首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Horn BW  Moore GG  Carbone I 《Mycologia》2011,103(1):174-183
Sexual reproduction was examined in the aflatoxin-producing fungus Aspergillus nomius. Crosses between sexually compatible strains resulted in the formation of multiple nonostiolate ascocarps within stromata, which places the teleomorph in genus Petromyces. Ascocarp and ascospore morphology in Petromyces nomius were similar to that in P. flavus and P. parasiticus, and differences between teleomorphs were insufficient for species separation. Formation of mature ascocarps was infrequent, with only 24% of the 83 crosses producing viable ascospores. The majority of P. nomius strains contained a single mating-type gene (MAT1-1 or MAT1-2), but several strains contained both genes. MAT1-1/MAT1-2 strains were self-sterile and capable of mating with both MAT1-1 and MAT1-2 strains; hence P. nomius appears to be functionally heterothallic.  相似文献   

2.
Horn BW 《Mycologia》2005,97(1):202-217
Soil is a source of primary inoculum for Aspergillus flavus and A. parasiticus, fungi that produce highly carcinogenic aflatoxins in peanuts. Aflatoxigenic fungi commonly invade peanut seeds during maturation, and the highest concentrations of aflatoxins are found in damaged seeds. A laboratory procedure was developed in which viable peanut seeds were wounded and inoculated with field soil containing natural populations of fungi, then incubated under different conditions of seed water activity and temperature. Densities of Aspergillus section Flavi in soil used for inoculating seeds were low relative to the total numbers of filamentous fungi (<1%). Aspergillus species from section Flavi present in soil included A. flavus morphotypes L and S strains, A. parasiticus, A. caelatus, A. tamarii and A. alliaceus. Wounding was required for high incidences of fungal colonization; viability of wounded seeds had little effect on colonization by Aspergillus species. Peanut seeds were colonized by section Flavi species as well as A. niger over broad ranges of water activity (0.82-0.98) and temperature (15-37 C), and the highest incidences of seed colonization occurred at water activities of 0.92-0.96 at 22-37 C. A. parasiticus colonized peanut seeds at lower temperatures than A. flavus, and cool soil temperatures relative to temperatures of aerial crop fruits might explain why A. parasiticus is found mostly in peanuts. Other fungi, dominated by the genera Penicillium, Fusarium and Clonostachys, colonized seeds primarily at water activities and temperatures suboptimal for section Flavi species and A. niger. Eupenicillium ochrosalmoneum frequently sporulated on the conidial heads of section Flavi species and showed specificity for these fungi. The inoculation of wounded viable peanut seeds with soil containing natural populations of fungi provides a model system for studying the infection process, the interactions among fungi and those factors important in aflatoxin formation.  相似文献   

3.
Aspergillus fumigatus is a medically important opportunistic pathogen and a major cause of respiratory allergy. The species has long been considered an asexual organism. However, genome analysis has revealed the presence of genes associated with sexual reproduction, including a MAT-2 high-mobility group mating-type gene and genes for pheromone production and detection (Galagan et al., personal communication; Nierman et al., personal communication). We now demonstrate that A. fumigatus has other key characteristics of a sexual species. We reveal the existence of isolates containing a complementary MAT-1 alpha box mating-type gene and show that the MAT locus has an idiomorph structure characteristic of heterothallic (obligate sexual outbreeding) fungi. Analysis of 290 worldwide clinical and environmental isolates with a multiplex-PCR assay revealed the presence of MAT1-1 and MAT1-2 genotypes in similar proportions (43% and 57%, respectively). Further population genetic analyses provided evidence of recombination across a global sampling and within North American and European subpopulations. We also show that mating-type, pheromone-precursor, and pheromone-receptor genes are expressed during mycelial growth. These results indicate that A. fumigatus has a recent evolutionary history of sexual recombination and might have the potential for sexual reproduction. The possible presence of a sexual cycle is highly significant for the population biology and disease management of the species.  相似文献   

4.
At one end of the 70 kb aflatoxin biosynthetic pathway gene cluster in Aspergillus parasiticus and Aspergillus flavus reported earlier, we have cloned a group of four genes that constitute a well-defined gene cluster related to sugar utilization in A. parasiticus: (1) sugR, (2) hxtA, (3) glcA and (4) nadA. No similar well-defined sugar gene cluster has been reported so far in any other related Aspergillus species such as A. flavus, A. nidulans, A. sojae, A. niger, A. oryzae and A. fumigatus. The expression of the hxtA gene, encoding a hexose transporter protein, was found to be concurrent with the aflatoxin pathway cluster genes, in aflatoxin-conducive medium. This is significant since a close linkage between the two gene clusters could potentially explain the induction of aflatoxin biosynthesis by simple sugars such as glucose or sucrose.  相似文献   

