首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The experiments described here were conducted to examine regulation of cytochrome P-450 side-chain cleavage (SCC) mRNA accumulation in porcine granulosa cells isolated from small (1-4-mm) and medium (5-6-mm) follicles. Granulosa cells were cultured under the following conditions: 1) for 48 h or 96 h with 0, 50, or 200 ng/ml porcine FSH; 2) for 96 h with 200 ng/ml FSH and aminoglutethimide (100 microM); and 3) for 96 h with forskolin (100 microM). Total RNA was extracted and examined by Northern and dot-blot hybridization analysis, and culture media were assayed for progesterone concentration. Northern blot analysis revealed a single band approximately 2.1 kb in size. Accumulation of SCC mRNA by granulosa cells was both FSH dose- and culture time-dependent (p less than 0.05) with maximal increases approximately 4.5 times control levels. Aminoglutethimide reduced progesterone production by about 80% while having no effect on granulosa cell accumulation of SCC mRNA compared to cells stimulated with 200 ng/ml of FSH. Forskolin-treated cells produced significantly more progesterone than did cells treated with FSH, but accumulation of SCC mRNA was similar. In response to FSH, concentration of SCC mRNA did not vary with follicle size, but granulosa cells from small follicles produced significantly more progesterone than did those from medium follicles. These results demonstrate that concentration of SCC mRNA in cultured porcine granulosa cells is FSH dose-dependent, does not vary significantly in cells from small- and medium-sized follicles, and is correlated with progesterone production, but may not parallel progesterone secretion. This last observation indicates that control at sites other than SCC mRNA can affect progesterone production.  相似文献   

2.
Primary pituitary cell cultures derived from adult male rats were used to explore the direct effects of purified porcine inhibin and follistatin, and recombinant human activin A on FSH beta, as well as LH beta and alpha-subunit mRNA levels. Subunit mRNAs were determined by blot hybridization using alpha, LH beta, and FSH beta cDNA and genomic fragments. Treatment with inhibin for 72 h significantly suppressed alpha and FSH beta mRNA levels with parallel changes in FSH secretion. No change in LH beta mRNA levels was observed. A decrease in FSH beta mRNA to undetectable levels was seen 4 h after inhibin administration. Recombinant human Activin A caused dose-dependent and parallel increases in FSH beta mRNA levels and FSH secretion. This increase was evident at 4 h after activin administration and maintained at longer times. alpha and LH beta mRNA levels remained unchanged. Follistatin addition to cultures for 72 h significantly reduced FSH beta mRNA levels. In a time-course experiment, a reduction in FSH beta mRNA to undetectable levels was observed 24 h after follistatin administration. There were no changes in alpha or LH beta mRNA levels. These data demonstrate that the actions of these gonadal peptides on FSH secretion may be accounted for, at least in part at the level of biosynthesis, by reductions in FSH beta mRNA levels directly at the level of the anterior pituitary gland.  相似文献   

3.
We showed previously that inhibin, partially purified from cynomolgus monkey Sertoli cell culture medium (primate Sertoli cell inhibin referred to as pSCI), selectively suppressed basal FSH secretion from dispersed rat pituitary cells and decreased total cellular FSH, but not LH content, suggesting a decrease in FSH biosynthesis. In order to investigate the mechanism of action of inhibin at the molecular level, we have now examined the effects of pSCI on steady state levels of the subunit mRNAs encoding LH and FSH and correlated these with release and intracellular content of LH, FSH, and glycoprotein alpha-subunit. Dispersed pituitary cells from 7- to 8-week-old adult male rats were cultured in the presence of pSCI or control medium for 2-72 h. FSH secretion was reduced significantly by 6 h (P less than 0.05) and reached a nadir (38% of control) by 48 h. LH secretion was unchanged, while release of the alpha-subunit was decreased to 89% of control at 72 h (P less than 0.05). Also by 72 h, cell content of both FSH (73% of control) and alpha-subunit (81% of control) were significantly suppressed (P less than 0.001, P less than 0.01), while LH was slightly affected. Total RNA was extracted from the pituitary cell cultures, electrophoresed in 1.2% agarose-formaldehyde gels, transferred to nylon membranes, and hybridized with 32P-labeled cDNA probes for the rat alpha-, LH beta-, and FSH beta-subunits.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The association of equine granulosa-theca cell tumors with atrophied contralateral ovaries and abnormal estrous cycles suggests that these tumors produce hormones that affect pituitary gonadotropin production. Because inhibin, a heterodimer protein secreted by granulosa cells, decreases FSH production, we examined the presence of inhibin alpha- and beta A-subunits and their mRNAs in ovarian tumors obtained from three mares. These tumors contained neoplastic cords and nodules, multiple fluid-filled cysts, and a predominance of neoplastic granulosa cells. Reduced proteins from tumor-conditioned media were analyzed by electrophoresis and immunoblotting using antibodies directed against peptide fragments of the alpha- and beta A-chains of porcine inhibin. Specific bands at 50-kDa and 36-kDa for the inhibin alpha-subunit and at 44 kDa and 13 kDa for the inhibin beta A-subunit were observed in these tumors. Northern blot hybridization of 32P-labeled rat inhibin alpha- and beta A-subunit complementary RNAs to total RNA from each tumor revealed predominant bands of activity in all three tumors at 1.5 and 7 kb for the alpha- and beta A-subunit mRNAs, respectively. These results demonstrate that equine granulosa-theca cell tumors express the mRNAs for inhibin alpha- and beta A-subunits and also secrete inhibin subunits that could potentially affect gonadotropin production in afflicted mares. Furthermore, cells derived from these tumors may provide a useful model for understanding inhibin gene regulation and ovarian tumorigenesis.  相似文献   

