首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The present study characterized the profile of nuclear remodeling in nuclear transplant rabbit embryos and investigated the relationship between chromatin behavior after transfer and embryo development. The developmental potential and pattern of remodeling of donor nuclei from cleavage-, morula-, and blastocyst- (inner cell mass ICM, and trophectoderm, TE) stage donors were evaluated. In addition, we determined whether a modification in the synchrony between blastomere fusion and oocyte activation altered the profile of nuclear remodeling and affected development of reconstituted embryos. Development to blastocysts was similar with 8- and 32-cell-stage donor nuclei (42% and 33%, respectively, p greater than 0.1). However, it was reduced with ICM transplants (17%, p less than 0.05), and development of TE transplants did not progress beyond the 8-cell stage. Upon blastomere fusion into nonactivated oocyte cytoplasm, nuclear remodeling was characterized by premature chromosome condensation (PCC), followed by pronuclear (PN) formation and swelling. PCC occurred synchronously within 1.2-1.5 h post-fusion with all stages of donor nuclei (p greater than 0.1). PN formation in 8- and 32-cell transplants occurred approximately 4 h after fusion, and was synchronous to that of female pronuclei in activated oocytes; however, it was delayed in ICM and TE transplants (p less than 0.01). With all stages of donor nuclei, final nuclear diameter was similar to, or larger than, that of female pronuclei. Fusion to activated oocyte cytoplasm, as opposed to nonactivated cytoplasm, prevented PCC and extensive nuclear swelling (16.0 +/- 0.7 vs. 30 +/- 0.7 microns, respectively, p less than 0.01). Nuclear diameter in early embryos was smaller (p less than 0.01), and development to blastocysts was reduced (p less than 0.05). The results indicate that remodeling of the donor nucleus is not essential for development to blastocysts; however, it is beneficial. Furthermore, complete reprogramming seems possible only after remodeling of the donor nucleus, i.e., PCC in nonactivated cytoplasm, followed by nuclear swelling upon activation of the oocyte.  相似文献   

2.
Bovine ova (n = 326) collected at the 1-4-cell stage were cultured in TCM-199 + 10% foetal calf serum with or without oviducal cells. The bovine oviducal cells were collected and seeded either on the day of ovum recovery (BOC-0) or 3 days earlier (BOC-3). In Exp. 1, the effect of age of oviducal cells in co-culture on ovum development was examined. In the BOC-0 and BOC-3 treatments, respectively, 36/46 (78%) and 30/37 (81%) of ova developed to morulae or blastocysts, while no ova developed past the 8-16-cell stage in the absence of oviducal cells. In Exp. 2, the effect of age of oviducal cells and of physical contact between the oviducal cells and ova on ovum development was examined. In the BOC-0 and BOC-3 treatments, respectively, 29/42 (69%) and 23/43 (53%) of the ova developed to morulae or blastocysts, while 1/42 (2%) developed to the morula stage in the absence of oviducal cells. Physical separation of the ova using a microporous membrane inserted between the oviducal cells and the ova did not affect ovum development, with 26/42 (62%) and 22/42 (52%) of ova developing to morulae or blastocysts in the BOC-0 and BOC-3 treatments, respectively. A high proportion of the morulae and blastocysts in Exp. 1 (57/66, 86%) and Exp. 2 (67/100, 67%) were of quality grades 1 or 2, with mean nuclei counts of 85 for morulae and 111 for blastocysts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The cell cycle of donor cells as a major factor that affects cloning efficiency remains debatable. G2/M phase cells as a donor can successfully produce cloned animals, but a minimal amount is known regarding nuclear remodeling events. In this study, porcine fetal fibroblasts (PFFs) were carefully synchronized at G1 or M phase as donor cells. Most of the cloned embryos reconstructed from PFFs at G1 (G1-embryos) or M (M-embryos) phase formed a pronucleus-like nucleus (PN) within 6-h post fusion (hpf), but the M-embryos formed PN earlier than the G1-embryos did. Moreover, 77.4% of the M-embryos formed two PNs, whereas the G1-embryos formed a single PN. The rate of extrusion of polar body-like structures by the M-embryos was significantly lower than that extruded by the G1-embryos (26.3% vs. 37.1%, P?相似文献   

