共查询到20条相似文献,搜索用时 15 毫秒
1.
We created a Qo pocket mutant by site-directed mutagenesis of the chloroplast petD gene in Chlamydomonas reinhardtii. We mutated the conserved PEWY sequence in the EF loop of subunit IV into PWYE. The pwye mutant did not grow in phototrophic conditions although it assembled wild-type levels of cytochrome b6f complexes. We demonstrated a complete block in electron transfer through the cytochrome b6f complex and a loss of plastoquinol binding at Qo. The accumulation of cytochrome b6f complexes lacking affinity for plastoquinol enabled us to investigate the role of plastoquinol binding at Qo in the activation of the light-harvesting complex II (LHCII) kinase during state transitions. We detected no fluorescence quenching at room temperature in state II conditions relative to that in state I. The quantum yield spectrum of photosystem I charge separation in the two state conditions displayed a trough in the absorption region of the major chlorophyll a/b proteins, demonstrating that the cells remained locked in state I. 33Pi labeling of the phosphoproteins in vivo demonstrated that the antenna proteins remained poorly phosphorylated in both state conditions. Thus, the absence of state transitions in the pwye mutant demonstrates directly that plastoquinol binding in the Qo pocket is required for LHCII kinase activation. 相似文献
2.
The isolated cytochrome (cyt) b(6)f complex from spinach is inhibited by Cu(2+) with a K(D) of about 1 microM at pH 7.6 in the presence of 1.6 microM decyl-plastoquinol (C(10)-PQH(2)) as a substrate. Inhibition was competitive with respect to C(10)-PQH(2) but noncompetitive with respect to horse heart cyt c or plastocyanin (PC). Inhibition was also pH-sensitive, with an apparent pK at about 7, above which inhibition was stronger, suggesting that binding occurred at or near a protonatable amino acid residue. Equilibrium binding titrations revealed ca. 1.4 tight Cu(2+) binding sites with a K(D) of about 0.5 microM and multiple (>8) weak (K(D) > 50 microM) binding sites per complex. Pulsed electron paramagnetic resonance (EPR) techniques were used to identify probable binding sites for inhibitory Cu(2+). A distinct enhancement of the relaxation time constant for the EPR signal from bound Cu(2+) was observed when the cyt f was paramagnetic. The magnitude and temperature-dependence of this relaxation enhancement were consistent with a dipole interaction between Cu(2+) and the cyt f (Fe(3+)) heme at a distance of between 30 and 54 A, depending upon the relative orientations of Cu(2+) and cyt f heme g-tensors. Two-pulse electron spin-echo envelope modulation (ESEEM) and 4-pulse 2-dimensional hyperfine sublevel correlation (2D HYSCORE) measurements of Cu(2+) bound to isolated cyt b(6)f complex indicated the presence of a weakly coupled nitrogen nucleus. The nuclear quadrupole interaction (NQI) and the hyperfine interaction (HFI) parameters identified one Cu(2+) ligand as an imidazole nitrogen of a His residue, and electron-nuclear double resonance (ENDOR) confirmed the presence of a directly coordinated nitrogen. A model of the 3-dimensional structure of the cytochrome b(6)f complex was constructed on the basis of sequences and structural similarities with the mitochondrial cyt bc(1) complex, for which X-ray structures have been solved. This model indicated three possible His residues as ligands to inhibitory Cu(2+). Two of these are located on the "Rieske" iron-sulfur protein protein (ISP) while the third is found on the cyt f protein. None of these potential ligands appear to interact directly with the quinol oxidase (Q(o)) binding pocket. A model is thus proposed wherein Cu(2+) interferes with the interaction of the ISP protein with the Q(o) site, preventing the binding and subsequent oxidation of plastoquinonol. Implications for the involvement of ISP "domain movement" in Q(o) site catalysis are discussed. 相似文献
3.
4.