5.
Recent reports suggest that activin (the dimer of inhibin beta subunits with FSH-releasing activity) has specific receptors on ovarian granulosa cells. The present study examined the effects of purified porcine activin on inhibin secretion and mRNA levels in granulosa cells obtained from immature, estrogen-treated rats. Cells were cultured for 48 h in culture media, or media containing FSH (10 ng/ml) and/or activin (30 ng/ml). Western blot analyses performed with affinity-purified antisera to inhibin alpha- and beta A-subunits revealed that treatment with either FSH or activin increased the secretion of inhibin alpha beta dimer (Mr 30,000), with a further increase after cotreatment. These results were confirmed by an inhibin alpha-subunit RIA, which revealed 7-, 14-, and 71-fold increases in the secretion of immunoreactive inhibin-alpha by activin, FSH, and activin plus FSH, respectively. TGF beta, a structural homolog of activin, also stimulated inhibin release, whereas follistatin was ineffective. Total RNA from cultured cells was hybridized with 32P-labeled inhibin alpha-subunit cRNA or beta-actin cDNA probes, and inhibin-alpha message levels were normalized with beta-actin mRNA levels. Northern blot analysis revealed that treatment with FSH and activin increased hybridization of a 1.5 kilobase (kb) message, corresponding to the inhibin alpha-subunit mRNA. Slot blot analyses indicated a 6- and 8-fold stimulation of inhibin alpha-subunit mRNA levels by FSH and activin, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Activin A regulation of the expression of mRNA for the LH receptor, FSH receptor, and the inhibin alpha subunit as well as the effect of activin A on the secretion of progesterone were investigated in chicken granulosa cell cultures. Granulosa layers were isolated from the F(1) and F(3) + F(4) follicles from five hens, pooled according to size, dispersed, and cultured for 48 h. In experiment 1 (n = 3 replications), granulosa cells were cultured with or without highly purified ovine (o) FSH at 50 ng/ml and in the presence of 0, 10, or 50 ng/ml of recombinant chicken activin A. Experiment 2 (n = 4 replications) followed the same protocol as experiment 1, except that oFSH was replaced with oLH. Results from these experiments showed that addition of activin A to the granulosa cell cultures had no effect on the expression of mRNA for the inhibin alpha subunit or the FSH receptor, but it did affect the expression of mRNA for the LH receptor. Treatment of F(3) + F(4) granulosa cells with LH stimulated the expression of mRNA for the LH receptor; however, when LH was combined with either dose of activin A, this induction was prevented. The highest dose of activin A with or without LH resulted in decreased expression of the LH receptor compared to the untreated controls in the F(3) + F(4) cell cultures. Progesterone secretion by the granulosa cells from both follicle sizes was not altered by activin A. In experiment 3 (n = 3 replications), the effect of activin A on the growth of granulosa cells was examined with the following treatments: 0, 10, or 50 ng/ml of activin A; 50 ng/ml of either oLH or oFSH; and oLH or oFSH combined with 10 ng/ml of activin A. The highest dose of activin reduced the rate of granulosa cell proliferation in both follicle types. Growth of F(1) and F(3) + F(4) granulosa cells was stimulated by the addition of either gonadotropin, and the presence of 10 ng/ml of activin A with either gonadotropin did not alter this proliferation, except for the LH-treated F(3) + F(4) granulosa cells, in which the increase in proliferation was prevented. The results suggest that activin A could act as a local factor that regulates follicular maturation by preventing excessive or untimely LH receptor expression.  相似文献   