4.
We assessed the effect of ooplast (enucleated oocytes) activation prior to receiving a donor nucleus on the development of nucleus transferred oocytes in cattle. The ooplasts were activated by electric stimulus at 30, 33, 36 and 39 h after being placed in culture medium for meiotic maturation. The activated ooplasts were further cultured in vitro, for a total 42 h from the beginning of maturation, 16- to 32-cell stage embryos produced by in vitro fertilization were used as donor embryos. The nucleus transferred oocytes were co-cultured with bovine oviductal epithelial cells in vitro. The fusion rate was not different between the activated (90%) and aged (94%) ooplasts 42 h after culture. Activated ooplasts receiving a donor nucleus showed a higher developmental rate than the aged ooplasts. Maximal development of the oocytes was obtained if the ooplast was activated at 9 h prior to receiving a donor nucleus. Thirty-nine percent developed to morulae and 24% to blastocysts. This compares (P<0.01) with 13% of the aged ooplasts developing to morulae and 8% to blastocysts. Of the activated ooplasts at 3, 6 and 12 h prior to fusion with a donor blastomere, 12, 16 and 13% developed to blastocysts, respectively. Of the 17 recipient cows receiving nucleus transferred embryos, 9 (53%) were diagnosed pregnant by palpation per rectum examination, and 3 normal offspring were obtained.  相似文献   

5.

Background

Many cloned animals have been created by transfer of differentiated cells at G0/G1 or M phase of the cell cycle into enucleated M II oocytes having high maturation/meiosis/mitosis-promoting factor activity. Because maturation/meiosis/mitosis-promoting factor activity during oocyte maturation is maximal at both M I and M II, M I oocytes may reprogram differentiated cell nuclei as well. The present study was conducted to examine the developmental ability in vitro of porcine embryos reconstructed by transferring somatic cells (ear fibroblasts) into enucleated M I or M II oocytes.

Results

Analysis of the cell cycle stages revealed that 91.2 ± 0.2% of confluent cells were at the G0/G1 phase and 54.1 ± 4.4% of nocodazole-treated cells were at the G2/M phase, respectively. At 6 h after activation, nuclear swelling was observed in 50.0-88.9% and 34.4-39.5% of embryos reconstituted with confluent cells and nocodazole-treated cells regardless of the recipient oocytes, respectively. The incidence of both a swollen nucleus and polar body was low (6.3-10.5%) for all nocodazole-treated donor cell regardless of the recipient oocyte. When embryos reconstituted with confluent cells and M I oocytes were cultured, 2 (1.5%) blastocysts were obtained and this was significantly (P < 0.05) lower than that (7.6%) of embryos produced by transferring confluent cells into M II oocytes. No reconstructed embryos developed to the blastocyst stage when nocodazole-treated cells were used as donors.

Conclusions

Porcine M I oocytes have a potential to develop into blastocysts after nuclear transfer of somatic cells.  相似文献   

6.
We evaluated the influence of the stage of the cell cycle of the donor nucleus on development in vitro of nuclear transplant rabbit embryos. The developmental potential of nuclei in early, mid-, and late stages of the cell cycle was determined. Duration of the G1 phase in early embryos was determined, and a procedure for reversibly synchronizing donor embryos in the G1 phase was developed. In addition, the extent of development in vitro of nuclear transplant embryos with donor nuclei synchronized in the G1 phase was evaluated. Development to blastocysts was greatly affected by the stage of the cycle of the donor nucleus. Use of early-stage nuclei led to 59% nuclear transplant blastocysts, whereas 32% and 3% were obtained with mid- and late-stage nuclear donors, respectively (p less than 0.001). The short duration of the G1 phase in 16- and 32-cell-stage embryos (approximately 30 min) necessitated a procedure for synchronizing blastomeres in the G1 phase. This entailed, first, a 10-h incubation in 0.5 micrograms/ml colcemid to arrest embryos in metaphase. After release from colcemid, embryos were allowed to cleave in 0.1 microgram/ml of the DNA synthesis inhibitor, aphidicolin, and remained blocked at the G1/S transition. This treatment was reversible, as assessed by the resumption of DNA synthesis, cleavage rate, and development to blastocysts of treated embryos. The beneficial effect of using early-stage donor blastomeres was confirmed by the enhanced rate of development of manipulated embryos to blastocysts with donor nuclei in the G1 phase (71%), as opposed to the late S phase (15%, p less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Yang XY  Zhao JG  Li HW  Li H  Liu HF  Huang SZ  Zeng YT 《Theriogenology》2005,64(6):1263-1272
In the present study, oocytes from F1 hybrid cattle, as well as their parental lines, were recovered by ovum pick up (OPU) and used as recipient cytoplasm for somatic cell nuclear transfer (SCNT). Four F1 hybrid (Holstein dam x Chinese Yellow sire), 10 Holstein and four Chinese Yellow cattle were subjected to OPU once weekly. There were no significant differences among breeds for number of recovered oocytes per session (overall average, 7.8+/-0.5; mean+/-S.E.M.), quality of the recovered oocytes, or oocyte maturation rate (72-73%). Matured oocytes were all used as recipient cytoplasm (without selection) and a single batch of cumulus cells collected from a Holstein cow were used as donor cells. Although reconstructed embryos initiated cleavage sooner when the recipient cytoplasm was from hybrid cattle versus the two parental breeds, the overall cleavage rate was indistinguishable among breeds. At Day 8, the blastocyst rate from the cleaved embryos (51% versus 37% and 27%), the total number of cells per blastocyst (135+/-4.1 versus 116+/-3.6 and 101+/-4.2), and the percentage of Grade-A (excellent quality) blastocysts (54% versus 42% and 29%) in the hybrid group were all higher than that of Holstein and Yellow groups. Furthermore, the proportion of blastocysts obtained at Day 7 (as a percentage of the total number of blastocysts) was greater in the hybrid group than in Holstein and Yellow groups (89% versus 71% and 63%). In conclusion, the use of F1 hybrid oocytes as recipient cytoplasm significantly improved in vitro development of cloned bovine embryos relative to oocytes derived from the parental lines.  相似文献   