《BBA》1986,851(2):229-238
We have analyzed the heme-associated peroxidase activity in thylakoid membranes from the green algae Chlamydomonas reinhardtii after electrophoresis in the presence of sodium dodecyl sulfate. Besides cytochrome f and cytochrome b6, we observed peroxidase activity in two other bands, of 34 and 11 kDa, of unknown origin. Characterization of the b6/f complex subunits was undertaken by means of a comparison of the polypeptide deficiencies in several b6/f mutants with the polypeptide content of preparations enriched in b6/f complexes. We conclude that the b6/f complex consists of five subunits. Using site-specific translation inhibitors, we show that cytochrome f, cytochrome b6 and subunit IV are of chloroplast origin, whereas the Rieske protein and probably subunit V are translated on cytoplasmic ribosomes. A model of assembly of the complex is proposed: a cytochrome moiety, comprising the subunits of chloroplast origin, is assembled in the thylakoid membranes prior to the insertion and assembly of the subunits encoded in the nuclear genome. 相似文献
5.
Francesca Zito Joelle Vinh Jean-Luc Popot Giovanni Finazzi 《The Journal of biological chemistry》2002,277(14):12446-12455
The cytochrome b(6)f complex of Chlamydomonas reinhardtii contains four large subunits and at least three small ones, PetG, PetL, and PetM, whose role and location are unknown. Chimeric proteins have been constructed, in which the C terminus of subunit IV is fused to either one or the other of the two putative N termini of PetL. Biochemical and functional analysis of the chimeras together with mass spectrometry analysis of the wild-type (WT) complex led to the following conclusions: (i) neither a free subunit IV C terminus nor a free PetL N terminus is required for assembly of the b(6)f complex; (ii) the first AUG codon in the sequence of the gene petL is used for initiation; (iii) the N terminus of WT PetL lies in the lumen; (iv) in the WT complex, the N terminus of PetL and the C terminus of subunit IV are within reach of each other; (v) the purified b(6)f complex from C. reinhardtii contains an eighth, hitherto unrecognized subunit, PetN; and (vi) the ability to perform state transitions is lost in the chimeric mutants, although (vii) the Q-cycle is unaffected. A structural hypothesis is presented to account for this peculiar phenotype. 相似文献
6.
Previously [Roberts, A. G., and Kramer, D. M. (2001) Biochemistry 40, 13407-13412], we showed that 2 equiv of the quinone analogue 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB) could occupy the Q(o) site of the cytochrome (cyt) b(6)f complex simultaneously. In this work, a study of electron paramagnetic resonance (EPR) spectra from the oriented cyt b(6)f complex shows that the Rieske iron-sulfur protein (ISP) is in distinct orientations, depending on the stoichiometry of the inhibitor at the Q(o) site. With a single DBMIB at the Q(o) site, the ISP is oriented with the 2Fe-2S cluster toward cyt f, which is similar to the orientation of the ISP in the X-ray crystal structure of the cyt b(6)f complex from thermophilic cyanobacterium Mastigocladus laminosus in the presence of DBMIB, as well as that of the chicken mitochondrial cyt bc(1) complex in the presence of the class II inhibitor myxothiazol, which binds in the so-called "proximal niche", near the cyt b(L) heme. These data suggest that the high-affinity DBMIB site is at the proximal niche Q(o) pocket. With >or=2 equiv of DBMIB bound, the Rieske ISP is in a position that resembles the ISP(B) position of the chicken mitochondrial cyt bc(1) complex in the presence of stigmatellin and the Chlamydomonas reinhardtii cyt b(6)f complex in the presence of tridecylstigmatellin (TDS), which suggests that the low-affinity DBMIB site is at the distal niche. The close interaction of DBMIB bound at the distal niche with the ISP induced the well-known effects on the 2Fe-2S EPR spectrum and redox potential. To further test the effects of DBMIB on the ISP, the extents of cyt f oxidation after flash excitation in the presence of photosystem II inhibitor DCMU were measured as a function of DBMIB concentration in thylakoids. Addition of DBMIB concentrations at which a single binding was expected did not markedly affect the extent of cyt f oxidation, whereas higher concentrations, at which double occupancy was expected, increased the extent of cyt f oxidation to levels similar to that of cyt f oxidation in the presence of a saturating concentration of stigmatellin. Simulations of the EPR g-tensor orientations of the 2Fe-2S cluster versus the physical orientations based on single-crystal studies of the cyt bc(1) complex suggest that the soluble ISP domain of the spinach cyt b(6)f complex can rotate by at least 53 degrees, which is consistent with long-range ISP domain movement. Implications of these results are discussed in the context of the X-ray crystal structures of the chicken mitochondrial cyt bc(1) complex and the M. laminosus and C. reinhardtii cyt b(6)f complexes. 相似文献
7.