5.
Degenerate PCR and chromosome-walking approaches were used to identify mating-type (MAT) genes and flanking regions from the homothallic (sexually self-fertile) euascomycete fungus Neosartorya fischeri, a close relative of the opportunistic human pathogen Aspergillus fumigatus. Both putative alpha- and high-mobility-group-domain MAT genes were found within the same genome, providing a functional explanation for self-fertility. However, unlike those in many homothallic euascomycetes (Pezizomycotina), the genes were not found adjacent to each other and were termed MAT1 and MAT2 to recognize the presence of distinct loci. Complete copies of putative APN1 (DNA lyase) and SLA2 (cytoskeleton assembly control) genes were found bordering the MAT1 locus. Partial copies of APN1 and SLA2 were also found bordering the MAT2 locus, but these copies bore the genetic hallmarks of pseudogenes. Genome comparisons revealed synteny over at least 23,300 bp between the N. fischeri MAT1 region and the A. fumigatus MAT locus region, but no such long-range conservation in the N. fischeri MAT2 region was evident. The sequence upstream of MAT2 contained numerous candidate transposase genes. These results demonstrate a novel means involving the segmental translocation of a chromosomal region by which the ability to undergo self-fertilization may be acquired. The results are also discussed in relation to their significance in indicating that heterothallism may be ancestral within the Aspergillus section Fumigati.  相似文献   

6.
Sexual reproduction occurs in two fundamentally different ways: by outcrossing, in which two distinct partners contribute nuclei, or by self-fertilization (selfing), in which both nuclei are derived from the same individual. Selfing is common in flowering plants, fungi, and some animal taxa. We investigated the genetic basis of selfing in the homothallic fungus Aspergillus nidulans. We demonstrate that alpha and high-mobility group domain mating-type (MAT) genes, found in outcrossing species, are both present in the genome of A. nidulans and that their expression is required for normal sexual development and ascospore production. Balanced overexpression of MAT genes suppressed vegetative growth and stimulated sexual differentiation under conditions unfavorable for sex. Sexual reproduction was correlated with significantly increased expression of MAT genes and key genes of a pheromone-response MAP-kinase signaling pathway involved in heterothallic outcrossing. Mutation of a component MAP-kinase mpkB gene resulted in sterility. These results indicate that selfing in A. nidulans involves activation of the same mating pathways characteristic of sex in outcrossing species, i.e., self-fertilization does not bypass requirements for outcrossing sex but instead requires activation of these pathways within a single individual. However, unlike heterothallic species, aspects of pheromone signaling appeared to be independent of MAT control.  相似文献   

7.
Aims:  To design the Aspergillus flavus and Aspergillus parasiticus -specific primers and a real-time PCR assay for quantification of the conidial density in soil.
Methods and Results:  Aspergillus flavus and A. parasiticus -specific DNA primers were designed based on internal transcribed spacer sequences to distinguish these two species and from other Aspergillus and other fungal species. A method of pathogen DNA extraction directly from soil samples was developed. Using the designed primers, a real-time PCR assay was developed to quantitatively determine the conidial density of each A. flavus and A. parasiticus in soil, after generating corresponding standard curves. Known conidial densities of each A. flavus or A. parasiticus in soil significantly correlated with those tested with the real-time PCR.
Conclusions:  This study demonstrated the applicability of the real-time PCR assay in studies of quantifying A. flavus and A. parasiticus in soil as inoculum sources.
Significance and Impact of the Study:  The A. flacus and A. parasitic -specific primers can be widely used in aflatoxin research. The real-time PCR assay developed in this study provides a potential approach to quantify the plant pathogen density from not only soil but also other sources in relation to aflatoxin contamination from environment, food and feed commodities.  相似文献   

