首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesaconase catalyzes the hydration of mesaconate (methylfumarate) to (S)-citramalate. The enzyme participates in the methylaspartate pathway of glutamate fermentation as well as in the metabolism of various C5-dicarboxylic acids such as mesaconate or L-threo-β-methylmalate. We have recently shown that Burkholderia xenovorans uses a promiscuous class I fumarase to catalyze this reaction in the course of mesaconate utilization. Here we show that classical Escherichia coli class I fumarases A and B (FumA and FumB) are capable of hydrating mesaconate with 4% (FumA) and 19% (FumB) of the catalytic efficiency k cat/K m, compared to the physiological substrate fumarate. Furthermore, the genomes of 14.8% of sequenced Enterobacteriaceae (26.5% of E. coli, 90.6% of E. coli O157:H7 strains) possess an additional class I fumarase homologue which we designated as fumarase D (FumD). All these organisms are (opportunistic) pathogens. fumD is clustered with the key genes for two enzymes of the methylaspartate pathway of glutamate fermentation, glutamate mutase and methylaspartate ammonia lyase, converting glutamate to mesaconate. Heterologously produced FumD was a promiscuous mesaconase/fumarase with a 2- to 3-fold preference for mesaconate over fumarate. Therefore, these bacteria have the genetic potential to convert glutamate to (S)-citramalate, but the further fate of citramalate is still unclear. Our bioinformatic analysis identified several other putative mesaconase genes and revealed that mesaconases probably evolved several times from various class I fumarases independently. Most, if not all iron-dependent fumarases, are capable to catalyze mesaconate hydration.  相似文献   

2.
3.
4.
5.
6.
7.
Two different types of fumarase were found in sonic extracts of Escherichia coli; one required Fe-S for the enzyme activity, and the other did not. When the cells were grown without aeration, the Fe-S-independent enzyme occupied over 80% of the overall fumarase activity. Highly purified Fe-S-independent enzyme was suggested to be composed of four subunits (Mr = 48 kDa) by SDS-polyacrylamide gel electrophoresis and gel filtration. Amino acid and N-terminal sequence analyses supported the possibility that the enzyme is a product of fumC gene (FUMC). In aerobically grown cells, however, the content of FUMC was low and the Fe-S-dependent fumarase occupied over 80% of the overall activity. The Fe-S-dependent enzyme appeared to be labile and the activity was rapidly lost during purification. Although the spontaneous inactivation was previously ascribed to thermal lability (S.A. Woods & J.R. Guest (1987) FEMS Microbiol. Lett. 48, 219), the activity could be restored by anaerobic incubation with ferrous ions and SH-compounds.  相似文献   

8.
The nucleotide sequence of a 3,162-base-pair (bp) segment of DNA containing the FNR-regulated fumB gene, which encodes the anaerobic class I fumarase (FUMB) of Escherichia coli, was determined. The structural gene was found to comprise 1,641 bp, 547 codons (excluding the initiation and termination codons), and the gene product had a predicted Mr of 59,956. The amino acid sequence of FUMB contained the same number of residues as did that of the aerobic class I fumarase (FUMA), and there were identical amino acids at all but 56 positions (89.8% identity). There was no significant similarity between the class I fumarases and the class II enzyme (FUMC) except in one region containing the following consensus: Gly-Ser-Xxx-Ile-Met-Xxx-Xxx-Lys-Xxx-Asn. Some of the 56 amino acid substitutions must be responsible for the functional preferences of the enzymes for malate dehydration (FUMB) and fumarate hydration (FUMA). Significant similarities between the cysteine-containing sequence of the class I fumarases (FUMA and FUMB) and the mammalian aconitases were detected, and this finding further supports the view that these enzymes are all members of a family of iron-containing hydrolyases. The nucleotide sequence of a 1,142-bp distal sequence of an unidentified gene (genF) located upstream of fumB was also defined and found to encode a product that is homologous to the product of another unidentified gene (genA), located downstream of the neighboring aspartase gene (aspA).  相似文献   

9.
10.
E E Farrish  H V Baker  nd    R E Wolf  Jr 《Journal of bacteriology》1982,152(2):584-594
Previous studies showed that the level of 6-phosphogluconate (6PG) dehydrogenase increases about fourfold with increasing growth rate when the growth rate is varied by varying the carbon source. When the growth rate was reduced by anaerobic growth or by using mutations to divert metabolism to less efficient pathways, the level of 6PG dehydrogenase was the same as in a wild-type strain growing aerobically on other carbon sources that yielded the same growth rate. Thus, expression of gnd, which encodes 6PG dehydrogenase, is regulated by the cellular growth rate and not by specific nutrients in the medium. Growth rate-dependent regulation was independent of temperature. After a nutritional shift-up, 6PG dehydrogenase and total protein did not attain the postshift rate of accumulation for 30 min, whereas RNA accumulation increased immediately. The kinetics of accumulation of 6PG dehydrogenase and RNA were coincident after a nutritional shift-down. Partial amino acid starvation of a strain that controls RNA synthesis stringently (rel+) had no effect on the differential rate of accumulation of the enzyme. The level of 6PG dehydrogenase in cells harboring a gnd+ multicopy plasmid was in approximate proportion to gene dosage and somewhat higher at faster growth rates. Growth rate control of chromosomal gnd was normal in strains carrying multiple copies of the promoter-proximal and promoter-distal portions of gnd. These results show that gnd is not part of the same regulatory network as components of the translational apparatus since gnd shows a delayed response to a nutritional shift-up, is not autoregulated, and is not subject to stringent control. Models to account for growth rate-dependent regulation of gnd are discussed.  相似文献   