8.
We have studied the possible correlation between nuclear glutathione distribution and the progression of the cell cycle. The former was studied by confocal microscopy using 5-chloromethyl fluorescein diacetate and the latter by flow cytometry and protein expression of Id2 and p107. In proliferating cells, when 41% of them were in the S+G(2)/M phase of the cell cycle GSH was located mainly in the nucleus. When cells reached confluence (G(0)/G(1)) GSH was localized in the cytoplasm with a perinuclear distribution. The nucleus/cytoplasm fluorescence ratio for GSH reached a maximal mean value of 4.2 +/- 0.8 at 6 h after cell plating. A ratio higher than 2 was maintained during exponential cell growth. In the G(0)/G(1) phase of the cell cycle, the nucleus/cytoplasm GSH ratio decreased to values close to 1. We report here that cells concentrate GSH in the nucleus in the early phases of cell growth, when most of the cells are in an active division phase, and that GSH redistributes uniformly between the nucleus and the cytoplasm when cells reach confluence.  相似文献   

9.
The aim of this study was to investigate effect of cytoplast on the development competence of reconstructed embryos derived from inter-subspecies somatic cell nucleus transfer (SCNT). First, the development potency of reconstructed embryos produced by transferring Boer goat fibroblast cell nucleus of different ages into enucleated Sannen goat ova was evaluated in order to determine which age of nuclear donor is favorable for the reconstructed embryos development. Secondly, the another component of reconstructed embryos, "cytoplast," was evaluated by comparing the effect of ovum cytoplast derived from Sannen male symbol x Boer female symbol descendant on the reconstructed embryos development to that of Sannen goat ovum cytoplast. The results revealed that the development rate of the reconstructed embryos derived from 2 months old Boer goat somatic cells was the highest, their gestation rate was up to 50%, and one viable male offspring was obtained. The cytoplast derived from the crossbreeding goats improves the development competence of reconstructed embryos, which birth rate was 5.5%. The genetic identification of offspring by using PCR-SSCP analysis confirmed that these cloned kids were derived from the donor. The results above reveal that the cytoplast of Sannen goat ovum could induce the dedifferentiation of somatic cell nuclei derived from Boer goat, but the reprogramming process of these reconstructed embryos seems incomplete, probably due to some incorrect processes happened after implantation. Relatedness components of nucleus donor in cytoplast of the crossbreeding goat may be helpful to induce the dedifferentiation of somatic cell nuclei completely and improve the development competence of the reconstructed embryos.  相似文献   