7.
FSH and GnRH both stimulate rat granulosa cells to produce tissue-type plasminogen activator (tPA). We have studied the molecular mechanisms involved in the action of these hormones by measuring tPA mRNA levels in primary cultures of rat granulosa cells. When granulosa cells were cultured in the presence of FSH or GnRH the level of tPA mRNA was increased 20- and 12-fold, respectively. The induction of tPA mRNA by FSH and GnRH was additive and the kinetics of induction differed. The effect of FSH could be mimicked by bromo-cAMP or forskolin, and was drastically enhanced by cotreatment with the phosphodiesterase inhibitor 1-methyl-3-isobutylxanthine. These findings are consistent with the notion that FSH mediates its effect through the protein kinase A pathway. GnRH is believed to augment phospholipid turnover in granulosa cells, leading to the activation of the protein kinase C pathway. Like GnRH, the protein kinase C activator phorbol myristate acetate also induced tPA mRNA in granulosa cells. In the presence of the protein synthesis inhibitor, cycloheximide, FSH-stimulated tPA message levels were enhanced by 30-fold, revealing superinduction of tPA mRNA levels by this pathway. In contrast the induction of tPA mRNA by GnRH was inhibited by cycloheximide indicating that the synthesis of an intermediate protein is required for the GnRH effect. Our data suggest that FSH and GnRH increase the tPA mRNA levels by two distinct pathways in cultured granulosa cells, providing a model system for studying the hormonal regulation of tPA gene expression.  相似文献   

8.
9.
10.
Cellular levels of mRNA encoding pro TRH in the rostral paraventricular nucleus are reduced by thyroid hormones. To determine whether this regulatory effect of thyroid hormones requires a functional pituitary gland or, specifically, TSH, we examined the effect of T3 on proTRH mRNA in hypophysectomized, thyro-parathyroidectomized male rats with or without bovine TSH replacement. Hypophysectomy plus thyro-parathyroidectomy reduced serum T4 and TSH to undetectable levels in all animals and elevated TRH mRNA in the paraventricular nucleus over that of sham-operated animals. Eleven consecutive daily injections of T3 significantly reduced TRH mRNA levels in both sham controls and thyro-parathyroidectomized rats. However, 11 daily injections of bovine TSH (1 U/day) failed to alter the effect of T3 on TRH mRNA levels. These results demonstrate that the regulatory influence of thyroid hormones on the biosynthesis of TRH within the thyrotropic center of the brain is independent of the pituitary gland and of TSH.  相似文献   

11.
12.
13.
14.
Progesterone production of granulosa cells cultured in vitro is stimulated and cell differentiation increased, by follicle-stimulating hormone (FSH). This study examined whether the increased progesterone production observed when bovine granulosa cells are cultured occurs because (1) progesterone production by undifferentiated and/or differentiated cells is increased or (2) the differentiation of granulosa cells is stimulated. Viable bovine granulosa cells (2−3×105) from follicles 5–8 mm in diameter were cultured in the presence of 0, 1, 10 and 100 μu FSH (1 μu ≡ 1 μg NIH-FSH-S1) for 6 days at 37°C in a humidified atmosphere of 5% CO2 in air in 1 ml of a 1:1 mixture of Dulbecco's modified Eagle medium: Ham's F10 medium supplemented with 365 μg ml−1 l-glutamine, 100 U ml−1 penicillin and 100 μg ml−1 streptomycin. Progesterone production, total DNA and protein, and cell diameter were determined sequentially over the culture period. The increases in progesterone production (ng μg−1 DNA per 24 h), cytoplasmic:nuclear ratio (μg protein μg−1 DNA) and cell diameter (μm) over 6 days culture indicated that granulosa cells underwent differentiation in the presence of FSH. Progesterone production of undifferentiated granulosa cells (diameter 14 μm or less) was stimulated by FSH (P < 0.01) in a dose dependent manner (1.0±0.2, 2.9±0.3, 3.7±0.3 and 4.9±0.4 ng μg−1 DNA per 24 h for 0, 1, 10 and 100 μu ml−1 FSH respectively) but remained constant within dose (P > 0.05) during a 6 day culture period. FSH stimulated (P < 0.05) the rate of granulosa cell differentiation (10±3%, 53±13%, 74±21% and 82±10% differentiating cells per well for 0 μu, 1 μu, 10 μu and 100 μu ml−1 FSH respectively) but did not stimulate (P > 0.05) progesterone production by differentiating granulosa cells (8.7±0.5 ng μg−1 DNA per 24 h). In conclusion, the increase in progesterone production of FSH-stimulated granulosa cells cultured in vitro appears to be mainly due to an increase in the number of differentiating cells with a constant rather than an increasing progesterone production per cell.  相似文献   