11.
Two biochemically distinct classes of fumarase in Escherichia coli   总被引:8,自引:0,他引:8  
Biochemical studies with strains of Escherichia coli that are amplified for the products of the three fumarase genes, fumA (FUMA), fumB (FUMB) and fumC (FUMC), have shown that there are two distinct classes of fumarase. The Class I enzymes include FUMA, FUMB, and the immunologically related fumarase of Euglena gracilis. These are characteristically thermolabile dimeric enzymes containing identical subunits of Mr 60,000. FUMA and FUMB are differentially regulated enzymes that function in the citric acid cycle (FUMA) or to provide fumarate as an anaerobic electron acceptor (FUMB), and their affinities for fumarate and L-malate are consistent with these roles. The Class II enzymes include FUMC, and the fumarases of Bacillus subtilis, Saccharomyces cerevisiae and mammalian sources. They are thermostable tetrameric enzymes containing identical subunits Mr 48,000-50,000. The Class II fumarases share a high degree of sequence identity with each other (approx. 60%) and with aspartase (approx. 38%) and argininosuccinase (approx. 15%), and it would appear that these are all members of a family of structurally related enzymes. It is also suggested that the Class I enzymes may belong to a wider family of iron-dependent carboxylic acid hydro-lyases that includes maleate dehydratase and aconitase. Apart from one region containing a Gly-Ser-X-X-Met-X-X-Lys-X-Asn consensus sequence, no significant homology was detected between the Class I and Class II fumarases.  相似文献   

12.
The nucleotide sequences of two segments of DNA (2250 and 2921 base-pairs) containing the functionally related fumarase (fumC) and aspartase (aspA) genes of Escherichia coli K12 were determined. The fumC structural gene comprises 1398 base-pairs (466 codons, excluding the initiation codon), and it encodes a polypeptide of Mr 50353 that resembles the fumarases of Bacillus subtilis 168 (citG-gene product), rat liver and pig heart. The fumC gene starts 140 base-pairs downstream of the structurally-unrelated fumA gene, but there is no evidence that both genes form part of the same operon. The aspA structural gene comprises 1431 base-pairs (477 codons excluding the initiation codon), and it encodes a polypeptide of Mr 52190, similar to that predicted from maxicell studies and for the enzyme from E. coli W. Remarkable homologies were found between the primary structures of the fumarase (fumC and citG) and aspartase (aspA) genes and their products, suggesting close structural and evolutionary relationships.  相似文献   

13.
Two distinct types of fumarase were purified to homogeneity from aerobically grown Escherichia coli W cells. The amino acid sequences of their NH2-terminals suggest that the two enzymes are the products of the fumA gene (FUMA) and fumC gene (FUMC), respectively. FUMA was separated from FUMC by chromatography on a Q-Sepharose column, and was further purified to homogeneity on Alkyl-Superose, Mono Q, and Superose 12 columns. FUMA is a dimer composed of identical subunits (Mr = 60,000). Although the activity of FUMA rapidly decreased during storage, reactivation was attained by anaerobic incubation with Fe2+ and thiols. Studies on the inactivation and reactivation of FUMA suggested that oxidation and the concomitant release of iron inactivated the enzyme in a reversible manner. While the inactivated FUMA was EPR-detectable, through a signal with g perpendicular = 2.02 and g = 2.00, the active enzyme was EPR-silent. These results suggested FUMA is a member of the 4Fe-4S hydratases represented by aconitase. After the separation of FUMC from FUMA, purification of the former enzyme was accomplished by chromatography on Phenyl-Superose and Matrex Gel Red A columns. FUMC was stable, Fe-independent and quite similar to mammalian fumarases in enzymatic properties.  相似文献   

14.
The regulation of the S10 ribosomal protein operon of Escherichia coli was studied by using a lambda prophage containing the beginning of the S10 operon (including the promoter, leader, and first one and one-half structural genes) fused to lacZ. The synthesis of the lacZ fusion protein encoded by the phage showed the expected inhibition during oversynthesis of ribosomal protein L4, the autogenous regulatory protein of the S10 operon. Moreover, the fusion gene responded to a nutritional shift-up in the same way that genuine ribosomal protein genes did. However, the gene did not exhibit the expected growth rate-dependent regulation during steady-state growth. Thus, the genetic information carried on the prophage is sufficient for L4-mediated autogenous control and a normal nutritional shift-up response but is not sufficient for steady-state growth rate-dependent control. These results suggest that, at least for the 11-gene S10 ribosomal protein operon, additional regulatory processes are required to coordinate the synthesis of ribosomal proteins with cell growth rate and, furthermore, that sequences downstream of the proximal one and one-half genes of the operon are involved in this control.  相似文献   

15.
16.
17.
18.
The phospholipid and fatty acid content of the Escherichia coli membrane were investigated during continuous cultivation. At low growth rates, there was an increase in cardiolipin produced at the expense of phosphatidylethanolamine. Phosphatidylglycerol had a maximum at a growth rate of 0.3 h(-1). The amount of cyclic fatty acids was markedly increased at lower growth rates, while there was an evident minimum at 0.3 h(-1). This was also the case for saturated fatty acids. At this point, the unsaturated fatty acids had a maximum depending mainly on changes in cis-vaccenic acid. The mechanical strength towards sonication and osmotic shock/enzymatic treatment showed that the cells were more rigid at low dilution rates. However, this was accompanied by a higher cell lysis, a reduced capacity for total and specific protein production and a lower yield of cells. The amount of lipid A in the medium (endotoxin) was constant and negligible at all growth rates. The leakage of periplasmic protein to the medium had an optimum at 0.3 h(-1), resulting in a transport of 20% of the total recombinant product. It is argued that this constitutes the point of highest membrane fluidity and thus an increase possibility for protein transport.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号