10.
为了提高异种间核移植重构胚的发育率,本研究以体内排放的奶山羊成熟卵为供胞质的受体细胞,以人、兔、波尔山羊等的异种或亚种体细胞的原代核移植(Primary Somatic Cell Nuclear Transfer,PSCNT)重构早胚(8-16细胞期)的卵裂球作供核体,观察经亚种或异种卵胞质体短期“修饰”的核再移植产生的继代(Secondary SCNT,SSCNT)重构胚的着床前发育潜能。结果:人、兔、波尔山羊的继代桑椹/囊胚发育率均显著地高于其PSCNT胚胎(人,14.81%VS.7.79%;兔,23.53%VS.12.50%;波尔羊,55.35%VS.24.53%);这些早胚的各阶段发育时程仍遵循供核体动物正常受精卵的发育时程。结果启示:奶山羊成熟卵胞质对异种体细胞核亦具一定的去分化能力,能支持重构胚发育到囊胚;异种重构胚的发育特征是由供体核所决定的;继代核移植几乎能够成倍提高异种间重构胚的着床前发育率,提示核的去分化完全是在母型信息主导的调控之下完成的,而进一步发育的时序似乎是由核决定的:成倍延长在含母型信息主导调控环境中的时间能成倍提高SCNT重构胚的着床前发育率。  相似文献   

11.
Interspecies nuclear transfer (INT) has been used as an invaluable tool for studying nucleus-cytoplasm interactions; and it may also be a method for rescuing endangered species whose oocytes are difficult to obtain. In the present study, we investigated interaction of the chicken genome with the rabbit oocyte cytoplasm. When chicken blastodermal cells were transferred into the perivitelline space of rabbit oocytes, 79.3% of the couplets were fused and 9.7% of the fused embryos developed to the blastocyst stage. Both M199 and SOF medium were used for culturing chicken-rabbit cloned embryos; embryo development was arrested at the 8-cell stage obtained in SOF medium, while the rates of morulae and blastocysts were 12.1 and 9.7%, respectively, in M199 medium. Polymerase chain reaction (PCR) amplification of nuclear DNA and karyotype analyses confirmed that genetic material of morulae and blastocysts was derived from the chicken donor cells. Analysis mitochondrial constitution of the chicken-rabbit cloned embryos found that mitochondria, from both donor cells and enucleated oocytes, co-existed. Our results suggest that: (1) chicken genome can coordinate with rabbit oocyte cytoplasm in early embryo development; (2) there may be an 8- to 16-cell stage block for the chicken-rabbit cloned embryos when cultured in vitro; (3) mitochondrial DNA from the chicken donor cells was not eliminated until the blastocyst stage in the chicken-rabbit cloned embryos; (4) factors existing in ooplasm for somatic nucleus reprogramming may be highly conservative.  相似文献   

12.
The exposure of mouse zygotes pre-stained with Hoechst 33342 to u.v. irradiation for 20-30 sec significantly or completely inhibited development to blastocysts in vitro. However, development to the blastocyst stage of enucleated eggs receiving pronuclei from untreated eggs was as good as that of control reconstituted eggs when the cytoplasm originated from eggs exposed to u.v. irradiation for 20-30 sec, but was significantly lower when the cytoplasm was from eggs exposed for 40 sec. The chromosomes at the second metaphase stage could be removed with 15 sec of exposure to u.v. irradiation under a fluorescence microscope. Most eggs enucleated at the second metaphase that received a single inner cell mass nucleus (75%) showed pronuclear formation 6 h after activation; 23% of them developed to morphologically normal 2-cell eggs and 5% developed to blastocysts. These results demonstrate that the cytoplasm of mouse zygotes is more resistant to u.v. irradiation after Hoechst staining. Eggs at the second metaphase, from which chromosomes have been removed under a fluorescence microscope, can therefore be used as cytoplasm recipients for nuclear transplantation of inner cell mass nuclei.  相似文献   

13.
14.
本实验用小鼠血液淋巴细胞为核供体进行了核移植研究。用淋巴细胞分离液(比重1.088)分离出小鼠血液中的淋巴细胞,直接用作核移植供体细胞,采用胞质内注射法成功构建的重构胚经常规培养2h后,SrCl_2激活处理6h,然后添加mM16培养液和小鼠输卵管上皮细胞饲养层共培养。把发育至早期囊胚阶段的重构胚转移至小鼠胎儿成纤维细胞饲养层上,添加ES细胞培养液继续培养。对孵化出的内细胞团进行消化,然后接种培养。结果显示,小鼠血液淋巴细胞可以支持体细胞核移植重构胚的发育,核移植重构胚2-细胞率41.03%(128/312),桑葚胚和囊胚发育率分别为9.29%(29/312),1.92%(6/312)。重构囊胚在小鼠胎儿成纤维细胞饲养层上分离出2个内细胞团,分离率为0.64%(2/312)。实验证实利用小鼠血液淋巴细胞进行体细胞核移植是可行的,可用于深入研究。  相似文献   

