共查询到20条相似文献,搜索用时 15 毫秒
1.
Vadillo M Bargalló MV Ardévol A Grau AA Fernández-Larrea J Fernández-Larrea Jde D Pujadas G Anguiano GP Bladé C Segarra MC Salvadó MJ Rovira MJ Arola L Ferré LA Blay M Olivé MB 《The Journal of nutritional biochemistry》2006,17(2):139-142
Red wine is a beverage that can exert a broad spectrum of health-promoting actions both in humans and laboratory animal models if consumed moderately. However, information about its effect on body weight is scarce. We have evaluated the effect of moderate red wine consumption on body weight and energy intake in male Zucker lean rats fed a hypercaloric diet for 8 weeks. For this purpose, we used three 5-animal groups: a high-fat diet group (HFD), a high-fat-diet red-wine-drinking group (HFRWD), and a standard diet group (SD). After 8 weeks, the HFRWD group had a lower body weight gain (175.66 +/- 2.78% vs 188.22 +/- 4.83%; P<.05) and lower energy intake (269.45 +/- 4.02 KJ/animal.day vs day vs 300.81 +/- 4.52 KJ/animal.day; P<.05) and had less fat mass at epididymal location respect to the whole body weight (0.014 +/- 0.001 vs 0.017 +/- 0.001; P<.05) than the HFD group. However, the red wine didn't modified the fed efficiency 0.012 +/- 0.001 g/KJ for HFRWD group versus 0.013 +/- 0.001 g/KJ for the HFD one (P=.080). These findings, though preliminary, show that moderate red wine intake can prevent the increase of body weight by modulating energy intake in a rat diet-induced model of obesity. 相似文献
2.
Our objective was to determine if a cafeteria-type diet with increased fat content would block the decrease in insulin secretion induced by adrenalectomy in obese rats. Five week old Zucker (fa/fa) rats were adrenalectomized. One week later, half of the adrenalectomized groups, and age-matched, sham-operated animals were given a diet of 16% fat and 44% carbohydrate. Control animals were maintained on standard rat chow (4.6% fat and 49% carbohydrate). After 4 weeks on the diets, in vivo measurements included caloric intake, weight gain, plasma corticosterone, triglyceride, free fatty acids, and oral glucose tolerance tests. In vitro measurements included glucose-stimulated insulin secretion, glucose phosphorylating activity, islet triglyceride content, and fatty acid oxidizing activity of cultured islets. Generally, the cafeteria diet did not block the effects of adrenalectomy on in vitro insulin secretion parameters, even though in sham-operated animals weight gain and insulin resistance was induced by the diet in vivo. Adrenalectomy and the diet exerted independent effects on glucose phosphorylation and fatty acid oxidation in islets. In conclusion, adrenalectomy decreased the elevated insulin secretion in fa/fa rats. The failure of a cafeteria diet enriched in fat to block the adrenalectomy-mediated changes in B-cell function indicates the importance of glucocorticoids and centrally-mediated effects on insulin secretion and other metabolic parameters. 相似文献
3.
Metz L Vermaelen M Lambert K Broca C Sirvent P Raynaud E Mercier J 《Biochemical and biophysical research communications》2005,331(4):1338-1345
The purpose of this study was to investigate the effect of endurance training (10 weeks) on previously reported alterations of lactate exchange in obese Zucker fa/fa rats. We used sarcolemmal vesicles to measure lactate transport capacity in control sedentary rats, Zucker (fa/fa), and endurance trained Zucker (fa/fa) rats. Monocarboxylate transporter (MCT) 1 and 4 content was measured in sarcolemmal vesicles and skeletal muscle. Training increased citrate synthase activity in soleus and in red tibialis anterior, and improved insulin sensitivity measured by intraperitoneal glucose tolerance test. Endurance training increased lactate influx in sarcolemmal vesicles at 1 mM of external lactate concentration and increased MCT1 expression on sarcolemmal vesicles. Furthermore, muscular lactate level was significantly decreased after training in red tibialis anterior and extensor digitorum longus. This study shows that endurance training improves impairment of lactate transport capacity that is found in insulin resistance state like obesity and type 2 diabetes. 相似文献
4.
