首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The tubulin-containing axoneme and manchette develop consecutively during mammalian spermiogenesis. The nature of their molecular components and developmental sequence are not completely known. The azh/azh (for abnormal sperm headshape) mouse mutant is an ideal model for analyzing tubulin isotypes and microtubule-associated proteins of the manchette and axoneme in light of a potential role of the manchette in the shaping of the sperm head and formation of the tail. We have searched for possible differences in tubulin isotype variants in fractionated manchettes and axonemes of wildtype and azh/azh mutant mice using isotype-specific tubulin antibodies as immunoprobes. Manchettes from wild-type and azh/azh mutant mouse spermatids were fractionated from spermatogenic stage-specific seminiferous tubules and axonemes were isolated from epididymal sperm. We have found that: (1) Fractionated manchettes of azh/azh mutants are longer than in wild-type mice; (2) Manchette and sperm tail axonemes display a remarkable variety of posttranslationally modified tubulins (acetylated, glutamylated, tyrosinated, alpha-3/7 tubulins). Acetylated tubulin was more abundant in manchette than in axonemes; (3) An acidic 62 kDa protein was identified as the main component of the perinuclear ring of the manchette in wild-type and azh/azh mice; (4) Bending and looping of the mid piece of the tail of azh/azh sperm, accompanied by a dislocation of the connecting piece from head attachment sites, were visualized by phase-contrast, immunofluorescence and transmission electron microscopy in about 35% of spermatids/sperm; and (5) A lasso-like tail configuration was predominant in epididymal sperm of azh/azh mutants. We speculate that spermatid and sperm tail abnormalities in the azh/azh mutant could reflect structural and/or assembly deficiencies of peri-axonemal proteins responsible for maintaining a stiffened tail during spermiogenesis and sperm maturation.  相似文献   

2.
Several reports in the literature describe men with infertility resulting from abnormal sperm head shape or decapitation defects of their spermatozoa. These defects are similar to those shown for the spermatozoa from azh (abnormal spermatozoon head shape) mice. The present study examines the efficiency and effects of intracytoplasmic sperm injection (ICSI) in successive generations of azh mice generated with this method. Three successive generations of azh mice were produced with ICSI. In all three ICSI series, more than 80% of 2-cell embryos were obtained, and more than 35% of embryos transferred gave rise to normal live offspring. In addition, ICSI was used to cross homozygous azh/azh males with homozygous azh/azh females, and live offspring were obtained. The ICSI-derived males were tested for their fecundity and abnormalities of sperm morphology. Spermatozoa from ICSI-derived azh/+ males did not show any impairment of fecundity in in vitro fertilization. These spermatozoa successfully fertilized oocytes from both C57BL/6 and B6D2F1 females, with fertilization rates ranging from 70%- 92%. The proportion of morphologically normal spermatozoa was similar in azh/+ males from three successive generations of ICSI (57.8%, 54.8%, and 49.0%, respectively), and no differences were noted when comparing ICSI-derived males with males derived by mating (57.6%) and with wild-type controls (61.6%). Detailed analysis differentiating between specific types of anomalies of sperm morphology did not reveal significant differences among the examined groups. The results of the present study demonstrate that ICSI does not enhance the azh mutation phenotype in the offspring and brings no risks when applied continuously. Moreover, serial (successive generations) ICSI is highly efficient in maintaining valuable mice with fertility problems.  相似文献   