《FEBS letters》1987,221(2):205-210
The thylakoid protein kinase(s) activity of Lemna perpusilla strain 6746 (wild type, WT) and the cytochrome (cyt) b6/f-less mutant 1073 was compared. Isolated thylakoids of both WT and mutant phosphorylated the polypeptides of 9–15, 29, 32–34 and 40–45 kDa. This kinase(s) activity was light-dependent and could be elicited by addition of duroquinol in the dark. Thylakoids from both WT and mutant phosphorylated histone III-S at comparable rates. However, the redox-controlled phosphorylation of the LHCII polypeptide which could be demonstrated in vitro and in vivo in the WT thylakoids could not be detected under any experimental condition in the cyt b6/f-less thylakoids. Halogenated quinone analogues known to inhibit reduction of the cyt b6/f complex inhibited both the electron flow and duroquinol-activated LHCII phosphorylation, but had no effect on the duroquinol-dependent phosphorylation of the other thylakoid polypeptides. These results indicate that the Lemna thylakoids contain at least two redox-activated protein kinase(s). A quinone-binding site is involved in the activation of the LHCII kinase system which is rendered inactive in the absence of the cyt b6/f complex. 相似文献
8.
Interaction between light harvesting chlorophyll-a/b protein (LHCII) kinase and cytochrome b6/f complex. In vitro control of kinase activity 总被引:1,自引:0,他引:1
We have previously reported that the cytochrome b6/f complex may be involved in the redox activation of light harvesting chlorophyll-a/b protein complex of photosystem II (LHCII) kinase in higher plants (Gal, A., Shahak, Y., Schuster, G., and Ohad, I. (1987) FEBS Lett. 221, 205-210). The aim of this work was to establish whether a relation between the cytochrome b6/f and LHCII kinase activation can be demonstrated in vitro. Preparations enriched in cytochrome b6/f obtained from spinach thylakoids by detergent extraction and precipitation with ammonium sulfate followed by different procedures of purification, contained various amounts of LHCII kinase activity. Analysis of the cytochrome b6/f content and kinase activity of fractions obtained by histone-Sepharose and immunoaffinity columns, immunoprecipitation and sucrose density centrifugation, indicate functional association of kinase and cytochrome b6/f. Phosphorylation of LHCII by fractions containing both cytochrome b6/f and kinase was enhanced by addition of plastoquinol-1. LHCII phosphorylation and kinase activation could be obtained in fractions prepared by use of beta-D-octyl glucoside but not when 3-[(cholamidopropyl)dimethyl-ammonio]-1-propanesulfonate was used as the solubilizing detergent. Kinase activity could be inhibited by halogenated quinone analogues (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone and 2,3-diiodo-5-t-butyl-p-benzoquinone) known to inhibit cytochrome b6/f activity. However, kinase activity was inhibited by these analogues in all preparations including those which could not phosphorylate LHCII. We thus propose that the redox activation of LHCII phosphorylation is mediated by kinase interaction with cytochrome b6/f while the deactivation may be related to a distinct quinone binding site of the enzyme molecule. 相似文献
9.