15.
本实验用小鼠血液淋巴细胞为核供体进行了核移植研究。用淋巴细胞分离液(比重1.088)分离出小鼠血液中的淋巴细胞,直接用作核移植供体细胞,采用胞质内注射法成功构建的重构胚经常规培养2h后,SrCl2激活处理6h,然后添加mM16培养液和小鼠输卵管上皮细胞饲养层共培养。把发育至早期囊胚阶段的重构胚转移至小鼠胎儿成纤维细胞饲养层上,添加ES细胞培养液继续培养。对孵化出的内细胞团进行消化,然后接种培养。结果显示,小鼠血液淋巴细胞可以支持体细胞核移植重构胚的发育,核移植重构胚2-细胞率41.03%(128/312),桑葚胚和囊胚发育率分别为9.29%(29/312),1.92%(6/312)。重构囊胚在小鼠胎儿成纤维细胞饲养层上分离出2个内细胞团,分离率为0.64%(2/312)。实验证实利用小鼠血液淋巴细胞进行体细胞核移植是可行的,可用于深入研究。  相似文献   

16.
Fertilization and early development in the horse were studied by recovering oviductal ova at various times after postovulatory mating. Ova collected between 7 and 22 h post coitum (pc) were examined for evidence of fertilizing sperm, cellular changes accompanying fertilization, and pronuclear development. Five ova collected between 7 and 9 h pc contained a marginal metaphase plate, but had no indication of sperm components; three of these, however, showed reduced numbers of cortical granules. Two activated ova (10 and 14 h pc) were in telophase of the second meiotic division, following incorporation of the fertilizing sperm. The fertilizing sperm was situated in a slight elevation; the nucleus was expanding but lacked a nuclear envelope. The pronuclear stage in the horse began as early as 12 h pc, and lasted at least until 21 h pc. Sperm tail remnants were seen in 5 of 7 pronuclear-stage ova, although the crowding of the cytoplasm with clusters of lipid and vacuoles made discerning sperm tail remnants difficult. The spindles of the metaphase stage of the second meiotic division were oriented radially, that is, at right angles to the cell surface, in all but one ovum, so this orientation is not a response to fertilization.  相似文献   

17.
The type of donor cell most suitable for producing cloned animals is one of the topics under debate in the field of nuclear transfer. To provide useful information to answer this question, G2/M- and G0/G1-stage fetal fibroblasts were used as donor cells for nuclear transfer. In vitro-matured oocytes derived from abattoir ovaries were used as recipient cytoplasts. In both groups, nuclear envelope breakdown and premature chromosome condensation were completed within 1-2 h after donor cells were injected into the cytoplasm of oocytes. Microtubules were organized around condensed chromosomes and formed a spindle within 1-1.5 h after activation. Decondensation of chromosomes could be seen within 2-4 h after activation. Reformation of the new nuclear envelope occurred 4-6 h after activation and was followed by nuclear swelling and formation of a pronucleus-like structure (PN) 8-12 h after activation. Most (80.6%) of the reconstructed oocytes derived from G2/M cells extruded polar body-like structures (PB). However, a much lower frequency of PB (21.7%) was observed in the reconstructed oocytes derived from G0/G1 donors. A variety of PN and PB combinations were observed in reconstructed oocytes derived from G2/M-stage donors, including 1PN+0PB, 1PN+1PB, 1PN+2PB, 2PN+0PB, 2PN+1PB, 2PN+2PB, and 3PN+1PB. Chromosomes of most embryos (10/13) derived from G2/M stage were diploid. The percentage of cleavage and blastocysts and the average nuclear number of blastocysts in the G2/M and G0/G1 groups were not different. These results demonstrate that the G2/M stage can be morphologically remodeled by cytoplasm of MII oocytes in pigs. To maintain normal ploidy, the extra chromosomes derived from G2/M-stage cells could be expelled by oocytes as a second polar body. G2/M-stage fibroblast nuclei could direct reconstructed embryos to develop to the blastocyst stage.  相似文献   