Leptin acts as a satiety factor within the central nervous system by binding to its receptor located in the hypothalamus. A missense mutation of the leptin receptor induces hyperphagia and obesity in the obese Zucker fa/fa rat. Since the CNS is an important target of leptin action, we hypothesized that leptin gene transfer into the lateral cerebral ventricle could efficiently lead to inhibition of food intake and reduction of body weight in obese fa/fa rats as well as in lean animals. A single intracerebroventricular injection of an adenoviral vector containing a cDNA encoding leptin resulted in the expression of leptin in the ependymal cells lining the ventricle and the secretion of leptin into the cerebrospinal fluid (CSF). During the first week after injection, when high concentrations of leptin were produced in the CSF, the reducing effects of leptin on food intake and body weight were comparable in lean and in obese fa/fa rats. The subsequent decline in CSF leptin levels, that was similar in lean and obese fa/fa rats, resulted in the faster resumption of food intake and body weight gain in obese than in lean animals, confirming a reduced sensitivity to leptin in the obese group. The results of this study show that leptin gene delivery into the cerebral ventricles allows for the production of elevated leptin concentrations in CSF, and they support the hypothesis that the impaired sensitivity to leptin may be overcome in obese fa/fa rats. 相似文献
5.
Alterations in both calcitonin (CT) secretion and plasma calcium were recently described in adult obese Zucker rats. We have investigated the CT biosynthetic activity of thyroid glands in 30-day-old obese Zucker rats (fa/fa), and their controls (Lean). Plasma calcium level was significantly increased (+0.6 mg/dl) in obese animals, but plasma phosphate was unchanged. Plasma CT levels measured by radioimmunoassay (RIA) were significantly decreased in fatty (0.50 +/- 0.03 vs 0.68 +/- 0.03 ng/ml in Leans; P less than 0.001), but thyroidal hormone content was not different between Lean and fatty rats (68.7 +/- 5.1 in Leans vs 60.5 +/- 3.6 ng/gland in fatty rats). mRNA was extracted from 10 thyroids, and translated in a rabbit reticulocyte lysate (NEN) in the presence of [35S]methionine. After polyacrylamide gel electrophoresis, specific immunoprecipitates were autoradiographed and quantified by integration. A 50% decrease in translatable CT mRNA was observed in fatty rats. In basal conditions, the biosynthetic activity of C cells in obese rats correlates with the secretion rate of the hormone in the face of unchanged thyroidal CT contents. 相似文献
6.
7.
Primeaux SD Tong M Holmes GM 《American journal of physiology. Regulatory, integrative and comparative physiology》2007,293(3):R1102-R1109
The inability to maintain body weight within prescribed ranges occurs in a significant portion of the human spinal cord injury (SCI) population. Using a rodent model of long-term high thoracic (spinal level T3) spinal cord transection (TX), we aimed to identify derangements in body weight, body composition, plasma insulin, glucose tolerance, and metabolic function, as measured by uncoupling protein 1 (UCP1) expression in interscapular brown adipose tissue (IBAT). Sixteen weeks after SCI, body weights of injured female rats stabilized and were significantly lower than surgical control animals. At the same time point, SCI rats had a significantly lower whole body fat:lean tissue mass ratio than controls, as measured indirectly by NMR. Despite lower body weight and fat mass, the cumulative consumption of standard laboratory chow (4.0 kcal/g) and mean energy intake (kcal.day(-1).100 g body wt(-1)) of chronic SCI rats was significantly more than controls. Glucose tolerance tests indicated a significant enhancement in glucose handling in 16-wk SCI rats, which were coupled with lower serum insulin levels. The post mortem weight of gonadal and retroperitoneal fat pads was significantly reduced after SCI and IBAT displayed significantly lower real-time PCR expression of UCP1 mRNA. The reduced fat mass and IBAT UCP1 mRNA expression are contraindicative of the cumulative caloric intake by the SCI rats. The prolonged postinjury loss of body weight, including fat mass, is not due to hypophagia but possibly to permanent changes in gastrointestinal transit and absorption, as well as whole body homeostatic mechanisms. 相似文献
8.