Cytochrome b
6
f complexes, prepared from spinach and Chlamydomonas thylakoids, have been examined for their content of low molecular weight subunits. The spinach complex contains two prominent low molecular weight subunits of 3.7 and 4.1 kD while a single prominent component of 4.5 kD was present in the Chlamydomonas complex. An estimation of the relative stoichiometry of these subunits suggests several are present at levels approximating one copy per cytochrome complex. The low molecular weight subunits were purified by reversed phase HPLC and N-terminal sequences obtained. Both the spinach and Chlamydomonas cytochrome complexes contain a subunit that is identified as the previously characterized petG gene product (4.8 kD in spinach and 4.1 kD in Chlamydomonas). A second subunit (3.8 kD in spinach and 3.7 kD in Chlamydomonas) appears to be homologous in the two complexes and is likely to be a nuclear gene product. The possible presence of other low molecular weight subunits in these complexes is also considered. 相似文献
10.
《BBA》1986,851(2):239-248
The distribution of the b6/f complex among stacked and unstacked thylakoid membranes was studied by immunocytochemistry and freeze-fracture analysis of mutants of Chlamydomonas reinhardtii lacking the complex. Immunogold labeling demonstrates the presence of b6/f complex in both regions of the thylakoid membrane in spinach and in C. reinhardtii. Numerous modifications were observed in the ultrastructure of the thylakoid membranes of mutants from C. reinhardtii lacking the complex. These modifications are consistent with the presence of b6/f complexes in different states of association in the stacked and unstacked regions of the thylakoid membrane. In particular we present evidence for an association of some b6/f complexes with the reaction centers of Photosystem I and II in large PFu and EFs particles, respectively. 相似文献
11.
GreenCut protein CPLD49 of Chlamydomonas reinhardtii associates with thylakoid membranes and is required for cytochrome b6f complex accumulation 下载免费PDF全文
Tyler M. Wittkopp Shai Saroussi Wenqiang Yang Xenie Johnson Rick G. Kim Mark L. Heinnickel James J. Russell Witchukorn Phuthong Rachel M. Dent Corey D. Broeckling Graham Peers Martin Lohr Francis‐André Wollman Krishna K. Niyogi Arthur R. Grossman 《The Plant journal : for cell and molecular biology》2018,94(6):1023-1037
The GreenCut encompasses a suite of nucleus‐encoded proteins with orthologs among green lineage organisms (plants, green algae), but that are absent or poorly conserved in non‐photosynthetic/heterotrophic organisms. In Chlamydomonas reinhardtii, CPLD49 (C onserved in P lant L ineage and D iatoms49 ) is an uncharacterized GreenCut protein that is critical for maintaining normal photosynthetic function. We demonstrate that a cpld49 mutant has impaired photoautotrophic growth under high‐light conditions. The mutant exhibits a nearly 90% reduction in the level of the cytochrome b6f complex (Cytb6f), which impacts linear and cyclic electron transport, but does not compromise the ability of the strain to perform state transitions. Furthermore, CPLD49 strongly associates with thylakoid membranes where it may be part of a membrane protein complex with another GreenCut protein, CPLD38; a mutant null for CPLD38 also impacts Cytb6f complex accumulation. We investigated several potential functions of CPLD49, with some suggested by protein homology. Our findings are congruent with the hypothesis that CPLD38 and CPLD49 are part of a novel thylakoid membrane complex that primarily modulates accumulation, but also impacts the activity of the Cytb6f complex. Based on motifs of CPLD49 and the activities of other CPLD49‐like proteins, we suggest a role for this putative dehydrogenase in the synthesis of a lipophilic thylakoid membrane molecule or cofactor that influences the assembly and activity of Cytb6f. 相似文献
12.
