首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The thermohalophilic bacterium Rhodothermus marinus expresses a caa(3)-type dioxygen reductase as one of its terminal oxidases. The subunit I amino acid sequence shows the presence of all the essential residues of the D- and K-proton channels, defined in most heme-copper oxidases, with the exception of the key glutamate residue located in the middle of the membrane dielectric (E278 in Paracoccus denitrificans). On the basis of homology modeling studies, a tyrosine residue (Y256, R. marinus numbering) has been proposed to act as a functional substitute [Pereira, M. M., Santana, M., Soares, C. M., Mendes, J., Carita, J. N., Fernandes, A. S., Saraste, M., Carrondo, M. A., and Teixeira, M. (1999) Biochim. Biophys. Acta 1413, 1-13]. Here, R. marinus caa(3) oxidase was reconstituted in liposomes and shown to operate as a proton pump, translocating protons from the cytoplasmic side of the bacterial inner membrane to the periplasmatic space with a stoichiometry of 1H(+)/e(-), as in the case in heme-copper oxidases that contain the glutamate residue. Possible mechanisms of proton transfer in the D-channel with the participation of the tyrosine residue are discussed. The observation that the tyrosine residue is conserved in several other members of the heme-copper oxidase superfamily suggests a common alternative mode of action for the D-channel.  相似文献   

2.
The cytochrome c domain of subunit II from the Rhodothermus marinus caa(3) HiPIP:oxygen oxidoreductase, a member of the superfamily of heme-copper-containing terminal oxidases, was produced in Escherichia coli and characterised. The recombinant protein, which shows the same optical absorption and redox properties as the corresponding domain in the holo enzyme, was crystallized and its structure was determined to a resolution of 1.3 A by the multiwavelength anomalous dispersion (MAD) technique using the anomalous dispersion of the heme iron atom. The model was refined to final R(cryst) and R(free) values of 13.9% and 16.7%, respectively. The structure reveals the insertion of two short antiparallel beta-strands forming a small beta-sheet, an interesting variation of the classical all alpha-helical cytochrome c fold. This modification appears to be common to all known caa(3)-type terminal oxidases, as judged by comparative modelling and by analyses of the available amino acid sequences for these enzymes. This is the first high-resolution crystal structure reported for a cytochrome c domain of a caa(3)-type terminal oxidase. The R.marinus caa(3) uses HiPIP as the redox partner. The calculation of the electrostatic potential at the molecular surface of this extra C-terminal domain provides insights into the binding to its redox partner on one side and its interaction with the remaining subunit II on the other side.  相似文献   

3.
The ligand-binding dynamics and the reaction with O(2) of the fully (five-electron) reduced cytochrome caa(3) from the thermohalophilic bacterium Rhodothermus (R.) marinus were investigated. The enzyme is a proton pump which has all the residues of the proton-transfer pathways found in the mitochondrial-like enzymes conserved, except for one of the key elements of the D-pathway, the helix-VI glutamate [Glu(I-286), R. sphaeroides numbering]. In contrast to what has been suggested previously as general characteristics of thermophilic enzymes, during formation of the R. marinus caa(3)-CO complex, CO binds weakly to Cu(B), and is rapidly (k(Ba) = 450 s(-1)) trapped by irreversible (K(Ba) = 4.5 x 10(3)) binding to heme a(3). Upon reaction of the fully reduced enzyme with O(2), four kinetic phases were resolved during the first 10 ms after initiation of the reaction. On the basis of a comparison to reactions observed with the bovine enzyme, these phases were attributed to the following transitions between intermediates (pH 7.8, 1 mM O(2)): R --> A (tau congruent with 8 micros), A --> P(r) (tau congruent with 35 micros), P(r) --> F (tau congruent with 240 micros), F --> O (tau congruent with 2.5 ms), where the last two phases were associated with proton uptake from the bulk solution. Oxidation of heme c was observed only during the last two reaction steps. The slower transition times as compared to those observed with the bovine enzyme most likely reflect the replacement of Glu(I-286) of the helix-VI motif -XGHPEV- by a tyrosine in the R. marinus enzyme in the motif -YSHPXV-. The presence of an additional, fifth electron in the enzyme was reflected by two additional kinetic phases with time constants of approximately 20 and approximately 720 ms during which the fifth electron reequilibrated within the enzyme.  相似文献   