3.
Germinal cells or nuclei with attached cytoskeletal elements were prepared from the testes and epididymides of normal mice and mice homozygous for the recessive azh mutation, which results in abnormal sperm heads. To make observations, we utilized phase-contrast microscopy, immunofluorescence microscopy with antitubulin antibodies, and a direct-view stereo electron microscope system developed by A. Cole. Sperm nuclei, tails, manchettes, and other cytoskeletal structures were studied at various stages of development. The tail architectures were similar in the normal and mutant forms, but the shape of the heads at the attachment regions were markedly different. Normal sperm nuclei were very flat, whereas the posterior regions of mutant nuclei were tapered cylinders. The manchette, an organized microtubular structure that girdles the posterior region of the spermatid nucleus, differed in size and configuration between normal and mutant forms. In normal midstage spermatids, the manchette microtubules extended outward at a 45 degree angle from the long axis of the flattened head, whereas in mutant spermatids, the microtubules formed tapered cylinders around the long axis of the caudal part of the nucleus. Radical differences in head shapes between normal and mutant sperm could be related, in part, to the manner in which manchettes formed and matured on the spermatids.  相似文献   

4.
The azh (abnormal spermatozoon headshape) mutation in the mouse, which results in abnormal sperm head formation, was demonstrated to display an autosomal recessive pattern of inheritance. The azh locus was mapped by crossing mice with the mutation on a relatively pure C57BL/6J(B6) background with C3H/HeKam and backcrossing the F1 mice to B6-azh/azh mice. Up to 60 backcross progeny were typed for azh, by microscopic examination of sperm heads, and for other markers. Eleven loci on chromosomes other than 4 showed no significant linkage with azh. Glucose 6-phosphate dehydrogenase-1 (Gpd-1), located on the distal part of chromosome 4, showed 26% recombination frequency with azh, indicating significant linkage (P less than .001). Linkage with an anonymous DNA probe for the D4Rp1 locus in the central region of chromosome 4 was then analyzed, and only a 5% recombination frequency was observed. The map location indicates that azh is distinct from other known mutations that also result in abnormal sperm heads.  相似文献   

5.
Abnormal manchette development in spermatids of azh/azh mutant mice   总被引:4,自引:0,他引:4  
A study of manchette development during spermiogenesis in azh/azh mutant mice was carried out by thin-section transmission electron microscopy with the goal of determining which of the initial steps in spermatid development are aberrant. In the homozygous mutant, spermatogenesis was quantitatively normal; but 100% of the sperm nuclei produced had abnormal shapes. The first defect, observed in steps 8-9, was the abnormal positioning of many manchette microtubules. These microtubules were directed towards regions of the plasma membrane not normally associated with manchette formation, in addition to being located at the caudal rim of the acrosome in the normal region of manchette formation. At steps 10-12, sheets of manchette microtubules were often in ectopic positions along the plasma membrane, rather than in association with the nuclear membrane as well. The fine structural appearance of the manchette was generally normal; the defect appeared to be in its positioning within the cell. In many step 8-10 spermatids nuclear invaginations and evaginations were observed, always associated with irregularities in the position of some of the manchette microtubules; these illustrate the capacity of manchette microtubules to deform nuclear shape. The nuclear irregularities remained throughout spermiogenesis. These observations are consistent with the hypothesis that the manchette is involved in at least some aspects of sperm nuclear shaping and that the improper positioning of manchette formation is a likely candidate for the primary abnormality resulting from a defective allele at the azh locus.  相似文献   

6.
In the mouse, numerous mutagens, teratogens and carcinogens have been shown to induce marked elevations in the fraction of sperm with head shape abnormalities. Since carcinogens and teratogens may act by causing genetic damage, a likely explanation of these results is that the sperm abnormalities are also caused by genetic damage. There are two more or less distinct classes of genetic damage, chromosomal aberrations and point mutations. In this paper, we provide evidence, that in general, chromosomal aberrations are not responsible for causing abnormally shaped sperm. Chromosomal aberrations could have caused abnormal sperm morphology in a number of ways. One possibility was that the mere presence of a translocated chromosome within the germ cell led to the malformation of the sperm head. A second possibility was that chromosomal imbalance, i.e., aneuploidy, duplications or deficiencies, within the spermatid or haploid cells caused abnormalities in shape. We tested these hypotheses by measuring the level of abnormally shaped sperm in mice homozygous and heterozygous for 24 various reciprocal and Robertsonian translocations. The diploid cells of these mice are known to be chromosomally balanced, containing translocated chromosomes. A predictable proportion of their gametes are, however, chromosomally unbalanced and carry translocated chromosomes. It was found that the levels of sperm abnormalities in these mice were convincingly unrelated to the levels predicted by any of the above hypotheses. Based on these results it seems that sperm abnormalities in mice are not due to the mere presence of translocated chromosomes in germ cells and also not due to chromosomal aneuploidy or duplication-deficiencies of chromosomal segments in the spermatid during development of the sperm.  相似文献   

