首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The testis exhibits a distinctive form of immune privilege to protect the germ cells from the host immune attack. The property of testicular immune privilege was originally attributed to the blood-testis barrier in the seminiferous epithelium, which sequesters antigens. Recent studies have uncovered several levels of immune control besides the blood-testis barrier involved in the privilege of the testis, including the mechanisms of immune tolerance, reduced immune activation, localized active immunosuppression and antigen-specific immunoregulation. The somatic cells of the testis, especially Sertoli cells, play a key role in regulating the testicular immune privileged status. The constitutive expression of anti-inflammatory factors in the testis by somatic cells is essential for local immunosuppression. Growing evidence shows that androgens orchestrate the inhibition of proinflammatory factors and shift cytokine balance toward a tolerogenic environment. Disruption of these protective mechanisms, which may be caused by trauma, infection and genetic factors, can lead to orchitis and infertility. This review article highlights the unique immune environment of the testis, particularly focuses on the regulation of testicular immune privilege.  相似文献   

2.
The eye, like the brain and reproductive organs, possesses inherent immune privilege, and inflammation is self-regulated so as to preserve the organ functions. Studies over the past 30 years have provided insights of the multiple mechanisms of immune privilege. At present, three major lines of thought prevail regarding the molecular mechanisms of immune privilege in the eye: there are (1) anatomical, cellular, and molecular barriers in the eye; (2) eye-derived immunological tolerance, the so-called anterior chamber-associated immune deviation; and (3) immune suppressive intraocular microenvironment. In this review, the mechanisms of immune privilege that have been learned from ocular inflammation animal models, especially corneal transplantation, are described. Roles of new B7 family molecules on local immune regulation within the cornea are also introduced.  相似文献   

3.
A physician has an ethical duty to hold in confidence communications made to him by his patient. A legal recognition of this ethical duty is found in the concept of privilege, which is the subject of this article. January 1967 will bring to California physicians a new protection for patients'' communications. The physician-patient privilege has been redefined to include confidential communications made during diagnostic evaluation, those made to non-licensed physicians, interns and medical aides, and those overheard by eavesdroppers. There has been added a psychotherapist-patient privilege designed to facilitate communications required in psychotherapy as well as in behavioral research.This paper first presents a brief historical background and discusses the protections and limitations afforded by the new California Evidence Code. There follows a section on the psychotherapist-patient privilege with the recommendation that in the context of psychotherapy, patients of physicians who are not psychiatrists should be afforded the additional benefits of the psychotherapist-patient privilege. Lastly, advice is given concerning the physician''s conduct in relation to his duty to claim privilege under the new code.  相似文献   

4.
Ocular immune privilege and the impact of intraocular inflammation   总被引:4,自引:0,他引:4  
Immune privilege, a characteristic of the internal compartments of the eye, is a physiologic mechanism that is designed to provide the eye with protection against pathogens while protecting the delicate visual axis from the sight-destroying potential of immunogenic inflammation. It is assumed that the presence of intraocular inflammation is incompatible with the existence of immune privilege. The validity of this assumption has been tested in four animal models of intraocular inflammation-systemic and local endotoxin-induced uveitis (EIU), mycobacterial adjuvant-induced uveitis (MAIU), and experimental autoimmune uveitis (EAU). Immune privilege was assessed in inflamed eyes by growth of intracamerally injected allogeneic tumor cells, by the capacity to support immune deviation following intracameral injection of antigen (ovalbumin, OVA), by assaying protein, leukocyte, and selected cytokine content of aqueous humor (AqH), and by capacity of inflamed AqH to suppress T cell activation in vitro. The results indicate that, irrespective of the type of inflammation, tumor cells formed progressively growing tumors in inflamed eyes. Moreover, OVA injected into the anterior chamber of eyes inflamed by MAIU and EAU failed to induce immune deviation. AqH from inflamed eyes reflected breakdown of the blood:ocular barrier as well as transient loss of its immunosuppressive properties. Immunosuppressive microenvironments routinely reemerged in inflamed eyes, and the immunosuppressive agent present under these circumstances in AqH was active TGF beta2. It is concluded that immune privilege is surprisingly resistant to abolition by intraocular inflammation, and that maintenance of immune privilege in the face of ongoing inflammation depends upon the emergence of progressive and partially different immunosuppressive mechanisms.  相似文献   