8.
Conserved regions of mating-type genes were amplified in four representatives of the genus Xanthoria (X. parietina, X. polycarpa, X. flammea, and X. elegans) using PCR-based methods. The complete MAT locus, containing one ORF (MAT1-2-1) coding for a truncated HMG-box protein, and two partial flanking genes, were cloned by screening a genomic lambda phage library of the homothallic X. parietina. The flanking genes, a homologue of SLA2 of Saccharomyces cerevisiae and a DNA lyase gene, served to amplify the two idiomorphs of the X. polycarpa MAT locus. Each idiomorph contains a single gene: MAT1-2-1 codes for a HMG-box protein, MAT1-1-1 encodes an alpha domain protein. The occurrence of mating-type genes in eight single spore isolates derived from one ascus was studied with a PCR assay. In the homothallic X. parietina a HMG fragment, but no alpha box fragment was found in all isolates, whereas in X. elegans, another homothallic species, all tested isolates contained a fragment of both idiomorphs. Conversely, isolates of the heterothallic X. polycarpa contained either a HMG or an alpha box fragment, but never both.  相似文献   

9.
The objective of this study was to evaluate the ability of the Aspergillus flavus pAF28 DNA probe to produce DNA fingerprints for distinguishing among genotypes of Petromyces alliaceus (Aspergillus section Flavi), a fungus considered responsible for the ochratoxin A contamination that is occasionally observed in California fig orchards. P. alliaceus (14 isolates), Petromyces albertensis (one isolate), and seven species of Aspergillus section Circumdati (14 isolates) were analyzed by DNA fingerprinting using a repetitive sequence DNA probe pAF28 derived from A. flavus. The presence of hybridization bands with the DNA probe and with the P. alliaceus or P. albertensis genomic DNA indicates a close relationship between A. flavus and P. alliaceus. Twelve distinct DNA fingerprint groups or genotypes were identified among the 15 isolates of Petromyces. Conspecificity of P. alliaceus and P. albertensis is suggested based on DNA fingerprints. Species belonging to Aspergillus section Circumdati hybridized only slightly at the 7.0-kb region with the repetitive DNA probe, unlike the highly polymorphic hybridization patterns obtained from P. alliaceus and A. flavus, suggesting very little homology of the probe to Aspergillus section Circum dati genomic DNA. The pAF28 DNA probe offers a tool for typing and monitoring specific P. alliaceus clonal populations and for estimating the genotypic diversity of P. alliaceus in orchards, vineyards, or crop fields.  相似文献   

10.
11.
Fang Li  Bo Wang  Long Wang  Bin Cao 《Mycopathologia》2014,178(3-4):163-176
One hundred isolates of Aspergillus fumigatus sensu lato mainly from China, as well as from Australia, France, India, Indonesia, Ireland, UK, and USA were analyzed to infer their sequence types (STs) and population diversity based on partial calmodulin, calcineurin regulatory subunit B, beta-tubulin, cytochrome C and calcineurin catalytic subunit A genes as well as their mating types, using ClonalFrame, Structure and MEGA software. Our results inferred 48 STs and showed that most of the STs or lineages evolved independently and without clear population structure among them. Whereas one lineage was recognized that could be a true population and in which one clade might diverge into another distinct lineage, namely, a cryptic species, A. neoellipticus. In addition, we found that mutation, parasexual, and sexual recombination could, respectively, play specific roles in the evolution of these fungi. Our results also showed that MAT1-1/MAT1-2 mating type ratios of A. fumigatus sensu lato was biased to nearly 1:1.4 (20/28) when clone-corrected, but when not clone-corrected, the ratio of MAT1-1/MAT1-2 was so biased as near 1:2 (35/65), which might mean that isolates with MAT1-2 are in the process of losing sexual ability preceding those with MAT1-1.  相似文献   

12.
Ascochyta and Phoma are fungal genera containing several important plant pathogenic species. These genera are morphologically similar, and recent molecular studies performed to unravel their phylogeny have resulted in the establishment of several new genera within the newly erected Didymellaceae family. An analysis of the structure of fungal mating-type genes can contribute to a better understanding of the taxonomic relationships of these plant pathogens, and may shed some light on their evolution and on differences in sexual strategy and pathogenicity. We analysed the mating-type loci of phylogenetically closely related Ascochyta and Phoma species (Phoma clematidina, Didymella vitalbina, Didymella clematidis, Peyronellaea pinodes and Peyronellaea pinodella) that co-occur on the same hosts, either on Clematis or Pisum. The results confirm that the mating-type genes provide the information to distinguish between the homothallic Pey. pinodes (formerly Ascochyta pinodes) and the heterothallic Pey. pinodella (formerly Phoma pinodella), and indicate the close phylogenetic relationship between these two species that are part of the disease complex responsible for Ascochyta blight on pea. Furthermore, our analysis of the mating-type genes of the fungal species responsible for causing wilt of Clematis sp. revealed that the heterothallic D. vitalbina (Phoma anamorph) is more closely related to the homothallic D. clematidis (Ascochyta anamorph) than to the heterothallic P. clematidina. Finally, our results indicate that homothallism in D. clematidis resulted from a single crossover between MAT1-1 and MAT1-2 sequences of heterothallic ancestors, whereas a single crossover event followed by an inversion of a fused MAT1/2 locus resulted in homothallism in Pey. pinodes.  相似文献   