4.
Seven years into the completion of the genome sequencing projects of the thermophilic bacterium Thermus thermophilus strains HB8 and HB27, many questions remain on its bioenergetic mechanisms. A key fact that is occasionally overlooked is that oxygen has a very limited solubility in water at high temperatures. The HB8 strain is a facultative anaerobe whereas its relative HB27 is strictly aerobic. This has been attributed to the absence of nitrate respiration genes from the HB27 genome that are carried on a mobilizable but highly-unstable plasmid. In T. thermophilus, the nitrate respiration complements the primary aerobic respiration. It is widely known that many organisms encode multiple biochemically-redundant components of the respiratory complexes. In this minireview, the presence of the two cytochrome c oxidases (CcO) in T. thermophilus, the ba(3)- and caa(3)-types, is outlined along with functional considerations. We argue for the distinct evolutionary histories of these two CcO including their respective genetic and molecular organizations, with the caa(3)-oxidase subunits having been initially 'fused'. Coupled with sequence analysis, the ba(3)-oxidase crystal structure has provided evolutionary and functional information; for example, its subunit I is more closely related to archaeal sequences than bacterial and the substrate-enzyme interaction is hydrophobic as the elevated growth temperature weakens the electrostatic interactions common in mesophiles. Discussion on the role of cofactors in intra- and intermolecular electron transfer and proton pumping mechanism is also included.  相似文献   

5.
The mechanism of nitric oxide reduction in a ba(3)-type heme-copper oxidase has been investigated using density functional theory (B3LYP). Four possible mechanisms have been studied and free energy surfaces for the whole catalytic cycle including proton and electron transfers have been constructed by comparison to experimental data. The first nitric oxide coordinates to heme a(3) and is partly reduced having some nitroxyl anion character ((3)NO(-)), and it is thus activated toward the attack by the second N-O. In this reaction step a cyclic hyponitrous acid anhydride intermediate with the two oxygens coordinating to Cu(B) is formed. The cyclic hyponitrous acid anhydride is quite stable in a local minimum with high barriers for both the backward and forward reactions and should thus be observable experimentally. To break the N-O bond and form nitrous oxide, the hyponitrous acid anhydride must be protonated, the latter appearing to be an endergonic process. The endergonicity of the proton transfer makes the barrier of breaking the N-O bond directly after the protonation too high. It is suggested that an electron should enter the catalytic cycle at this stage in order to break the N-O bond and form N(2)O at a feasible rate. The cleavage of the N-O bond is the rate limiting step in the reaction mechanism and it has a barrier of 17.3 kcal/mol, close to the experimental value of 19.5 kcal/mol. The overall exergonicity is fitted to experimental data and is 45.6 kcal/mol.  相似文献   

6.
To probe the location of the quinol oxidation site and physical interactions for inter-subunit electron transfer, we constructed and characterized two chimeric oxidases in which subunit II (CyoA) of cytochrome bo-type ubiquinol oxidase from Escherichia coli was replaced with the counterpart (CaaA) of caa(3)-type cytochrome c oxidase from thermophilic Bacillus PS3. In pHNchi5, the C-terminal hydrophilic domain except a connecting region as to transmembrane helix II of CyoA was replaced with the counterpart of CaaA, which carries the Cu(A) site and cytochrome c domain. The resultant chimeric oxidase was detected immunochemically and spectroscopically, and the turnover numbers for Q(1)H(2) (ubiquinol-1) and TMPD (N,N, N',N'-tetramethyl-p-phenylenediamine) oxidation were 28 and 8.5 s(-1), respectively. In pHNchi6, the chimeric oxidase was designed to carry a minimal region of the cupredoxin fold containing all the Cu(A) ligands, and showed enzymatic activities of 65 and 5.1 s(-1), and an expression level better than that of pHNchi5. Kinetic analyses proved that the apparent lower turnover of the chimeric enzyme by pHNchi6 was due to the higher K(m) of the enzyme for Q(1)H(2) (220 microM) than that of cytochrome bo (48 microM), while in the enzyme by pHNchi5, both substrate-binding and internal electron transfer were perturbed. These results suggest that the connecting region and the C-terminal alpha(1)-alpha(2)-beta(11)-alpha(3) domain of CyoA are involved in the quinol oxidation and/or physical interactions for inter-subunit electron transfer, supporting our previous proposal [Sato-Watanabe, M., Mogi, T., Miyoshi, H., and Anraku, Y. (1998) Biochemistry 37, 12744-12752]. The close relationship of E. coli quinol oxidases to cytochrome c oxidase of Gram-positive bacteria like Bacillus was also indicated.  相似文献   