7.
The first known case in the United States of a bull with the sterilizing oligoteratozoospermia known as “sperm tail stump defect” is reported. Ejaculates of semen were characterized by a watery appearance, extremely low sperm concentrations, sperm akinesia, and 100% abnormal spermatozoa. Different degrees of partial tail development were observed. The most common abnormalities were a short midpiece remnant or a cytoplasmic droplet-like rounded body replacing the midpiece and tail. Also, a high percentage of sperm head abnormalities were found. Testicular histology revealed seminiferous tubules with a low rate of spermatogenesis. Elongation of the spermatids did not proceed normally and no normal tail development was observed.  相似文献   

8.
In eutherian mammals, there are marked interspecific differences in sperm head shape and tail length. In a few species, sperm head variability occurs but intra-individual variation in sperm tail length has rarely been investigated or commented upon. Here, we ask the question: Do murine rodent species that have variable sperm head shapes exhibit greater intra-individual variation in sperm midpiece and total tail lengths than closely related species where little, or no, sperm head variability occurs? From three separate lineages, we selected three pairs of murine rodents, one of which has monomorphic, and the other variable, sperm head shape. These were from southern Asia the bandicoot rats Bandicota bengalensis and Bandicota indica , from southern Africa the veld rats, Aethomys chrysophilus and Aethomys ineptus and from Australia the fawn hopping mouse Notomys cervinus and the spinifex hopping mouse Notomys alexis . Cauda epididymal sperm smears were prepared and sperm midpiece and total tail lengths were determined. A linear mixed-effects model was used to estimate intra-individual variance. The results showed that in all three species where there are variable sperm head shapes ( B. indica , A. ineptus and N. alexis ), statistically significantly greater intra-individual variability of sperm midpiece and total tail lengths occurs ( P <0.0001 in all cases). These species all have relatively smaller testes mass compared with the closely related species with monomorphic sperm populations. This suggests that depressed levels of intermale sperm competition may result in the occurrence of variability in not only the divergent sperm head shape but also in the length of the midpiece as well as that of the total length of the sperm tail.  相似文献   

9.
Sperm morphology varies enormously across the animal kingdom. Whilst knowledge of the factors that drive the evolution of interspecific variation in sperm morphology is accumulating, we currently have little understanding of factors that may constrain evolutionary change in sperm traits. We investigated whether susceptibility to sperm abnormalities could represent such a constraint in songbirds, a group characterized by a distinctive helical sperm head shape. Specifically, using 36 songbird species and data from light and scanning electron microscopy, we examined among‐species correlations between the occurrence of sperm head abnormalities and sperm morphology, as well as the correlation between sperm head abnormalities and two indicators of sperm competition. We found that species with more helically shaped sperm heads (i.e., a wider helical membrane and more pronounced cell waveform) had a higher percentage of abnormal sperm heads than species with less helical sperm (i.e., relatively straight sperm) and that sperm head traits were better predictors of head abnormalities than total sperm length. In contrast, there was no correlation between sperm abnormalities and the level of sperm competition. Given that songbird species with more pronounced helical sperm have higher average sperm swimming speed, our results suggest an evolutionary trade‐off between sperm performance and the structural integrity of the sperm head. As such, susceptibility to morphological abnormalities may constrain the evolution of helical sperm morphology in songbirds.  相似文献   