5.
It has been proposed that the constitutive expression of Fas ligand (FasL) in the eye maintains immune privilege, in part through inducing apoptosis of infiltrating Fas(+) T cells. However, the role of FasL in immune privilege remains controversial due to studies that indicate FasL is both pro- and anti-inflammatory. To elucidate the mechanism(s) by which FasL regulates immune privilege, we used an ocular tumor model and examined the individual roles of the membrane-bound and soluble form of FasL in regulating ocular inflammation. Following injection into the privileged eye, tumors expressing only soluble FasL failed to trigger inflammation and grew progressively. By contrast, tumors expressing only membrane FasL 1) initiated vigorous neutrophil-mediated inflammation, 2) terminated immune privilege, and 3) were completely rejected. Moreover, the rejection coincided with activation of both innate and adaptive immunity. Interestingly, a higher threshold level of membrane FasL on tumors is required to initiate inflammation within the immune privileged eye, as compared with nonprivileged sites. The higher threshold is due to the suppressive microenvironment found within aqueous humor that blocks membrane FasL activation of neutrophils. However, aqueous humor is unable to completely block the proinflammatory effects of tumor cells that express high levels of membrane FasL. In conclusion, our data indicate that the function of FasL on intraocular tumors is determined by the microenvironment in conjunction with the form and level of FasL expressed.  相似文献   

6.
In the mammalian testis, meiotic and postmeiotic germ cell antigens are granted immune privilege. Both local immune suppression and specialized intercellular junctions between somatic Sertoli cells have been proposed to contribute to a highly restricted and effective blood-testis barrier (BTB) that helps maintain tolerance to germ cell antigens. Several studies have suggested that androgens play a role in immune suppression, although direct evidence for this is lacking. We previously reported that Sertoli cell-specific ablation of the androgen receptor (Ar) decreases expression of Cldn3, an androgen-regulated gene and component of Sertoli cell tight junctions, and increases the permeability of the BTB to biotin, a small-molecular-weight tracer. The physiological consequences of Sertoli cell-specific Ar (S-Ar) ablation on immune privilege are unknown. Here we show that in the testes of S-Ar mutant mice, the ultrastructure of Sertoli cell tight junctions is defective and testicular IgG levels are elevated. The interstitium of S-Ar mutant testes becomes populated with macrophages, neutrophils, plasma cells, and eosinophils, and serum samples of mutant mice contain antibodies against germ cell antigens. Together, these results suggest that Sertoli cell-specific deletion of the androgen receptor results in loss of testicular immune privilege. Suppressed levels of androgen signaling may be a contributing factor in idiopathic male infertility.  相似文献   

7.
Inflammation in the eye is tightly regulated by multiple mechanisms that together contribute to ocular immune privilege. Many studies have shown that it is very difficult to abrogate the immune privileged mechanism called anterior chamber-associated immune deviation (ACAID). Previously, we showed that retinal laser burn (RLB) to one eye abrogated immune privilege (ACAID) bilaterally for an extended period of time. In an effort to explain the inflammation in the nonburned eye, we postulated that neuronal signals initiated inflammation in the contralateral eye. In this study, we test the role of substance P, a neuroinflamatory peptide, in RLB-induced loss of ACAID. Histological examination of the retina with and without RLB revealed an increase of the substance P-inducible neurokinin 1 receptor (NK1-R) in the retina of first, the burned eye, and then the contralateral eye. Specific antagonists for NK1-R, given locally with Ag within 24 h, but not 3, 5, or 7 d post-RLB treatment, prevented the bilateral loss of ACAID. Substance P knockout (KO) mice retained their ability to develop ACAID post-RLB. These data support the postulate that substance P transmits early inflammatory signals from the RLB eye to the contralateral eye to induce changes to ocular immune privilege and has a central role in the bilateral loss of ACAID. The possibility is raised that blocking of the substance P pathway with NK1-R antagonists postocular trauma may prevent unwanted and perhaps extended consequences of trauma-induced inflammation in the eye.  相似文献   