7.
The subject of this short review is the cytochromec oxidase (caa 3) from the thermophilic bacteriumThermus thermophilus. First, some of the extensive physical and enzymological results obtained with this enzyme are reviewed, and two experiments are described, involving isotope substitutions in combination with Mössbauer and ENDOR spectroscopies, which have provided novel insight into the active sites of the enzyme. Second, we summarize recent molecular genetic work showing thatThermus cytochromecaa 3 is abona fide member of the superfamily of heme-copper oxidases. Finally, we present a rough three-dimensional model and speculate about certain features of the metal-binding sites.  相似文献   

8.
N Sone  A Naqui  C Kumar    B Chance 《The Biochemical journal》1984,221(2):529-533
Reaction of O2 and CO with a caa3-type terminal cytochrome oxidase (EC 1.9.3.1) from the thermophilic bacterium PS3 grown with high aeration was studied at low temperatures. The CO recombination at the temperature range studied (-50 degrees C to -80 degrees C) followed first-order kinetics with an activation energy of 29.3 kJ/mol (7.0 kcal/mol). In the presence of O2 at -113 degrees C the photolysed reduced form binds O2 to form an 'oxy' intermediate similar to Compound A. At a higher temperature (-97 degrees C) another intermediate, similar to Compound B, is formed as a result of electron transfer from the enzyme to the liganded O2.  相似文献   

9.
Two cytochrome oxidases, cytochrome aa3 (EC 1.9.3.1) and cytochrome o, have been purified from the membranes of a thermophilic bacterium, PS3. The enzymes were solubilized with Triton X-100 and purified to apparent homogeneity on anion-exchange columns. The properties of the three-subunit cytochrome oxidase complex caa3 obtained here are compared with the same enzyme isolated by Sone, N. and Yanagita, Y. (1982) (Biochim. Biophys. Acta 682, 216-226). On storage, the purified caa3 enzyme undergoes denaturation; a shoulder at 432 nm seen in (CO-reduced)-minus-reduced difference spectra may be due in part to denaturation products of the enzyme. The purified cytochrome o is more stable. At room temperature, the reduced-minus-oxidized difference spectrum shows absorbance maxima at 427 and 559 nm; at 77 K, its alpha-band is split into 554 and 557 nm components. At room temperature, the CO-reduced-minus-reduced spectrum shows troughs at 430 nm and 560 nm. Dissociating polyacrylamide gel electrophoresis suggests that the purified cytochrome o is composed of one type of subunit with an apparent molecular mass of 47 000-48 000. Metal analysis of the purified enzyme demonstrated the lack of copper. Both oxidases, purified in the presence of Triton X-100, exist in highly polydisperse forms.  相似文献   

10.
The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. The enzyme mechanism is still unknown due to the lack of a high-resolution structure and its complicated composition. The complex from Escherichia coli is made up of 13 subunits called NuoA through NuoN and contains one FMN and nine iron-sulfur (Fe/S) clusters as redox groups. The pH dependence of the midpoint redox potential of the Fe/S cluster named N2 and its spin-spin interaction with ubiquinone radicals made it an ideal candidate for a key component in redox-driven proton translocation. During the past years we have assigned the subunit localization of cluster N2 to subunit NuoB by site-directed mutagenesis and predicted its ligation by molecular simulation. Redox-induced FT-IR spectroscopy has shown that its redox reaction is accompanied by the protonation and deprotonation of individual amino acid residues. These residues have been identified by site-directed mutagenesis. The enzyme catalytic activity depends on the presence of cluster N2 and is coupled with major conformational changes. From these data a model for redox-induced conformation-driven proton translocation has been derived.  相似文献   

