encoding a 590-amino-acid polypeptide with two trans-membrane domains revealed by bioinformatic analysis. Molecular modeling showed that EuHMGR is a new HMGR with a spatial structure similar to other plant HMGRs. The deduced protein has an isoelectric point (pI) of 6.89 and a calculated molecular weight of about 63 kDa. Sequence comparison analysis showed that EuHMGR had highest homology to HMGR from Hevea brasiliensis. As expected, phylogenetic tree analysis indicated that EuHMGR belongs to plant HMGR group. Tissue expression pattern analysis showed that EuHMGR is strongly expressed in the leaves and stems whereas it is only poorly expressed in the roots, which implies that EuHMGR may be a constitutively expressing gene. Functional complementation of EuHMGR in HMGR-deficient mutant yeast JRY2394 demonstrated that EuHMGR mediates the mevalonate biosynthesis in yeast.  相似文献   

19.
Addition of cell wall fragments from Phytophthora species or cellulase from Trichoderma viride, but not pectolyase from Aspergillus japonicus, to tobacco (Nicotiana tabacum) cell suspension cultures induced the accumulation of the extracellular sesquiterpenoid capsidiol. Pulse-labeling experiments with [14C]acetate and [3H]mevalonate suggested that enzymatic steps preceding mevalonate were limiting capsidiol biosynthesis in the pectolyase-treated cell cultures. Treatment of the cell cultures with either Phytophthora cell wall fragments or cellulase induced 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and sesquiterpene cyclase activities, enzymes of the sesquiterpene biosynthetic pathway, and phenylalanine ammonia lyase activity, an enzyme of the general phenylpropanoid pathway. Pectolyase treatment induced sesquiterpene cyclase and phenylalanine ammonia lyase activities, but not HMGR activity. These results corroborate the importance of inducible HMGR enzyme activity for sesquiterpene accumulation.  相似文献   

20.
Isoprenoids influence expression of Ras and Ras-related proteins   总被引:4,自引:0,他引:4  
Mevalonate depletion by inhibition of hydroxymethylglutaryl coenzyme A reductase impairs post-translational processing of Ras and Ras-related proteins. We have previously shown that this mevalonate depletion also leads to the upregulation of Ras, Rap1a, RhoA, and RhoB. This upregulation may result from global inhibition of isoprenylation or depletion of key regulatory isoprenoid species. Studies utilizing specific isoprenoid pyrophosphates in mevalonate-depleted cells reveal that farnesyl pyrophosphate (FPP) restores Ras processing and prevents RhoB upregulation while geranylgeranyl pyrophosphate (GGPP) restores Rap1a processing and prevents RhoA and RhoB upregulation. Either FPP or GGPP completely prevents lovastatin-induced upregulation of RhoB mRNA. Inhibition of FPP or squalene synthase allowed for the further identification of the putative regulatory species. Studies involving the specific isoprenyl transferase inhibitors FTI-277 and GGTI-286 demonstrate that selective inhibition of protein isoprenylation does not mimic lovastatin's ability to increase Ras and RhoA synthesis, decrease Ras and RhoA degradation, increase RhoB mRNA, or increase total levels of Ras, Rap1a, RhoA, and RhoB. In aggregate, these findings reveal a novel role and mechanism for isoprenoids to influence levels of Ras and Ras-related proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号