13.
Fourteen isolates of Aspergillus parasiticus and 2 isolates of Aspergillus flavus isolated from the mealybug Saccharicoccus sacchari were analyzed for production of aflatoxins B1, B2, G1, and G2 in liquid culture over a 20-day period. Twelve Aspergillus isolates including 11 A. parasiticus and 1 A. flavus produced aflatoxins which were extracted from both the mycelium and culture filtrate. Aflatoxin production was detected at day 3 and was detected continually for up to day 20. Aflatoxin B1 production was greatest between 7 and 10 days and significantly higher quantities were produced by A. flavus compared to A. parasiticus. Aflatoxin production was not a stable trait in 1 A. parasiticus isolate passaged 50 times on agar. In addition to loss of aflatoxin production, an associated loss in sporulation ability was also observed in this passaged isolate, although it did maintain pathogenicity against S. sacchari. An aflatoxin B1 concentration of 0.16 micrograms/mealybug (14.2 micrograms/g wet wt) was detected within the tissues of infected mealybugs 7 days after inoculation. In conclusion, the ability of Aspergillus isolates to produce aflatoxins was not essential to the entomopathogenic activity of this fungus against its host S. sacchari.  相似文献   

14.
This research examines the distribution of aflatoxins among conidia and sclerotia of toxigenic strains of Aspergillus flavus Link and Aspergillus parasiticus Speare cultured on Czapek agar (21 days, 28 degrees C). Total aflatoxin levels in conidia and sclerotia varied considerably both within (intrafungal) and among strains. Aspergillus flavus NRRL 6554 accumulated the highest levels of aflatoxin (conidia: B1, 84000 ppb; G1, 566000 ppb; sclerotia: B1, 135000 ppb; G1, 968000 ppb). Substantial aflatoxin levels in conidia could place at risk those agricultural workers exposed to dust containing large numbers of A. flavus conidia. Cellular ratios of aflatoxin B1 to aflatoxin G1 were nearly identical in conidia and sclerotia even though levels of total aflatoxins in these propagule types may have differed greatly. Aflatoxin G1 was detected in sclerotia of all A. flavus strains but in the conidia of only one strain. Each of the A. parasiticus strains examined accumulated aflatoxin G1 in both sclerotia and conidia. These results are examined in the context of current evolutionary theory predicting an increase in the chemical defense systems of fungal sclerotia, propagules critical to the survival of these organisms.  相似文献   

15.
A comparison of the invasion of flowers, aerial pegs, and kernels by wild-type and mutant strains of Aspergillus flavus or A. parasiticus along with aflatoxin analyses of kernels from different drought treatments have supported the hypothesis that preharvest contamination with aflatoxin originates mainly from the soil. Evidence in support of soil invasion as opposed to aerial invasion was the following. A greater percentage of invasion of kernels rather than flower or aerial pegs by either wild-type A. flavus or mutants. Significant invasion by an A. parasiticus color mutant occurred only in peanuts from soil supplemented with the mutant, whereas adjacent plants in close proximity but in untreated soil were only invaded by wild-type A. flavus or A. parasiticus. Aflatoxin data from drought-stressed, visibly undamaged peanut kernels showed that samples from soil not supplemented with a mutant strain contained a preponderance of aflatoxin B's (from wild-type A. flavus) whereas adjacent samples from mutant-supplemented soil contained a preponderance of B's plus G's (from wild-type and mutant A. parasiticus). Preliminary data from two air samplings showed an absence of propagules of A. flavus or A. parasiticus in air around the experimental facility.  相似文献   