11.
The proton-translocating NADH-quinone oxidoreductase (NDH-1) of Thermus thermophilus HB-8 is composed of 14 subunits (designated Nqo1-14). This NDH-1 houses nine putative iron-sulfur binding sites, eight of which are generally found in bacterial NDH-1 and its mitochondrial counterpart (complex I). The extra site contains a CXXCXXXCX(27)C motif and is located in the Nqo3 subunit. This motif was originally found in Escherichia coli NDH-1 and was assigned to a binuclear cluster (g(z, y, x) = 2.00, 1.95, 1.92) and named N1c. In this report, the Thermus Nqo3 fragment containing this motif was heterologously overexpressed, using a glutathione S-transferase fusion system. This fragment contained a small amount of iron-sulfur cluster, whose content was significantly increased by in vitro reconstitution. The UV-visible and EPR spectroscopic properties of this fragment indicate that the ligated iron-sulfur cluster is tetranuclear with nearly axial symmetry (g( parallel, perpendicular) = 2.045, approximately 1.94). Site-directed mutants show that all four cysteines participate in the ligation of a [4Fe-4S] cluster. Considering the fact that the same motif coordinates only tetranuclear clusters in other enzymes so far known, we propose that the CXXCXXXCX(27)C motif in the Nqo3 subunit most likely ligates the [4Fe-4S] cluster.  相似文献   

12.
While many estimates of the contribution of protein synthesis to metabolic rate exist for a variety of animals, most rely on theoretical costs of protein synthesis. The limitations of this approach are that theoretical costs depend upon variable estimates of ATP cost per peptide bond. In addition, they do not take into account the fact that there are protein-specific pre- and post-translational costs. By inhibiting, protein synthesis with cycloheximide and measuring the resultant decrease in oxygen consumption, we have measured the actual cost of protein synthesis and its contribution to metabolic rate in an in vitro system of tissue slices from Bufo marinus. Such measurements exist for endotherms, but there are few such measurements for ectotherms, and none have been done previously for amphibians. The cost of protein synthesis in liver slices from B. marinus was 7.32+/-1.19 mmol O2 x g(protein)(-1) (x +/- SE, n = 48) and protein synthesis accounted for 12% of the total metabolic rate of this tissue. This cost is comparable to values measured for other ectotherms although the contribution of protein synthesis to metabolic rate is at the lower end of the range of estimates for other ectotherms.  相似文献   

13.
The proton-translocating NADH-ubiquinone oxidoreductase (complex I) is the largest and least understood respiratory complex. The intrinsic redox components (FMN and iron–sulfur clusters) reside in the promontory part of the complex. Ubiquinone is the most possible key player in proton-pumping reactions in the membrane part. Here we report the presence of three distinct semiquinone species in complex I in situ, showing widely different spin relaxation profiles. As our first approach, the semiquinone forms were trapped during the steady state NADH-ubiquinone-1 (Q1) reactions in the tightly coupled, activated bovine heart submitochondrial particles, and were named SQNf (fast-relaxing component), SQNs (slow-relaxing), and SQNx (very slow relaxing). This indicates the presence of at least three different quinone-binding sites in complex I. In the current study, special attention was placed on the SQNf, because of its high sensitivities to and to specific complex I inhibitors (rotenone and piericidin A) in a unique manner. Rotenone inhibits the forward electron transfer reaction more strongly than the reverse reaction, while piericidine A inhibits both reactions with a similar potency. Rotenone quenched the SQNf signal at a much lower concentration than that required to quench the slower relaxing components (SQNs and SQNx). A close correlation was shown between the line shape alteration of the g = 2.05 signal of the cluster N2 and the quenching of the SQNf signal, using two different experimental approaches: (1) changing the poise by the oligomycin titration which decreases proton leak across the SMP membrane; (2) inhibiting the reverse electron transfer with different concentrations of rotenone. These new experimental results further strengthen our earlier proposal that a direct spin-coupling occurs between SQNf and cluster N2. We discuss the implications of these findings in connection with the energy coupling mechanism in complex I.  相似文献   