10.
Teratozoospermia is characterized by the presence of spermatozoa with abnormal morphology in sperm. This condition is frequently associated with infertility and intracytoplasmic sperm injection (ICSI) is frequently used as the treatment of choice. However, the use of ICSI has created consequential debate concerning the genetic risk for the offspring. Fluorescence in situ hybridization technique (FISH), allowing the specific identification of human chromosomes in sperm nuclei, has been used to study chromosome abnormalities in sperm from men with teratozoospermia and a normal karyotype. In this review, we present studies that have tried to determine if men with a normal blood karyotype but suffering from teratozoospermia present a higher aneuploidy frequency. The literature is limited to three forms of teratozoospermia. The first group consists of "polymorphic teratozoospermia", where a majority of spermatozoa display more than one type of abnormality. In this case, only a slight increase in aneuploidy frequency is observed, which cannot be differentiated from the results observed in oligo-astheno-teratozoospermia (OAT). The second group, named "globozoospermia", is characterized by round spermatic heads, absence of acrosome and disorganization of mid-piece and tail. In this case, some studies have shown a significant, but moderate, increase in the aneuploidy frequency for acrocentrics and sex chromosomes. The aneuploidy frequency remains low, also ICSI can be proposed to these patients, but few successes occur. The third group consists of "enlarged head teratozoospermia", where almost all spermatozoa have an enlarged head, multiple tail and abnormal acrosome. In this case a very high level of missegregation is observed, leading to nearly 100% aneuploidy. In this particular group, ICSI must be refuted, and patients have to be redirected to other possibilities, like sperm donation.  相似文献   

11.
Traditional gene knock-out approaches using homologous recombination in embryonic stem cells are routinely used to provide functional information about genes involved in reproduction. In the present study, we examined a novel approach using N-ethyl-N-nitrosourea (ENU) together with a balancer chromosome mating strategy to identify new loci with functional roles in male fertility. Our genetic strategy is a forward-genetic approach; thus, our phenotypic investigation begins with the discovery of an abnormal phenotype without previous knowledge of the mutant locus. We isolated eight recessive mutations on chromosome 11 that resulted in male or female infertility from a screen of 184 founder pedigrees from ENU-treated males. After testing the six male infertile and two female infertile mutations for their ability to complement, we found that three independent recessive male infertile mutations failed to complement each other. The male infertility was associated with reduced epididymal sperm count, a block in late-spermatid differentiation, and increased apoptosis. Furthermore, the three male infertile mutants had severe defects in epididymal sperm morphology associated with incorrect microtubule assembly. Electron microscopy revealed unique defects in sperm head and tail morphology for each of the three alleles. One allele had an abnormal manchette assembly of the sperm head. The other two alleles had different abnormalities in the 9+2 patterning of the microtubules in the sperm tail axoneme, with one containing only five of the microtubule doublets and the other containing an extra doublet. The isolation of this allelic series identifies a new locus on mouse chromosome 11 that is required for spermiogenesis and male fertility.  相似文献   

12.
Purkinje cell degeneration (pcd) is a neurological mutation in the mouse that causes male sterility, but not female sterility. In order to assess the effects of this mutation on spermiogenesis, the structure of the testis and of epididymal spermatozoa was examined by transmission and scanning electron microscopy. In the mutant males, the sperm count was reduced, sperm were nonmotile, and 93% of the sperm were characterized by structural abnormalities of the head, the tail, or both. In the testes of mutant mice, Sertoli cell structure was normal, as were also the early stages of spermiogenesis. However, the elongating and maturing spermatids were characterized by abnormally shaped heads and tails with extraneous and ectopic outer dense fibers. These defects were common in the testes of the mutant mice and rare in the testes of the littermate control mice. It was concluded that the structural abnormalities of the pcd sperm occurred during spermiogenesis and were not due to degeneration of the sperm in the epididymis. These structural abnormalities are similar to those found in all other reported male sterile mutants of the mouse; therefore, although they are caused by the expression of the pcd gene, they are not unique to the expression of this gene.  相似文献   