Marcela Capcarova Anna Kalafova Marianna Schwarzova Marta Soltesova Prnova Karol Svik Monika Schneidgenova Lukas Slovak Ivana Bovdisova Robert Toman Viktoria Lory Stefan Zorad 《Biologia》2018,73(7):659-671
The appropriate animal model of diabetes mellitus type 2 is Zucker diabetic fatty (ZDF) rats. The goal of this study was to analyse the effect of chronic high-energy diet on diabetes mellitus (DM) complications in ZDF rats. Male ZDF rats (n?=?20) and their lean controls (non-diabetic, n?=?10) in the age of 3 months were involved in the experiment. Rats were provided with water and diet on ad libitum base. Animals were divided into three groups as follows: lean untreated rats (C) fed by KKZ-P/M (10 MJ/kg), obese rats fed by KKZ-P/M (10 MJ/kg, E1) and obese rats fed by enriched high energy diet (E2, enriched KKZ-P/M, 20 MJ/kg). Glucose, ketones levels, the consumption of feed, water and the live weight was measured weekly during the whole experiment. At the end of the experiment rats were anesthetized and selected haematological parameters were measured. ZDF rats in E1 and E2 group developed obesity, hyperglycaemia, non-insulin dependent diabetes, aggravations in haematological parameters and accumulation of sorbitol in sciatic nerve and lens of rats. High-energy diet immediately induced hyperglycaemia followed by accelerating the secondary symptoms of diabetes complications expressed by disturbed haematology parameters. High-energy diet caused ketoacidosis what meant two cases of death. Extended research on diabetes is needed. 相似文献
9.
M M Grasa R Vilà M Esteve C Cabot J A Fernandez-López X Remesar M Alemany 《Hormones et métabolisme》2000,32(6):246-250
Homozygous obese db/db (BKS-Lepr(db) and ob/ob (B6-Lep(ob)) mice were treated for 14 days with a continuous infusion of a fat emulsion (controls) or loaded with oleoyl-estrone at doses of 12.5 and 50 nmol/g x d using surgically inserted osmotic minipumps. Treatment with oleoyl-estrone resulted in a marked decrease in body weight in both strains, compared with the unchecked growth of controls. In db/db mice, plasma urea and insulin, as well as liver lipid decreased with treatment. In ob/ob mice, the effect on insulin was more marked, in parallel with higher plasma lipids pointing to increased fat mobilisation. The results suggest that oleoyl-estrone effects on body fat reserves and insulin resistance are not mediated by leptin, since ob/ob mice lack this hormone and in the db/db it is present but cannot induce effects because of defective leptin receptors; in both cases oleoyl-estrone treatment lowers body weight. 相似文献
10.