14.
Hemp J  Han H  Roh JH  Kaplan S  Martinez TJ  Gennis RB 《Biochemistry》2007,46(35):9963-9972
Oxygen reductase members of the heme-copper superfamily are terminal respiratory oxidases in mitochondria and many aerobic bacteria and archaea, coupling the reduction of molecular oxygen to water to the translocation of protons across the plasma membrane. The protons required for catalysis and pumping in the oxygen reductases are derived from the cytoplasmic side of the membrane, transferred via proton-conducting channels comprised of hydrogen bond chains containing internal water molecules along with polar amino acid side chains. Recent analyses identified eight oxygen reductase families in the superfamily: the A-, B-, C-, D-, E-, F-, G-, and H-families of oxygen reductases. Two proton input channels, the K-channel and the D-channel, are well established in the A-family of oxygen reductases (exemplified by the mitochondrial cytochrome c oxidases and by the respiratory oxidases from Rhodobacter sphaeroides and Paracoccus denitrificans). Each of these channels can be identified by the pattern of conserved polar amino acid residues within the protein. The C-family (cbb3 oxidases) is the second most abundant oxygen reductase family after the A-family, making up more than 20% of the sequences of the heme-copper superfamily. In this work, sequence analyses and structural modeling have been used to identify likely proton channels in the C-family. The pattern of conserved polar residues supports the presence of only one proton input channel, which is spatially analogous to the K-channel in the A-family. There is no pattern of conserved residues that could form a D-channel analogue or an alternative proton channel. The functional importance of the residues proposed to be part of the K-channel was tested by site-directed mutagenesis using the cbb3 oxidases from R. sphaeroides and Vibrio cholerae. Several of the residues proposed to be part of the putative K-channel had significantly reduced catalytic activity upon mutation: T219V, Y227F/Y228F, N293D, and Y321F. The data strongly suggest that in the C-family only one channel functions for the delivery of both catalytic and pumped protons. In addition, it is also proposed that a pair of acidic residues, which are totally conserved among the C-family, may be part of a proton-conducting exit channel for pumped protons. The residues homologous to these acidic amino acids are highly conserved in the cNOR family of nitric oxide reductases and have previously been implicated as part of a proton-conducting channel delivering protons from the periplasmic side of the membrane to the enzyme active site in the cNOR family. It is possible that the C-family contains a homologous proton-conducting channel that delivers pumped protons in the opposite direction, from the active site to the periplasm.  相似文献   

15.
The destruction of the Rieske iron-sulfur cluster ([2Fe-2S]) in the bc(1) complex by hematoporphyrin-promoted photoinactivation resulted in the complex becoming proton-permeable. To study further the role of this [2Fe-2S] cluster in proton translocation of the bc(1) complex, Rhodobacter sphaeroides mutants expressing His-tagged cytochrome bc(1) complexes with mutations at the histidine ligands of the [2Fe-2S] cluster were generated and characterized. These mutants lacked the [2Fe-2S] cluster and possessed no bc(1) activity. When the mutant complex was co-inlaid in phospholipid vesicles with intact bovine mitochondrial bc(1) complex or cytochrome c oxidase, the proton ejection, normally observed in intact reductase or oxidase vesicles during the oxidation of their corresponding substrates, disappeared. This indicated the creation of a proton-leaking channel in the mutant complex, whose [2Fe-2S] cluster was lacking. Insertion of the bc(1) complex lacking the head domain of the Rieske iron-sulfur protein, removed by thermolysin digestion, into PL vesicles together with mitochondrial bc(1) complex also rendered the vesicles proton-permeable. Addition of the excess purified head domain of the Rieske iron-sulfur protein partially restored the proton-pumping activity. These results indicated that elimination of the [2Fe-2S] cluster in mutant bc(1) complexes opened up an otherwise closed proton channel within the bc(1) complex. It was speculated that in the normal catalytic cycle of the bc(1) complex, the [2Fe-2S] cluster may function as a proton-exiting gate.  相似文献   