13.
Cumulus-free mouse eggs were placed on microscope slides and inseminated with capacitated mouse spermatozoa. Fertilization could then be observed through the phase contrast microscope and recorded by time-lapse cinematography. Following the penetration of the fertilizing spermatozoon through the zona pellucida and the fusion of the sperm head with the vitelline membrane, the entire sperm tail gradually entered the vitellus. The time required for tail incorporation into the vitellus as measured in 49 eggs varied from 3 h 3 min to 5 h 49 min, with a mean time of 4 h 23 min. When tail incorporation began, the greater part of the flagellum was still outside the zona pellucida; occasionally it slipped into the perivitelline space, but generally it remained outside the zona and shortened by degrees as incorporation proceeded. The motility of the fertilizing spermatozoon declined abruptly very soon after fusion of the sperm head with the vitellus and remained at a very low level during the 3–6 h required for tail incorporation. Sperm motility, therefore, does not appear to be the main determinant in tail incorporation and the primary mechanism responsible for it remains unclear. As the sperm tail slowly entered the vitellus, the second meiotic division was completed with concomitant extrusion of the second polar body. Key stages in second polar body formation were correlated with events in tail incorporation. Differences between fertilization in vitro and in vivo are discussed.  相似文献   

14.
Normal mouse offspring can be obtained from oocytes injected with frozen-thawed spermatozoa without cryoprotection, however, embryo development can be affected by sperm freezing procedure and sperm donor strain. In this study we observed that direct contact of mouse spermatozoa with liquid nitrogen did not affect their ability to activate injected oocytes but severely restricted subsequent in vitro embryo development to blastocyst stage. Tris-EDTA buffer and M2 were also shown to be better sperm freezing extenders than DPBS, allowing higher developmental potential. In addition, differences in embryo development obtained by intracytoplasmic sperm injection (ICSI) with frozen-thawed spermatozoa were observed between hybrid sperm donor strains. Frozen-thawed B6D2F1 spermatozoa provided higher embryo development than sperm cells from C57CBAF1.  相似文献   

15.
Abstract: Ejaculates of 14 colony-bred and 14 wild-caught vervet monkeys were examined for morphologically abnormal sperm. Sperm head abnormalities were rare in both groups, occurring at rates of 0.01–0.29%. Tail abnormalities predominated, particularly bent midpieces and coiled and folded tails, which all occurred at rates of 3.79–17.18%. Except for the nipple acrosome, there was no difference in the rate at which sperm abnormalities were found in both groups. Three abnormalities were found only in colony-bred and three only in wild-caught individuals. Some common abnormalities, all affecting the tail, were highly variable in consecutive ejaculates from the same individuals.  相似文献   

16.
The aim of the present study was to evaluate the effect of cryopreservation on the morphology of zebrafish sperm (Danio rerio). Sperm from 30 males were collected and divided in two treatments: fresh and cryopreserved semen. The following were measured sperm morphology, motility and membrane integrity. Cryopreservation reduced motility, the number of normal cells and the membrane integrity, as well as increased the percentage of sperm abnormalities. The most frequent types of morphological changes found in cryopreserved semen were macrocephaly, loose head, degenerated head, proximal gout, curled tail and short tail. This study opens the way for further investigations on morphological changes and for a new classification of these changes in fish semen due to cryopreservation.  相似文献   