8.
Adult mesenchymal stem cells (MSCs) include a select population of resident cells within adult tissues, which retain the ability to differentiate along several tissue‐specific lineages under defined media conditions and have finite expansion potential in vitro. These adult progenitor populations have been identified in various tissues, but it remains unclear exactly what role both transplanted and native MSCs play in processes of disease and regeneration. Interestingly, increasing evidence reveals a unique antiinflammatory immunomodulatory phenotype shared among this population, lending support to the idea that MSCs play a central role in early tissue remodeling responses where a controlled inflammatory response is required. However, additional evidence suggests that MSCs may not retain infinite immune privilege and that the context with which these cells are introduced in vivo may influence their immune phenotype. Therefore, understanding this dynamic microenvironment in which MSCs participate in complex feedback loops acting upon and being influenced by a plethora of secreted cytokines, extracellular matrix molecules, and fragments will be critical to elucidating the role of MSCs in the intertwined processes of immunomodulation and tissue repair. Birth Defects Research (Part C) 90:67–74, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Gene therapy is quickly becoming a reality applicable in the clinic for inherited retinal diseases. Progress over the past decade has moved proof-of-concept gene therapies from bench to bedside. The remarkable success in safety and efficacy, in the phase I/II clinical trials for the form of the severe childhood-onset blindness, Leber's Congenital Amaurosis (LCA) type II (due to mutations in the RPE65 gene) generated significant interest and opened up possibilities for a new era of retinal gene therapies. Success in these clinical trials was due to combining the favorable features of both the retina as a target organ and adeno-associated virus (AAV) as a vector. The retina offers several advantages for gene therapy approaches. It is an anatomically defined structure that is readily accessible for therapy and has some degree of immune privilege, making it suitable for application of viral vectors. AAV, on the other hand, is a non-pathogenic helper dependent virus that has little immunogenicity. This viral vector transduces quiescent cells efficiently and thanks to its small size diffuses well in the interneural matrix, making it suitable for applications in neural tissue. Building on this initial clinical success with LCA II, we have now many opportunities to extend this proof-of-concept to other retinal diseases. This article will discuss what are some of the most imminent targets for such therapies and what are the challenges that we face in moving these therapies to the clinic.  相似文献   

10.
Corneal transplantation is the most common form of organ transplantation in the United States with between 45,000 and 55,000 procedures performed each year. While several animal models exist for this procedure and mice are the species that is most commonly used. The reasons for using mice are the relative cost of using this species, the existence of many genetically defined strains that allow for the study of immune responses, and the existence of an extensive array of reagents that can be used to further define responses in this species. This model has been used to define factors in the cornea that are responsible for the relative immune privilege status of this tissue that enables corneal allografts to survive acute rejection in the absence of immunosuppressive therapy. It has also been used to define those factors that are most important in rejection of such allografts. Consequently, much of what we know concerning mechanisms of both corneal allograft acceptance and rejection are due to studies using a murine model of corneal transplantation. In addition to describing a model for acute corneal allograft rejection, we also present for the first time a model of late-term corneal allograft rejection.  相似文献   

11.
Over the past decade, cell transplantation has been recognized as a mean of repairing infarcted myocardium. Both adult stem cells and differentiated cells have yielded encouraging results with regard to engraftment into postinfarction scars. However, these cells now feature serious restrictions. Asan alternative, embryonic stem (ES) cells are particularly attractive, because of their plasticity and the subsequent possibility to drive them towards a cardiomyogenic phenotype after exposure to appropriate growth factors. An additional theoretical advantage of ES cells is their expected immune privilege. In this article, we summarize the findings obtained in cell therapy using ES cells and discuss the molecular mechanisms of cardiac specification of the cells.  相似文献   

12.
The Fas/FasL system has been suggested to play an important role in the establishment of immune privilege status for tumors by inducing Fas-mediated apoptosis in tumor-specific lymphocytes. However, the role of cell-surface expressed FasL in tumor cell protection has recently become controversial. Our laboratory has focused on the study of the role of the Fas/FasL system in the normal tissue remodeling of the female reproductive tract and in immune-privileged organs. Our studies have demonstrated a connection between sex hormones and the regulation of the Fas/FasL pathway in immune and reproductive cells. More recently, we have investigated the resistance of tumor cells to Fas-mediated apoptosis. We have also characterized a new form of FasL, different from the classical membranal form, which is secreted by ovarian cancer cells. In this review we describe the main techniques used in these studies.  相似文献   

13.
Immune responses are suppressed in immunologically privileged sites, which may provide a unique opportunity to prolong allograft survival. However, it is unknown whether testicular immune privilege promotes transplantation tolerance. Mechanisms underlying immune privilege are also not well understood. Here we found that islet transplantation in the testis, an immunologically privileged site, generates much less memory CD8(+) T cells but induces more Ag-specific CD4(+)CD25(+) regulatory T cells than in a conventional site. These CD4(+)CD25(+) cells exhibited the suppression of alloimmune responses in vivo and in vitro. Despite the immune regulation, intratesticular islet allografts all were rejected within 42 days after transplantation although they survived longer than renal subcapsular islet allografts. However, blocking CD40/CD40L costimulation induced the tolerance of intratesticular, but not renal subcapsular, islet allografts. Tolerance to intratesticular islet allografts spread to skin allografts in the non-privileged sites. Either transfer of memory CD8(+) T cells or deletion of CD25(+) T cells in vivo broke islet allograft tolerance. Thus, transplantation tolerance requires both costimulatory blockade, which suppresses acute allograft rejection, and a favorable balance between memory and regulatory T cells that could favorably prevent late allograft failure. These findings reveal novel mechanisms of immune privilege and provide direct evidence that testicular immune privilege fosters the induction of transplantation tolerance to allografts in both immunologically privileged and non-privileged sites.  相似文献   