18.
The aim of this study was to determine the effect of individual oocyte donors on cloned embryo development in vitro. Five Holstein heifers of varied genetic origins were subject to ovum pick up (OPU) once weekly. In total, 913 oocytes were recovered from 1304 follicles. A mean of 7.7+/-0.4 oocytes was recovered per session per animal. Individual mean oocyte production varied significantly in quantity but not in quality (morphological categories) among heifers. Oocytes from individual heifers were used as recipient cytoplasm for somatic cell nuclear transfer (SCNT). Cumulus cells, collected from a single Holstein cow genetically unrelated to the oocyte donor, were used as donor cells. Although the percentage of reconstructed embryos that started to cleave was nearly constant, the percentage of cleaved embryos that developed into blastocysts showed clear individual heifer variation (61%, 51%, 31%, 28% and 24%, respectively), with a mean of 38% showing blastocyst formation. In vitro fertilization (IVF) was also conducted with oocyte from the same heifers used in SCNT. A variation of blastocyst production among individual heifers was also shown in the IVF experiment, but the rank of oocyte donor based on the blastocyst rate was changed. In conclusion, individual oocyte donor may have an effect on cloned embryo development in vitro, which differed from the effect on IVF embryos.  相似文献   

19.
Rabbit ovum donors were superovulated with pregnant mare's serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG). Ova were recovered 16-17 h post-hCG from oviducts immediately after killing and from excised oviducts held in saline 30 min at 33 degrees or 38 degrees C prior to ovum recovery. In vivo-capacitated spermatozoa were used to inseminate both groups of ova. Data revealed a decrease in fertilization rates following a 30-min delay at 38 degrees C in ovum recovery. Thus, 64% (44/69 ova) were fertilized with rapid recovery, whereas 43% (39/90 ova) were fertilized following a 30-min delay. The decrease in fertilization imposed by delay in ovum recovery was apparently overcome when oviduct storage was at 33 degrees C. Under these conditions, 69% of inseminated ova were fertilized. Ova inseminated with in vitro-capacitated sperm showed a similar response to delayed ovum recovery. Embryonic development in culture of ova obtained from mated does was not affected by delay in recovery at 33 degrees or 38 degrees C provided mated does had been injected only with hCG. Ova from mated does receiving both PMSG and hCG were adversely affected by a 38 degrees C delay. The data emphasize the importance of rapid ovum recovery from oviducts and suggest the possibility of altering conditions to overcome damaging effects of delayed recovery.  相似文献   

20.
Nuclear transfer (NT) techniques have advanced in the last few years, and cloned animals have been produced from somatic cells in several species including pig. In this study we examined the feasibility of using granulosa-derived cells (GCs) as donor cells combined with a microinjection procedure to transfer those nuclei. In vitro matured oocytes were enucleated by aspirating the first polar body and adjacent cytoplasm. Mural GCs infected with an enhanced green fluorescence protein (EGFP) gene were serum-starved (0.5% serum, 7 days), injected directly into cytoplasm of enucleated oocytes and the oocytes were electrically activated. The reconstructed embryos were cultured for 7 days and stained with Hoechst 33342 to determine the number of nuclei. Non-manipulated oocytes were electrically activated and cultured as controls. At 9 h post-activation, the pronuclear formation rates were 78.7+/-3.7% in NT and 97.4+/-4.4% in controls at 9 h post-activation. After 7 days culture, the cleavage rates were 24.5+/-7.2% in NT and 79.3+/-5.6% in controls. The blastocysts formation rates were 4.9+/-2.4% in NT and 26.8+/-3.8% in controls. To examine the effect of activation time on development of NT embryos, oocytes were activated at 0-0.5, 1-2, or 3-4 h post-injection. At 18 h post-activation the pronuclear formation rates were higher (62.5+/-7.3%) in the 3-4 h group as compared to the 0-0.5 h (22.0+/-12.5%) or 1-2h (44.5+/-6.3%) groups (P<0.05). However, the cleavage rates (9.6+/-4.6 to 10.7+/-4.2%) and the blastocysts formation rates (1.2+/-2.4 to 4.9+/-3.7%) were not different among treatments (P>0.05). The mean cell number of blastocysts was 15.7+/-5.7 in NT and 25.3+/-24.7 in controls. Green fluorescence was observed in roughly half of the embryos from the one-cell to the blastocyst stage. These results indicate that granulosa-derived cell nuclei can be remodeled in the cytoplasm of porcine oocytes, and that the reconstructed embryos can develop to the blastocyst stage. In addition, EGFP can be used as a marker for gene expression of donor nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号