16.
The proton-pumping NADH-quinone oxidoreductase from Escherichia coli houses nine iron-sulfur clusters, eight of which are found in its mitochondrial counterpart, complex I. The extra putative iron-sulfur cluster binding site with a CXXCXXXCX(27)C motif in the NuoG subunit has been assigned to ligate a [2Fe-2S] (N1c). However, we have shown previously that the Thermus thermophilus N1c fragment containing this motif ligates a [4Fe-4S] (Nakamaru-Ogiso, E., Yano, T., Ohnishi, T., and Yagi, T. (2002) J. Biol. Chem. 277, 1680-1688). In the current study, we individually inactivated four sets of the iron-sulfur binding motifs in the E. coli NuoG subunit by replacing all four ligands with Ala. Each mutant subunit, designated Delta N1b, Delta N1c, Delta N4, and Delta N5, was expressed as maltose-binding protein fusion proteins. After in vitro reconstitution, all mutant subunits were characterized by EPR. Although EPR signals from cluster N1b were not detected in any preparations, we detected two [4Fe-4S] EPR signals with g values of g(x,y,z) = 1.89, 1.94, and 2.06, and g(x,y,z) = 1.91, 1.94, and 2.05 at 6-20 K in wild type, Delta N1b, and Delta N5. The former signal was assigned to cluster N4, and the latter signal was assigned to cluster N1c because of their disappearance in Delta N4 and Delta N1c. Confirming that a [4Fe-4S] cluster ligates to the N1c motif, we propose to replace its misleading [2Fe-2S] name, N1c, with "cluster N7." In addition, because these mutations differently affected the assembly of peripheral subunits by in trans complementation analysis with the nuoG knock-out strain, the implicated structural importance of the iron-sulfur binding domains is discussed.  相似文献   

17.
The male germ line stem cell is the only cell type in the adult that can contribute genes to the next generation and is characterized by postnatal proliferation. It has not been determined whether this cell population can be used to deliberately introduce genetic modification into the germ line to generate transgenic animals or whether human somatic cell gene therapy has the potential to accidentally introduce permanent genetic changes into a patient's germ line. Here we report that several techniques can be used to achieve both in vitro and in vivo gene transfer into mouse male germ line stem cells using a retroviral vector. Expression of a retrovirally delivered reporter lacZ transgene in male germ line stem cells and differentiated germ cells persisted in the testis for more than 6 months. At least one in 300 stem cells could be infected. The experiments demonstrate a system to introduce genes directly into the male germ line and also provide a method to address the potential of human somatic cell gene therapy DNA constructs to enter a patient's germ line.  相似文献   

18.
Reda T  Barker CD  Hirst J 《Biochemistry》2008,47(34):8885-8893
NADH:ubiquinone oxidoreductase (complex I) is the first enzyme of the mitochondrial electron transport chain. It contains a flavin mononucleotide to oxidize NADH, and eight iron-sulfur clusters. Seven of them transfer electrons between the flavin and the quinone-binding site, and one is on the opposite side of the flavin. Although most information about their properties is from EPR, the spectra from only five clusters have been observed, and it is difficult to match them to the structurally defined clusters. Here, we analyze complex I from bovine mitochondria reacted with a very low potential reductant, to impose a potential approaching -1 V. We compare the spectra with those from higher potentials and from the 24 kDa subunit and flavoprotein subcomplex, and model the spectra by starting from those with fewer components and building the complexity gradually. Spectrum N1a, from the 24 kDa subunit [2Fe-2S] cluster, is not observed in bovine complex I at any potential. Spectrum N1b, from the 75 kDa subunit [2Fe-2S] cluster, exhibits a lower potential than the N3, N4 and N5 spectra of three [4Fe-4S] clusters. In the lowest potential spectra an N5-type spectrum is observed at unusually high temperature (indicating a significant change to the cluster, or that two clusters have very similar g values), the relaxation rate of N1b increases (indicating that a nearby cluster has become reduced) and a new feature with an apparent g value of 2.16 suggests an interaction between two reduced clusters. The consequences of these observations for electron transfer in complex I are discussed.  相似文献   