I. Rafecas M. Esteve J. A. Fernández-López X. Remesar M. Alemany 《Molecular and cellular biochemistry》1993,121(1):45-57
The amino acid composition of the diet ingested by reference and cafeteria diet-fed lean and obese Zucker rats has been analyzed from day 30 to 60 after birth. Their body protein amino acid composition was measured, as well as the urinary and faecal losses incurred during the period studied. The protein actually selected by the rats fed the cafeteria diet had essentially the same amino acid composition as the reference diet. The mean protein amino acid composition of the rat showed only small changes with breed, age or diet.Cafeteria-fed rats had a higher dietary protein digestion/absorption efficiency than reference diet-fed rats. Obese rats wasted a high proportion of dietary amino acids when given the reference diet, but not on the cafeteria diet. In all cases, the amino acids lost as such in the urine were a minimal portion of available amino acids.In addition to breed, the rates of protein accretion are deeply influenced by diet, but even more by the age — or size — of the animals: cafeteria-fed rats grew faster, to higher body protein settings, but later protein accrual decreased considerably; this is probably due to a limitation in the blueprint for growth which restricts net protein deposition when a certain body size is attained. Obese rats, however, kept accuring protein with high rates throughout.Diet composition — and not protein availability or quality-induced deep changes in amino acid metabolism. Since the differences in the absolute levels of dietary protein or carbohydrate energy ingested by rats fed the reference or cafeteria diets were small, it can be assumed that high (lipid) energy elicits the changes observed in amino acid metabolism by the cafeteria diet. The effects induced in the fate of the nitrogen ingested were more related to the fractional protein energy proportion than to its absolute values. Cafeteria-fed rats tended to absorb more amino acids and preserve them more efficiently; these effects were shown even under conditions of genetic obesity.There were deep differences in handling of dietary amino acids by dietary or genetically obese rats. The former manage to extract and accrue larger proportions of their dietary amino acids than the latter. The effects of both models of amino acid management were largely additive, suggesting that the mechanisms underlying the development of obesity did not run in parallel to those affecting the control of amino acid utilization. Obesity may be developed in both cases despite a completely different strategy of amino acid assimilation, accrual and utilization. (Mol Cell Biochem121: 45–58, 1993) 相似文献
11.
Sánchez-Gutiérrez JC Sánchez-Arias JA Samper B Felíu JE 《Archives of biochemistry and biophysics》2000,373(1):249-254
The obese (fa/fa) Zucker rat shows an impaired sympathetic tone which is accompanied by an altered thermogenesis and changes in both lipid and carbohydrate metabolism. In this work, we have investigated the regulatory effects of epinephrine on the rate of gluconeogenesis from a mixture of [(14)C]lactate/pyruvate, in hepatocytes isolated from obese (fa/fa) rats and their lean (Fa/-) littermates. Epinephrine caused a dose-dependent stimulation of the rate of [(14)C]glucose formation in both obese and lean rat hepatocytes, the maximal rates being five- and twofold higher than the corresponding basal values (0.50 +/- 0.06 and 1.96 +/- 0.15 micromol of lactate converted to glucose/g of cell x 20 min, respectively). No significant differences were found between the calculated half-maximal effective concentrations (EC(50)) for epinephrine in obese and lean rat liver cells. The stimulation of gluconeogenesis by epinephrine was accompanied by a decrease in the cellular concentration of fructose 2,6-bisphosphate, and an inactivation of both pyruvate kinase and 6-phosphofructo 2-kinase, to similar extents in both types of hepatocytes. Epinephrine also significantly raised the hepatocyte content of cyclic AMP, with about a twofold increase at a saturating concentration of the catecholamine (1 microM), in both lean and obese rat liver cells. However, at suboptimal concentrations of epinephrine, the rise in cyclic AMP levels was significantly less marked in obese than in lean rat hepatocytes. Nevertheless, no significant differences were found in either the affinity or the number of beta-adrenergic receptors, in radioligand binding studies carried out in liver plasma membranes obtained from obese and lean Zucker rats. In conclusion, compared to the corresponding basal values, the response of gluconeogenesis from lactate to the stimulatory effect of epinephrine is higher in obese (fa/fa) than in lean (Fa/-) Zucker rat hepatocytes, with no significant differences in the calculated EC(50) values for this hormone. This occurs in spite of an apparent decreased sensitivity of the adenylate cyclase system to the stimulatory effect of epinephrine in obese rat liver cells. 相似文献
12.