Vink M Zer H Alumot N Gaathon A Niyogi K Herrmann RG Andersson B Ohad I 《Biochemistry》2004,43(24):7824-7833
Reversible phosphorylation of chl a/b protein complex II (LHCII), the mobile light-harvesting antenna, regulates its association and energy transfer/dissipation to photosystem (PS) II or I (state transition). Excitation of LHCII induces conformational changes affecting the exposure of the phosphorylation site at the N-terminal domain to protein kinase(s) [Zer, H., et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 8277-8282; Zer, H., et al. (2003) Biochemistry 42, 728-738]. Thus, it was of interest to examine whether the pigment composition of LHCII affects the light-induced modulation of LHCII phosphorylation and state transition. To this end, we have used thylakoids of wild-type Chlamydomonas reinhardtii and xanthophyll deficient mutants npq1, lor1, npq2, npq1 lor1, and npq2 lor1. Phosphorylated protein bands P11, P13, and P17 are considered components of the mobile C. reinhardtii LHCII complex. The protein composition of these bands has been analyzed by mass spectrometry using Qtof-2 with a nanospray attachment. P11 and P13 contain C. reinhardtii light-harvesting chlorophyll a/b binding protein LhcII type I. P17 contains C. reinhardtii LhcII types III and IV. Illumination of isolated thylakoids inhibits the redox-controlled phosphorylation of polypeptide bands P13 and P17 and to a lower extent that of P11. The light-induced inhibition of LHCII phosphorylation and the state transition process are not influenced by extensive differences in the xanthophyll composition of the mutants. Thus, LHCII can be visualized as possessing two functionally distinct, independent domains: (i) the pigment binding transmembrane domain regulating the extent of energy transfer/dissipation and (ii) the surface-exposed phosphorylation site regulating the association of LHCII with PSII or PSI. 相似文献
13.
We studied the process of photosynthetic inactivation during gametogenesis of the unicellular green alga Chlamydomonas reinhardtii. We show that it is caused by the selective destabilization of a single transmembrane protein complex, the cytochrome b6/f complex, which is initially accumulated in the thylakoid membranes of vegetative cells. This protein destabilization is controlled by the intracellular energy sources available in the gametes, i.e. the coupled electron flow in the mitochondria and the amount of starch accumulated in the chloroplast. It nevertheless requires the expression of gamete-specific proteins. The loss of cytochrome b6/f complexes during gametogenesis is prevented by the addition of cycloheximide, but is chloramphenicol insensitive. Therefore, it is likely to involve some translation product of nuclear origin, specifically expressed during gametogenesis. Among the new polypeptides specifically found in the gametes, we detected a soluble polypeptide M alpha (approximate molecular mass of 63 kDa), which shared common epitopes with cytochrome f. Its synthesis displays an antibiotic sensitivity typical of a nuclear-encoded polypeptide and is controlled by the same intracellular signals which control the destabilization of the cytochrome b6/f complexes in the thylakoid membranes. 相似文献
14.
Finazzi G 《Journal of experimental botany》2005,56(411):383-388
This review focuses on the essential role played by the green alga Chlamydomonas reinhardtii in revealing both the mechanism and the physiological consequences of state transitions. Two aspects are considered. The first is the role of the cytochrome b6f complex in regulating state transitions, in light of the recently obtained 3D structure. The second is the switch between linear and cyclic electron flow that follows state transitions in Chlamydomonas. Structural and dynamic elements that might be involved in such a switch, as well as its consequences on the energetic metabolism, are discussed. 相似文献
15.
The assembly of cytochrome b6/f complexes: an approach using genetic transformation of the green alga Chlamydomonas reinhardtii. 总被引:5,自引:2,他引:5 下载免费PDF全文
As an approach to the study of the biogenesis of the cytochrome b6/f complex, we characterized the behaviour of its constitutive subunits in mutant strains of Chlamydomonas reinhardtii bearing well-defined mutations. To this end, we have constructed three deletion mutant strains, each lacking one of the major chloroplast pet genes: the delta petA, delta petB and delta petD strains were unable to synthesize cyt f, cyt b6 and subunit IV (suIV) respectively. Western blotting analysis, pulse-labelling and pulse-chase experiments allowed us to compare the cellular accumulation, the rates of synthesis and the turnover of the cyt b6/f subunits remaining in the various strains. We show that the rates of synthesis of cyt b6 and suIV are independent of the presence of the other subunits of the complex but that their stabilization in the thylakoid membranes is a concerted process, with a marked dependence of suIV stability on the presence of cyt b6. In contrast, mature cyt f was stable in the absence of either suIV or cyt b6 but its rate of synthesis was severely decreased in these conditions. We conclude that the stoichiometric accumulation of the chloroplast-encoded subunits of the cyt b6/f complex results from two regulation processes: a post-translational regulation leading to the proteolytic disposal of unassembled cyt b6 and suIV and a co-translational (or early post-translational) regulation which ensures the production of cyt f next to its site of assembly. 相似文献
16.