19.
The α proteobacter Rhodobacter sphaeroides accumulates two cytochrome c oxidases (CcO) in its cytoplasmic membrane during aerobic growth: a mitochondrial-like aa(3)-type CcO containing a di-copper Cu(A) center and mono-copper Cu(B), plus a cbb(3)-type CcO that contains Cu(B) but lacks Cu(A). Three copper chaperones are located in the periplasm of R. sphaeroides, PCu(A)C, PrrC (Sco) and Cox11. Cox11 is required to assemble Cu(B) of the aa(3)-type but not the cbb(3)-type CcO. PrrC is homologous to mitochondrial Sco1; Sco proteins are implicated in Cu(A) assembly in mitochondria and bacteria, and with Cu(B) assembly of the cbb(3)-type CcO. PCu(A)C is present in many bacteria, but not mitochondria. PCu(A)C of Thermus thermophilus metallates a Cu(A) center in vitro, but its in vivo function has not been explored. Here, the extent of copper center assembly in the aa(3)- and cbb(3)-type CcOs of R. sphaeroides has been examined in strains lacking PCu(A)C, PrrC, or both. The absence of either chaperone strongly lowers the accumulation of both CcOs in the cells grown in low concentrations of Cu(2+). The absence of PrrC has a greater effect than the absence of PCu(A)C and PCu(A)C appears to function upstream of PrrC. Analysis of purified aa(3)-type CcO shows that PrrC has a greater effect on the assembly of its Cu(A) than does PCu(A)C, and both chaperones have a lesser but significant effect on the assembly of its Cu(B) even though Cox11 is present. Scenarios for the cellular roles of PCu(A)C and PrrC are considered. The results are most consistent with a role for PrrC in the capture and delivery of copper to Cu(A) of the aa(3)-type CcO and to Cu(B) of the cbb(3)-type CcO, while the predominant role of PCu(A)C may be to capture and deliver copper to PrrC and Cox11. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

20.
Furdui C  Ragsdale SW 《Biochemistry》2002,41(31):9921-9937
Pyruvate:ferredoxin oxidoreductase (PFOR) catalyzes the coenzyme A (CoA)-dependent oxidative decarboxylation of pyruvate. In many autotrophic anaerobes, PFOR links the Wood-Ljungdahl pathway to glycolysis and to cell carbon synthesis. Herein, we cloned and sequenced the M. thermoacetica PFOR, demonstrating strong structural homology with the structurally characterized D. africanus PFOR, including the presence of three [4Fe-4S] clusters per monomeric unit. The PFOR reaction includes a hydroxyethyl-thiamin pyrophosphate (HE-TPP) radical intermediate, which forms rapidly after PFOR reacts with pyruvate. This step precedes electron transfer from the HE-TPP radical intermediate to an intramolecular [4Fe-4S] cluster. We show that CoA increases the rate of this redox reaction by 10(5)-fold. Analysis by Marcus theory indicates that, in the absence of CoA, this is a true electron-transfer reaction; however, in its presence, electron transfer is gated by an adiabatic event. Analysis by the Eyring equation indicates that entropic effects dominate this rate enhancement. Our results indicate that the energy of binding CoA contributes minimally to the rate increase since the thiol group of CoA lends over 40 kJ/mol to the reaction, whereas components of CoA that afford most of the cofactor's binding energy contribute minimally. Major conformational changes also do not appear to explain the rate enhancement. We propose several ways that CoA can accomplish this rate increase, including formation of a highly reducing adduct with the HE-TPP radical to increase the driving force for electron transfer. We also consider the possibility that CoA itself forms part of the electron-transfer pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号