C W Cooper J F Obie A R Hughes D L Margules J J Flynn 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1983,173(1):48-55
Previously we found that adult Zucker fatty rats have C-cell hyperplasia and increased thyroidal calcitonin (CT) compared to lean controls. In this study we have evaluated both secretion of CT and responsiveness to CT in order to see whether they, too, were altered. Fat rats and lean littermates, 13-15 months old, were used. CT secretion was provoked by (1) feeding for 2 hr after an 18-hr fast, (2) giving pentagastrin iv, and (3) injecting CaCl2 iv. CT was measured by radioimmunoassay. Responsiveness to CT was examined by giving porcine or salmon CT iv and measuring serum Ca 1-3 hr later. For CT secretion, compared to leans the fat rats showed (1) higher fasting serum Ca and CT and a greater rise in CT after feeding, (2) a similar 5- to 10-fold increase in CT after iv pentagastrin, and (3) a greater rise in both serum Ca and CT at various times between 5 min and 3 hr after iv CaCl2. For CT responsiveness, fat and lean rats were equally responsive to iv CT in terms of the fall in plasma Ca 1-3 hr later. The results show that fat rats can secrete as much or more CT in response to provocative stimuli as lean rats and that they appear normally responsive to injected CT. Therefore, inability to release CT and insensitivity to CT do not underly the C-cell hyperplasia, increased thyroidal CT, and increased circulating CT in the fat rat. 相似文献
13.
Hiroyuki Honnma Toshiaki Endo Tamotsu Kiya Ayumi Shimizu Kunihiko Nagasawa Tsuyoshi Baba Takashi Fujimoto Hirofumi Henmi Yoshimitsu Kitajima Kengo Manase Shinichi Ishioka Eiki Ito Tsuyoshi Saito 《Reproductive biology and endocrinology : RB&E》2010,8(1):1-9
Background
Zucker fatty (fa/fa) rats are a well-understood model of obesity and hyperinsulinemia. It is now thought that obesity/hyperinsulinemia is an important cause of endocrinological abnormality, but to date there have been no reports on the changes in ovarian morphology or the ovarian androgen profile in rat models of obesity and insulin resistance.Methods
In this study we investigated the effects of obesity and hyperinsulinemia on ovarian morphology and the hormone profile in insulin-resistant Zucker fatty rats (5, 8, 12 and 16 weeks of age, n = 6-7).Results
Ovaries from 5-week-old fatty rats had significantly greater total and atretic follicle numbers, and higher atretic-to-total follicle ratios than those from lean rats. Ovaries from 12- and 16-week-old fatty rats showed interstitial cell hyperplasia and numerous cysts with features of advanced follicular atresia. In addition, serum testosterone and androstenedione levels significantly declined in fatty rats from age 8 to 16 weeks, so that fatty rats showed significantly lower levels of serum testosterone (12 and 16 weeks) and androstenedione (all weeks) than lean rats. This may reflect a reduction of androgen synthesis during follicular atresia. Serum adiponectin levels were high in immature fatty rats, and although the levels declined significantly as they matured, it remained significantly higher in fatty rats than in lean rats. On the other hand, levels of ovarian adiponectin and its receptors were significantly lower in mature fatty rats than in lean mature rats or immature fatty rats.Conclusions
Our findings indicate that ovarian morphology and hormone profiles are significantly altered by the continuous insulin resistance in Zucker fatty rats. Simultaneously, abrupt reductions in serum and ovarian adiponectin also likely contribute to the infertility seen in fatty rats. 相似文献14.
Zucker fa/fa rats were subjected to chronic ethanol intoxication; (alcohol incorporated into the diet represented 36% of the energy of the control diet. The amount of endogenous hepatic fatty acids was lower with the alcohol diet than with the control diet. The incorporated alcohol had no significant influence on the fatty acid composition of adipose tissue. The variations in the fatty acid composition of the blood followed the same patterns as those of the rat liver. 相似文献
15.
16.