15.
Avian granulosa cells cultured as a homogeneous parenchymal population contain lipolytic activity. This activity is stimulated 2--5-fold by serum, inhibited 90% by 1 M NaCl and inhibited 80% by specific anti-lipoprotein lipase immunoglobulins. 85% of the activity binds to heparin-Sepharose 4B, and 70% of bound activity is eluted with 1.5 M NaCl. Thus, the lipolytic activity of cultured granulosa cells is lipoprotein lipase. Granulosa cells were shown to synthesize lipoprotein lipase in culture by incorporating [3H]leucine into the enzyme protein, as measured with an immunoadsorption technique. Finally, colchicine was shown to increase intracellular lipolytic activity, suggesting an inhibition of secretion of this enzyme by cultured granulosa cells.  相似文献   

16.
17.
W M Wood  J C Wallace  M Edmonds 《Biochemistry》1985,24(14):3686-3693
Oligo(uridylic acid)-containing [oligo(U+)] RNA was isolated from poly(adenylic acid)-containing [poly(A+)] mRNA from HeLa cells by using either formaldehyde pretreatment or poly(A) removal, both of which resulted in increased accessibility of oligo(U)-rich sequences to a poly(A)-agarose affinity column. In this report, we compared the sequence content of oligo(U+) RNA with that of molecules lacking oligo(U) [oligo(U-) RNA] by their relative hybridization to cDNA reverse-transcribed from poly(A+) mRNA and by comparison of their in vitro translation products synthesized in a rabbit reticulocyte lysate. Formaldehyde-modified poly(A+) RNA, treated to remove the formol adjuncts, was inactive as a template for in vitro protein synthesis; consequently, only depolyadenylated RNA, which retains its translatability, could be used in the translation studies. The hybridization kinetic experiments revealed that oligo(U+) RNA contained most of the sequence information present in oligo(U-) RNA but at a reduced level (ca. 25%), the majority of the oligo(U+) RNA sequences being poorly represented in the cDNA. This result was supported by one- and two-dimensional gel analysis of their in vitro translation products which showed that oligo(U+) RNA, although less effective as a template for translation than oligo(U-) RNA, coded for proteins, the most abundant of which were encoded by rare messages not highly represented in oligo(U-) RNA or the total poly(A+) RNA. Although some minor products were synthesized by both oligo(U+) and oligo(U-) RNA, at least 33 proteins were unique to or highly enriched in the pattern of products directed by oligo(U+) RNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We previously reported that annexin 5 is found specifically in gonadotropes and that the expression is dramatically enhanced after ovariectomy. In the present study, the expression of annexin 5 was examined in the primary culture of rat anterior pituitary cells using semiquantitative RT-PCR to determine if it is under the direct control of gonadotropin-releasing hormone (GnRH). Continuous administration of GnRH analog for 1 h enhanced the expression of both FSH beta subunit and annexin 5 mRNA. The expression of annexin 5 mRNA was also augmented by phorbol 12-myristate 13-acetate but not by forskolin. Administration of recombinant rat annexin 5 to the culture increased LH beta mRNA expression. These data clearly demonstrate that the expression of annexin 5 mRNA is directly controlled by GnRH and suggest that annexin 5 is involved in mediating GnRH action in the pituitary gland.  相似文献   

19.
20.
Summary 1. We examined the potential effect of GnRH pulses on pituitary estrogen receptor mRNA level.2. The treatment of perifused pituitary cell aggregates with four hourly pulses of GnRH (10 nM/1 min/h) resulted in a marked increase in the steady-state level of ER mRNA (25%vs unstimulated control, n = 3).3. No changes were observed for the LH ß mRNA. Data suggest, for the first time, that a cross-talk between the GnRH and nuclear ER may occur in the gonadotrope cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号