14.
Follmann D 《Biometrics》2006,62(4):1161-1169
This article introduces methods for use in vaccine clinical trials to help determine whether the immune response to a vaccine is actually causing a reduction in the infection rate. This is not easy because immune response to the (say HIV) vaccine is only observed in the HIV vaccine arm. If we knew what the HIV-specific immune response in placebo recipients would have been, had they been vaccinated, this immune response could be treated essentially like a baseline covariate and an interaction with treatment could be evaluated. Relatedly, the rate of infection by this baseline covariate could be compared between the two groups and a causative role of immune response would be supported if infection risk decreased with increasing HIV immune response only in the vaccine group. We introduce two methods for inferring this HIV-specific immune response. The first involves vaccinating everyone before baseline with an irrelevant vaccine, for example, rabies. Randomization ensures that the relationship between the immune responses to the rabies and HIV vaccines observed in the vaccine group is the same as what would have been seen in the placebo group. We infer a placebo volunteer's response to the HIV vaccine using their rabies response and a prediction model from the vaccine group. The second method entails vaccinating all uninfected placebo patients at the closeout of the trial with the HIV vaccine and recording immune response. We pretend this immune response at closeout is what they would have had at baseline. We can then infer what the distribution of immune response among placebo infecteds would have been. Such designs may help elucidate the role of immune response in preventing infections. More pointedly, they could be helpful in the decision to improve or abandon an HIV vaccine with mediocre performance in a phase III trial.  相似文献   

15.
Ocular immune privilege is considered essential in the protection against sight-threatening immune responses, as illustrated by the ability of the ocular environment to permit the growth of tumors that are rejected when implanted at other sites. Although several studies indicate that soluble Ag can drain directly into the spleen when injected into the anterior chamber, the primary site of intraocular tumor Ag presentation to tumor-specific CTLs has not been studied. To gain a better understanding of the mechanism involved in ocular immune privilege, we examined to which lymphoid organs anterior chamber tumor Ags primarily drain. Our data show that intraocular tumor Ag drains exclusively to the submandibular lymph nodes, resulting in activation of tumor-specific CTLs, whereas no Ag drainage was found in spleen. However, these tumor-specific CTLs do not distribute systemically and, as a consequence, intraocular tumor growth is unhampered. A similar lack of CTL efficacy has been observed in mice bearing s.c. tumors, which is converted to a systemic tumoricidal CTL response by administration of agonistic anti-CD40 mAb. In contrast, systemic anti-CD40 treatment of eye tumor-bearing mice did not result in mobilizing tumor-specific CTLs or tumor eradication. Together, these results show that intraocular tumor Ag drains to regional lymph nodes for activation of tumor-specific CTLs. However, the induced tumor-specific immunity is insufficient for tumor clearance, even combined with otherwise highly effective immune intervention protocols.  相似文献   

16.
Immune privilege is used by the eye, brain, reproductive organs, and gut to preserve structural and functional integrity in the face of inflammation. The eye is arguably the most vulnerable and, therefore, also the most "privileged" of tissues; paradoxically, it remains subject to destructive autoimmunity. It has been proposed, although never proven in vivo, that the eye can induce T regulatory cells (Tregs) locally. Using Foxp3-GFP reporter mice expressing a retina-specific TCR, we now show that uncommitted T cells rapidly convert in the living eye to Foxp3(+) Tregs in a process involving retinal Ag recognition, de novo Foxp3 induction, and proliferation. This takes place within the ocular tissue and is supported by retinoic acid, which is normally present in the eye because of its function in the chemistry of vision. Nonconverted T cells showed evidence of priming but appeared restricted from expressing effector function in the eye. Pre-existing ocular inflammation impeded conversion of uncommitted T cells into Tregs. Importantly, retina-specific T cells primed in vivo before introduction into the eye were resistant to Treg conversion in the ocular environment and, instead, caused severe uveitis. Thus, uncommitted T cells can be disarmed, but immune privilege is unable to protect from uveitogenic T cells that have acquired effector function prior to entering the eye. These findings shed new light on the phenomenon of immune privilege and on its role, as well as its limitations, in actively controlling immune responses in the tissue.  相似文献   