Payne VA Arden C Lange AJ Agius L 《American journal of physiology. Regulatory, integrative and comparative physiology》2007,293(2):R618-R625
The insulin-resistant Zucker fa/fa rat has elevated hepatic glycolysis and activities of glucokinase and phosphofructokinase-2/fructose bisphosphatase-2 (PFK2). The latter catalyzes the formation and degradation of fructose-2,6-bisphosphate (fructose-2,6-P(2)) and is a glucokinase-binding protein. The contributions of glucokinase and PFK2 to the elevated glycolysis in fa/fa hepatocytes were determined by overexpressing these enzymes individually or in combination. Metabolic control analysis was used to determine enzyme coefficients on glycolysis and metabolite concentrations. Glucokinase had a high control coefficient on glycolysis in all hormonal conditions tested, whereas PFK2 had significant control only in the presence of glucagon, which phosphorylates PFK2 and suppresses glycolysis. Despite the high control strength of glucokinase, the elevated glycolysis in fa/fa hepatocytes could not be explained by the elevated glucokinase activity alone. In hepatocytes from fa/fa rats, glucokinase translocation between the nucleus and the cytoplasm was refractory to glucose but responsive to glucagon. Expression of a kinase-active PFK2 variant reversed the glucagon effect on glucokinase translocation and glucose phosphorylation, confirming the role for PFK2 in sequestering glucokinase in the cytoplasm. Glucokinase had a high control on glucose-6-phosphate content; however, like PFK2, it had a relative modest effect on the fructose-2,6-P(2) content. However, combined overexpression of glucokinase and PFK2 had a synergistic effect on fructose-2,6-P(2) levels, suggesting that interaction of these enzymes may be a prerequisite for formation of fructose-2,6-P(2). Cumulatively, this study provides support for coordinate roles for glucokinase and PFK2 in the elevated hepatic glycolysis in fa/fa rats. 相似文献
17.
Hwang SY Taylor CG Zahradka P Bankovic-Calic N Ogborn MR Aukema HM 《The Journal of nutritional biochemistry》2008,19(4):255-262
With the rising incidence of obesity and the metabolic syndrome, obesity-associated nephropathy also has increased. One of the earliest pathologies in the development of this nephropathy is glomerular hyperfiltration and hypertrophy. Dietary soy protein (SP) ameliorates disease progression in several models of renal disease, and vegetable sources of protein, as compared to animal sources of protein, alter renal hemodynamics. Therefore, the effect of dietary SP on early renal disease and prostanoid production was examined in the obese fa/fa Zucker rat. Rats, 6 weeks of age, were given diets containing 17% protein from either SP or egg white (EW) for 8 weeks. Feed consumption and body and kidney weights were significantly greater in fa/fa rats as compared to lean rats. The fa/fa rats also had 139% more proteinuria and kidneys with 43% larger glomeruli. SP feeding did not alter body weights or proteinuria but did result in 6% lower kidney weights (g/100 g body weight) and 16% smaller glomeruli in fa/fa rats. Cyclooxygenase activity as determined by 6-keto prostaglandin F(1alpha) (6-keto PGF(1alpha)) synthesis was lower in fa/fa rats given SP-based diets as compared to those given EW-based diets. Ratios of renal thromboxane (TX) B(2)/6-keto PGF(1alpha) and PGE(2)/6-keto PGF(1alpha) were higher, while TXB(2)/PGE(2) levels were not different in rats given SP diets as compared to those given EW diets, also indicating that dietary SP reduced renal 6-keto PGF(1alpha) levels. These findings suggest that attenuation of early glomerular hypertrophy in young obese fa/fa rats by dietary SP may be mediated by the lower levels of 6-keto PGF(1alpha) since this would be expected to reduce glomerular hyperfiltration. 相似文献
18.
Tovar-Palacio C Tovar AR Torres N Cruz C Hernández-Pando R Salas-Garrido G Pedraza-Chaverri J Correa-Rotter R 《American journal of physiology. Renal physiology》2011,300(1):F263-F271
Obesity is a risk factor for the development of chronic kidney disease (CKD) and end-stage renal disease. It is not clear whether the adoption of a high-protein diet in obese patients affects renal lipid metabolism or kidney function. Thus the aims of this study were to assess in obese Zuckerfa/fa rats the effects of different types and amounts of dietary protein on the expression of lipogenic and inflammatory genes, as well as renal lipid concentration and biochemical parameters of kidney function. Rats were fed different concentrations of soy protein or casein (20, 30, 45%) for 2 mo. Independent of the type of protein ingested, higher dietary protein intake led to higher serum triglycerides (TG) than rats fed adequate concentrations of protein. Additionally, the soy protein diet significantly increased serum TG compared with the casein diet. However, rats fed soy protein had significantly decreased serum cholesterol concentrations compared with those fed a casein diet. No significant differences in renal TG and cholesterol concentrations were observed between rats fed with either protein diets. Renal expression of sterol-regulatory element binding protein 2 (SREBP-2) and its target gene HMG-CoA reductase was significantly increased as the concentration of dietary protein increased. The highest protein diets were associated with greater expression of proinflammatory cytokines in the kidney, independent of the type of dietary protein. These results indicate that high soy or casein protein diets upregulate the expression of lipogenic and proinflammatory genes in the kidney. 相似文献
19.