17.
In mouse and man, Y chromosome deletions are frequently associated with spermatogenic defects. XY(Tdy)(m1)qdelSry males have an extensive Yq deletion that almost completely abolishes the expression of two gene families, Ssty and Sly, located within the male-specific region of the mouse Y long arm. These males exhibit severe sperm defects and sterility. XY(RIII)qdel males have a smaller interstitial Yq deletion, removing approximately two thirds of Ssty/Sly gene copies, and display an increased incidence of mild sperm head anomalies with impairment of fertility and an intriguing distortion in the sex ratio of offspring in favor of females. Here we used intracytoplasmic sperm injection (ICSI) to investigate the functional capacity of sperm from these Yq deletion males. Any selection related to the ability of sperm to fertilize in vitro is removed by ICSI, and we obtained two generations of live offspring from the infertile males. Genotyping of ICSI-derived offspring revealed that the Y(Tdym1)qdel deletion does not interfere with production of Y chromosome-bearing gametes, as judged from the frequency of Y chromosome transmission to the offspring. ICSI results for XY(RIII)qdel males also indicate that there is no deficiency of Y sperm production in this genotype, although the data show an excess of females following in vitro fertilization and natural mating. Our findings suggest that 1) Yq deletions in mice do not bias the primary sex ratio and 2) Y(RIII)qdel spermatozoa have poorer fertilizing ability than their X-bearing counterparts. Thus, a normal complement of the Ssty and/or Sly gene families on mouse Yq appears necessary for normal sperm function. Summary: ICSI was successfully used to reproduce infertile mice with Yq deletions, and the analysis of sperm function in obtained offspring demonstrated that gene families located within the deletion interval are necessary for normal sperm function.  相似文献   

18.
Sperm morphology and spermatocyte chromosomes were examined in mice maintained on a Torula yeast diet for 5 weeks. In the selenium-deficient group, the proportion of abnormal sperm was high, ranging from 6.8% to 49.6%, while in the control group it ranged from only 4.0% to 15.0%. The most frequently occurring abnormalities in sperm shape were in the sperm head. There was also a tendency for abnormalities in other regions (neck, midpiece and tail) to be increased. However, in metaphase-I spermatocytes, the frequencies of various types of abnormal chromosomes (univalent chromosomes, translocations and structural anomalies) did not differ between the selenium-deficient and control groups. These findings indicate that selenium may be an essential constituent for spermatogenesis in mice.  相似文献   

19.
《The Journal of cell biology》1986,102(4):1363-1371
The extracellular coat, or zona pellucida, of mammalian eggs contains species-specific receptors to which sperm bind as a prelude to fertilization. In mice, ZP3, one of only three zona pellucida glycoproteins, serves as sperm receptor. Acrosome-intact, but not acrosome-reacted, mouse sperm recognize and interact with specific O- linked oligosaccharides of ZP3 resulting in sperm-egg binding. Binding, in turn, causes sperm to undergo the acrosome reaction; a membrane fusion event that results in loss of plasma membrane at the anterior region of the head and exposure of inner acrosomal membrane with its associated acrosomal contents. Bound, acrosome-reacted sperm are able to penetrate the zona pellucida and fuse with the egg's plasma membrane (fertilization). In the present report, we examined binding of radioiodinated, purified, egg ZP3 to both acrosome intact and acrosome reacted sperm by whole-mount autoradiography. Silver grains due to bound 125I-ZP3 were found localized to the acrosomal cap region of heads of acrosome-reacted sperm. Under the same conditions, 125I-fetuin bound at only bacKground levels to heads of both acrosome-intact and - reacted sperm, and 125I-ZP2, another zona pellucida glycoprotein, bound preferentially to acrosome-reacted sperm. These results provide visual evidence that ZP3 binds preferentially and specifically to heads of acrosome intact sperm; properties expected of the mouse egg's sperm receptor.  相似文献   

20.
Morphologic and morphometric sperm characteristics of mouse epididymal extracts from animals exposed to static magnetic fields were evaluated. For this purpose, animals were exposed for 35 days to a field of 0.7 T generated by a commercial permanent magnet for either 1 or 24 h per day. The values of morphometric parameters were obtained using the morphometric module of the Sperm Class Analyzer® computerized image analysis system, and percentages of abnormalities were calculated. The size of sperm heads was unaffected by exposure to static magnetic fields. Lack of hook was a sperm head abnormality found significantly more frequently in animals exposed continually than in nonexposed animals, showing a possible alteration to the spermatogenic process after exposure to static magnetic fields. The percentage of sperm with coiled tails or of sperm with abnormal midpiece or tail was not altered by exposure. Bioelectromagnetics 19:377–383, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号