16.
The Aspergillus parasiticus aflR gene, a gene that may be involved in the regulation of aflatoxin biosynthesis, encodes a putative zinc finger DNA-binding protein. PCR and sequencing were used to examine the presence of aflR homologs in other members of Aspergillus Section Flavi. The predicted amino acid sequences indicated that the same zinc finger domain, CTSCASSKVRCTKEKPACARCIERGLAC, was present in all of the Aspergillus sojae, Aspergillus flavus, and Aspergillus parasiticus isolates examined and in some of the Aspergillus oryzae isolates examined. Unique base substitutions and a specific base deletion were found in the 5' untranslated and zinc finger region; these differences provided distinct fingerprints. A. oryzae and A. flavus had the T-G-A-A-X-C fingerprint, whereas A. parasiticus and A sojae had the C-C-C-C-C-T fingerprint at the corresponding positions. Specific nucleotides at positions -90 (C or T) and -132 (G or A) further distinguished A. flavus from A. oryzae and A. parasiticus from A. sojae, respectively. A sojae ATCC 9362, which was previously designated A. oryzae NRRL 1988, was determined to be a A. sojae strain on the basis of the presence of the characteristic fingerprint, A-C-C-C-C-C-C-T. The DNAs of other members of Aspergillus Section Flavi, such as Aspergillus nomius and Aspergillus tamarii, and some isolates of A. oryzae appeared to exhibit low levels of similarity to the A. parasiticus aflR gene since low amounts of PCR products or no PCR products were obtained when DNAs from these strains were used.  相似文献   

17.
Sexual reproduction in ascomycete fungi is governed by the mating-type (MAT) locus. The MAT loci of Diaporthe and its Phomopsis anamorphs differ in only one gene: MAT1-1-1 in mating-type MAT1-1 and MAT1-2-1 in mating-type MAT1-2. In order to diagnose mating-types in Diaporthe and Phomopsis and evaluate their usefulness in teleomorph induction in vitro and biological species delimitation, we designed primers that amplify part of the MAT1-1-1 and MAT1-2-1 genes. MAT phylogenies were generated and compared with ITS and EF1-α phylograms. Species recognised in the EF1-α phylogeny corresponded directly with those determined in the MAT phylogenies. ITS was shown to be highly variable resulting in a large number of phylogenetic species that were discordant with MAT and EF1-α species. Mating experiments were conducted to evaluate the existence of reproductive barriers between some isolates, and their anamorphic morphologies were compared. The primers proved to be useful in the mating-type diagnosis of isolates, selection of compatible mating pairs, and in the assessment of biological species boundaries.  相似文献   

18.
A comparison of the invasion of flowers, aerial pegs, and kernels by wild-type and mutant strains of Aspergillus flavus or A. parasiticus along with aflatoxin analyses of kernels from different drought treatments have supported the hypothesis that preharvest contamination with aflatoxin originates mainly from the soil. Evidence in support of soil invasion as opposed to aerial invasion was the following. A greater percentage of invasion of kernels rather than flower or aerial pegs by either wild-type A. flavus or mutants. Significant invasion by an A. parasiticus color mutant occurred only in peanuts from soil supplemented with the mutant, whereas adjacent plants in close proximity but in untreated soil were only invaded by wild-type A. flavus or A. parasiticus. Aflatoxin data from drought-stressed, visibly undamaged peanut kernels showed that samples from soil not supplemented with a mutant strain contained a preponderance of aflatoxin B's (from wild-type A. flavus) whereas adjacent samples from mutant-supplemented soil contained a preponderance of B's plus G's (from wild-type and mutant A. parasiticus). Preliminary data from two air samplings showed an absence of propagules of A. flavus or A. parasiticus in air around the experimental facility.  相似文献   

19.
Three new aflatoxin-producing species belonging to Aspergillus section Flavi are described. They are Aspergillus mottae, A. sergii and A. transmontanensis. These species were isolated from Portuguese almonds and maize. An investigation examined morphology, extrolite production and DNA sequence data to characterize these isolates and describe the new species. Phylogenetic analysis showed that A. transmontanensis and A. sergii form a clade with A. parasiticus whereas A. mottae shares a most recent common ancestor with the combined A. flavus and A. parasiticus clade.  相似文献   

20.
Systemic invasion of developing peanut plants by Aspergillus flavus   总被引:1,自引:0,他引:1  
When grown under glasshouse conditions, peanut plants can be invaded by Aspergillus flavus and A. parasiticus from soil or seed as early as the time of emergence from the soil. Systemic infections may become established. The fungi can spread throughout the plants, though prevalence is higher in parts nearer the soil. Aspergillus flavus is more invasive than A. parasiticus under these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号