17.
Transplantation of immature retinal tissues may offer a solution for restoring sight to individuals afflicted with degenerative retinal diseases. Promising results have recently demonstrated that neonatal retinal grafts placed in the eye can survive, differentiate into photoreceptor cells, and respond to evoked electrical stimuli. These transplants, however, were performed in immunologically immature recipients. Since it is important to know whether neonatal neuronal retina (NNR) tissue is immunogenic in immune-competent recipients, and whether this tissue displays inherent immune privilege, we have examined the fate of such grafts placed in a non-immune-privileged site of adult recipient mice. We found that typical, photoreceptor-dominated rosettes formed in differentiating NNR grafts, and that these allografts survived beyond 12 days, whereas genetically identical skin grafts were rejected earlier. Class II MHC-bearing cells of recipient origin were observed along the edge of NNR allografts as early as day 5. Donor-specific delayed hypersensitivity was not detected at 12 days, but did emerge on day 20, coincident with rejection of NNR allografts. Lymph nodes, but not spleens, of mice bearing NNR grafts at 12 days contained regulatory lymphoid cells that suppressed delayed hypersensitivity in naive recipients. We conclude that NNR grafts accommodate and even differentiate in the non-immune-privileged space beneath the kidney capsule. Survival beneath the kidney capsule of NNR allografts, but not skin allografts, at 12 days and beyond implies that NNR tissue possesses inherent immune privilege. The vulnerability of these grafts to rejection by 20 days reveals this privilege to be partial and temporary.  相似文献   

18.
Clinical immunologists, among other problems, routinely face a question: what is the best time and dose for a certain therapeutic agent to be administered to the patient in order to decrease/eradicate the pathological condition? In cancer immunotherapies the therapeutic agent is something able to elicit an immune response against cancer. The immune response has its own dynamics that depends on the immunogenicity of the therapeutic agent and on the duration of the immune response. The question then is "how can we decide when and how much of the drug to inject so to have a prolonged and effective immune response to the cancer?". This question can be addressed in mathematical terms in two stages: first one construct a mathematical model describing the cancer-immune interaction and secondly one applies the theory of optimal control to determine when and to which extent to stimulate the immune system by means of an immunotherapeutic agent administered in discrete variable doses within the therapeutic period. The solution of this mathematical problem is described and discussed in this article. We show that the method employed can be applied to find the optimal protocol in a variety of clinical problems where the kinetics of the drug or treatment and its influence on the physiologic/pathologic functions have been described by a system of ordinary differential equations.  相似文献   

19.
A fundamental mechanism of immune privilege in the eye is the induction of T lymphocyte apoptosis. Intraocular inflammation in uveitis implies compromise of immune privilege. This study sought to determine whether apoptosis of T cells is actively inhibited in patients with uveitis and by what pathways this may occur. Apoptotic lymphocytes were found to be absent from aqueous humor (AqH) of virtually all patients with recent-onset uveitis. However, T cells removed from the eye were highly susceptible to both spontaneous and Fas ligand-induced apoptosis in vitro. AqH from patients with uveitis had no modulatory effect on Fas ligand-induced apoptosis, but strongly suppressed survival factor deprivation-induced apoptosis. In contrast, noninflammatory AqH from patients undergoing cataract surgery had no modulatory effects on apoptosis at all. These data suggest that triggering of the Fas pathway is diminished in uveitis, and also that homeostatic resolution through survival factor deprivation-induced apoptosis is inhibited by factors present in AqH. The most widely recognized pathways, common gamma-chain cytokines and type I IFNs, did not contribute to AqH-mediated T cell survival. High levels of both IL-6 and soluble IL-6R were found in AqH. IL-6 alone did not induce T cell survival, because IL-6R expression on T cells in AqH was too low to facilitate signaling. However, combinations of IL-6 and soluble IL-6R were highly effective inhibitors of T cell apoptosis, suggesting that the trans-signaling pathway is likely to be a key mediator of T cell apoptosis inhibition mediated by uveitis AqH.  相似文献   

20.
Whether vaccines are designed to prepare the immune system for the encounter with a pathogen or with cancer, certain common challenges need to be faced, such as what antigen and what adjuvant to use, what type of immune response to generate and how to make it long lasting. Cancer, additionally, presents several unique hurdles. Cancer vaccines must overcome immune suppression exerted by the tumour, by previous therapy or by the effects of advanced age of the patient. If used for cancer prevention, vaccines must elicit effective long-term memory without the potential of causing autoimmunity. This article addresses the common and the unique challenges to cancer vaccines and the progress that has been made in meeting them. Considering how refractory cancer has been to standard therapy, efforts to achieve immune control of this disease are well justified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号