The influence of the hypoglycemic agent glipizide (0-100 microM) on the rate of gluconeogenesis from lactate, as well as on the levels of fructose 2,6-bisphosphate, has been investigated in hepatocytes isolated from genetically obese (fa/fa) Zucker rats and from their corresponding lean (Fa/-) littermates. As compared to lean rat hepatocytes, liver cells isolated from obese animals showed a lower rate of basal gluconeogenesis (0.9 +/- 0.2 vs 5.4 +/- 0.5 micromol of lactate converted to glucose/g cell x 30 min, n=4) and higher levels of fructose 2,6-bisphosphate (11.5 +/- 1.0 vs 5.9 +/- 0.4 nmol/g cell, n=8-9). In lean rat hepatocytes, the presence of glipizide in the incubation medium caused a dose-dependent inhibition of the rate of lactate conversion to glucose (maximal inhibition=46%; EC50 value=26 microM), and simultaneously raised the cellular content of fructose-2,6-bisphosphate (maximal increment=40%; EC50 value=10 microM). In contrast, in hepatocytes isolated from obese rats, the inhibition of gluconeogenesis and the increment in fructose-2,6-bisphosphate levels elicited by glipizide were significantly reduced (maximal effects of 22 and 13%, respectively). Similarly, the activation of glycogen phosphorylase and the increase in hexose 6-phosphate levels in response to glipizide were less marked in obese rat hepatocytes than in liver cells isolated from lean animals. These results demonstrate that the efficacy of sulfonylureas as inhibitors of hepatic gluconeogenesis is reduced in the genetically obese (fa/fa) Zucker rat. 相似文献
20.
Glucose refractoriness of beta-cells from fed fa/fa rats is ameliorated by nonesterified fatty acids
The aim of this study was to characterize the glucose responsiveness of individual beta-cells from fa/fa rats under ad libitum feeding conditions. Enlarged intact islets from fed fa/fa rats had a compressed insulin response curve to glucose compared with smaller islets. Size-sorted islets from obese rats yielded beta-cells whose glucose responsiveness was assessed by reverse hemolytic plaque assay to determine whether glucose refractoriness was caused by a decreased number of responsive cells or output per cell. In addition, the effects of palmitic acid on glucose-stimulated insulin secretion were assessed because of evidence that nonesterified fatty acids have acute beneficial effects. Two- to threefold more beta-cells from >250 microm diameter (large) islets than <125 microm diameter (small) or lean islets responded to low glucose. Increasing the glucose (8.3-16.5 mM) induced a >10-fold increase in recruitment of active cells from small islets, compared with only a 2.6-fold increase in large islets. This refractoriness was partially reversed by preincubation of the cells in low glucose for 2 h. In addition, secretion per cell of the large islet beta-cell population was significantly reduced compared with lean beta-cells, so that the overall response capacity of large but not small islet beta-cells was significantly reduced at high glucose. Therefore, continued near-normal function of the beta-cells from small islets of fa/fa rats seems crucial for glucose responsiveness. Incubation of beta-cells from large islets with palmitic acid normalized the secretory capacity to glucose mainly by increasing recruitment and secondarily by increasing secretion per cell. In conclusion, these studies demonstrate refractoriness to glucose of beta-cells from large islets of fa/fa rats under ad libitum feeding conditions. When acutely exposed to nonesterified fatty acids, islets from fa/fa rats have a potentiated insulin response despite chronic elevation of plasma lipids in vivo. 相似文献