We have investigated the effects of the light-induced thylakoid transmembrane potential on the turnover of the b(6)f complex in cells of the unicellular green alga Chlamydomonas reinhardtii. The reduction of the potential by either decreasing the light intensity or by adding increasing concentrations of the ionophore carbonylcyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) revealed a marked inhibition of the cytochrome b(6) oxidation rate (10-fold) without substantial modifications of cytochrome f oxidation kinetics. Partial recovery of this inhibition could be obtained in the presence of ionophores provided that the membrane potential was re-established by illumination with a train of actinic flashes fired at a frequency higher than its decay. Measurements of isotopic effects on the kinetics of cytochrome b(6) oxidation revealed a synergy between the effects of ionophores and the H(2)O-D(2)O exchange. We propose therefore, that protonation events influence the kinetics of cytochrome b(6) oxidation at the Qi site and that these reactions are strongly influenced by the light-dependent generation of a transmembrane potential. 相似文献
17.
A native structure of the cytochrome b(6)f complex with improved resolution was obtained from crystals of the complex grown in the presence of divalent cadmium. Two Cd(2+) binding sites with different occupancy were determined: (i) a higher affinity site, Cd1, which bridges His143 of cytochrome f and the acidic residue, Glu75, of cyt b(6); in addition, Cd1 is coordinated by 1-2 H(2)O or 1-2 Cl(-); (ii) a second site, Cd2, of lower affinity for which three identified ligands are Asp58 (subunit IV), Glu3 (PetG subunit) and Glu4 (PetM subunit). Binding sites of quinone analogue inhibitors were sought to map the pathway of transfer of the lipophilic quinone across the b(6)f complex and to define the function of the novel heme c(n). Two sites were found for the chromone ring of the tridecyl-stigmatellin (TDS) quinone analogue inhibitor, one near the p-side [2Fe-2S] cluster. A second TDS site was found on the n-side of the complex facing the quinone exchange cavity as an axial ligand of heme c(n). A similar binding site proximal to heme c(n) was found for the n-side inhibitor, NQNO. Binding of these inhibitors required their addition to the complex before lipid used to facilitate crystallization. The similar binding of NQNO and TDS as axial ligands to heme c(n) implies that this heme utilizes plastoquinone as a natural ligand, thus defining an electron transfer complex consisting of hemes b(n), c(n), and PQ, and the pathway of n-side reduction of the PQ pool. The NQNO binding site explains several effects associated with its inhibitory action: the negative shift in heme c(n) midpoint potential, the increased amplitude of light-induced heme b(n) reduction, and an altered EPR spectrum attributed to interaction between hemes c(n) and b(n). A decreased extent of heme c(n) reduction by reduced ferredoxin in the presence of NQNO allows observation of the heme c(n) Soret band in a chemical difference spectrum. 相似文献
18.
Schneider D Berry S Rich P Seidler A Rögner M 《The Journal of biological chemistry》2001,276(20):16780-16785
To investigate the function of the PetM subunit of the cytochrome b6f complex, the petM gene encoding this subunit was inactivated by insertional mutagenesis in the cyanobacterium Synechocystis PCC 6803. Complete segregation of the mutant reveals a nonessential function of PetM for the structure and function of the cytochrome b6f complex in this organism. Photosystem I, photosystem II, and the cytochrome b6f complex still function normally in the petM- mutant as judged by cytochrome f re-reduction and oxygen evolution rates. In contrast to the wild type, however, the content of phycobilisomes and photosystem I as determined from 77 K fluorescence spectra is reduced in the petM- strain. Furthermore, whereas under anaerobic conditions the kinetics of cytochrome f re-reduction are identical, under aerobic conditions these kinetics are slower in the petM- strain. Fluorescence induction measurements indicate that this is due to an increased plastoquinol oxidase activity in the mutant, causing the plastoquinone pool to be in a more oxidized state under aerobic dark conditions. The finding that the activity of the cytochrome b6f complex itself is unchanged, whereas the stoichiometry of other protein complexes has altered, suggests an involvement of the PetM subunit in regulatory processes mediated by the cytochrome b6f complex. 相似文献
19.
Using Brownian dynamics simulations, all of the charged residues in Chlamydomonas reinhardtii cytochrome c(6) (cyt c(6)) and plastocyanin (PC) were mutated to alanine and their interactions with cytochrome f (cyt f) were modeled. Systematic mutation of charged residues on both PC and cyt c(6) confirmed that electrostatic interactions (at least in vitro) play an important role in bringing these proteins sufficiently close to cyt f to allow hydrophobic and van der Waals interactions to form the final electron transfer-active complex. The charged residue mutants on PC and cyt c(6) displayed similar inhibition classes. Our results indicate a difference between the two acidic clusters on PC. Mutations D44A and E43A of the lower cluster showed greater inhibition than do any of the mutations of the upper cluster residues. Replacement of acidic residues on cyt c(6) that correspond to the PC's lower cluster, particularly E70 and E69, was observed to be more inhibitory than those corresponding to the upper cluster. In PC residues D42, E43, D44, D53, D59, D61, and E85, and in cyt c(6) residues D2, E54, K57, D65, R66, E70, E71, and the heme had significant electrostatic contacts with cyt f charged residues. PC and cyt c(6) showed different binding sites and orientations on cyt f. As there are no experimental cyt c(6) mutation data available for algae, our results could serve as a good guide for future experimental work on this protein. The comparison between computational values and the available experimental data (for PC-cyt f interactions) showed overall good agreement, which supports the predictive power of Brownian dynamics simulations in mutagenesis studies. 相似文献
20.
Nicholas Fisher Amanda C Brown Graham Sexton Alison Cook John Windass Brigitte Meunier 《European journal of biochemistry》2004,271(11):2264-2271
Saccharomyces cerevisiae has been used as a model system to characterize the effect of cytochrome b mutations found in fungal and oomycete plant pathogens resistant to Q(o) inhibitors (QoIs), including the strobilurins, now widely employed in agriculture to control such diseases. Specific residues in the Q(o) site of yeast cytochrome b were modified to obtain four new forms mimicking the Q(o) binding site of Erysiphe graminis, Venturia inaequalis, Sphaerotheca fuliginea and Phytophthora megasperma. These modified versions of cytochrome b were then used to study the impact of the introduction of the G143A mutation on bc(1) complex activity. In addition, the effects of two other mutations F129L and L275F, which also confer levels of QoI insensitivity, were also studied. The G143A mutation caused a high level of resistance to QoI compounds such as myxothiazol, axoxystrobin and pyraclostrobin, but not to stigmatellin. The pattern of resistance conferred by F129L and L275F was different. Interestingly G143A had a slightly deleterious effect on the bc(1) function in V. inaequalis, S. fuliginea and P. megasperma Q(o) site mimics but not in that for E. graminis. Thus small variations in the Q(o) site seem to affect the impact of the G143A mutation on bc(1) activity. Based on this observation in the yeast model, it might be anticipated that the G143A mutation might affect the fitness of pathogens differentially. If so, this could contribute to observed differences in the rates of evolution of QoI resistance in fungal and oomycete pathogens. 相似文献