共查询到20条相似文献,搜索用时 0 毫秒
1.
U Laforenza C Patrini P Mazzarello M Poloni G Rindi 《Basic and applied histochemistry》1990,34(4):249-257
Thiamine and thiamine mono-, pyro- and triphosphate were found at detectable levels in synaptosomes isolated from whole rat brain. Synaptosomes prepared from whole brain, cerebellum and medulla were also found to contain uridine and inosine mono- and diphosphatases as well as the thiamine pyrophosphate synthetizing and hydrolyzing enzymes, but no thiamine monophosphatase. By isoelectric focusing on thin layer polyacrylamide gel of Triton X-100 homogenates of synaptosomes, thiamine pyrophosphatase activity could be separated into 10 bands with different isoelectric points. The contents of thiamine compounds and enzymes in synaptosomes were generally lower than those found in neuronal cell bodies. 相似文献
2.
Aymeric Goyer 《Phytochemistry》2010,71(14-15):1615-1624
Thiamine diphosphate (vitamin B1) plays a fundamental role as an enzymatic cofactor in universal metabolic pathways including glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. In addition, thiamine diphosphate has recently been shown to have functions other than as a cofactor in response to abiotic and biotic stress in plants. Recently, several steps of the plant thiamine biosynthetic pathway have been characterized, and a mechanism of feedback regulation of thiamine biosynthesis via riboswitch has been unraveled. This review focuses on these most recent advances made in our understanding of thiamine metabolism and functions in plants. Phenotypes of plant mutants affected in thiamine biosynthesis are described, and genomics, proteomics, and metabolomics data that have increased further our knowledge of plant thiamine metabolic pathways and functions are summarized. Aspects of thiamine metabolism such as catabolism, salvage, and transport in plants are discussed. 相似文献
3.
4.
DALGLIESH CE 《Biochimica et biophysica acta》1954,14(2):295-296
5.
6.
7.
8.
Thiamine state was investigated in patients with alcoholic liver disease, patients with various non-alcoholic liver diseases, and controls using a direct technique (thiochrome assay) to measure thiamine, thiamine monophospate, and the active coenzyme thiamine pyrophosphate in whole blood after isolating the fractions by ion exchange chromatography. Overall nutrition was similar in all groups as assessed by anthropometry, and no patient had clinical evidence of thiamine deficiency. There was no significant difference among the groups in mean concentration of any form of thiamine. The scatter was much greater in patients with alcoholic liver disease but only 8.7% had biochemical thiamine deficiency (defined as a blood concentration of the active coenzyme greater than 2 SD below the mean control value). An unexpected finding was of abnormally high total thiamine concentrations (greater than 2 SD above the mean control value) in 17.4% of patients with alcoholic liver disease, the highest concentrations being found in two patients with severe alcoholic hepatitis and cirrhosis. The ratio of phosphorylated to unphosphorylated thiamine was calculated as an index of phosphorylation and, although the mean did not differ significantly among the groups, the range was greatest in alcoholic liver disease. The lowest ratios occurred in the two patients with severe alcoholic hepatitis, but neither had evidence of thiamine pyrophosphate deficiency. Contrary to studies using indirect assay techniques, these results suggest that thiamine deficiency is unusual in well nourished patients with alcoholic liver disease. The new finding of unexpectedly high thiamine concentrations in some patients may be due to abnormalities of hepatic storage or release in liver disease, particularly in severe alcoholic hepatitis. There was no convincing evidence of impaired thiamine phosphorylation in any patients with liver disease. Conclusions from studies using indirect assays on the prevalence and mechanisms of thiamine deficiency in liver diseases may not be valid. 相似文献
9.
10.
11.
12.
13.
14.
C J Gubler B L Adams B Hammond E C Yuan S M Guo M Bennion 《Journal of neurochemistry》1974,22(5):831-836
Brain levels of y-aminobutyric acid (GABA), glutamate and 2-oxoglutarate, activities of glutamate decarboxylase GABA-transaminase plus succinic semiaidehyde dehydrogenase and blood levels of glutamate and 2-oxoglutarate were determined in normal, thiamine-deprived, oxythiamine-treated and pyrithiamine-treated rats. Brain GABA levels were significantly reduced in thiamine-deprived and pyrithiamine-treated rats, but the activities of the enzymes of the GABA shunt pathway were not affected. Brain levels of glutamate were decreased and of 2-oxoglutarate increased in all three types of deficiency. This was associated with similar decreases in glutamate and increases in 2-oxoglutarate in the blood in all three deficient groups. Intraventricular injections of 2-[U-14C] oxoglutarate into the brain in these four groups of rats resulted in some significant differences in distribution of 14C in various TCA-pathway intermediates and satellite compounds in the brain. Increases in 14C-label were observed for glutamine and 2-oxoglutarate in all three deficient groups as compared to controls. The 14C content of succinate, fumarate and aspartate was decreased in the thiamine deprived and PTh-treated groups and [14C]glutamate was decreased in all three deficient groups. The 14C content of GABA was not significantly affected. 相似文献
15.
Gangolf M Czerniecki J Radermecker M Detry O Nisolle M Jouan C Martin D Chantraine F Lakaye B Wins P Grisar T Bettendorff L 《PloS one》2010,5(10):e13616
Background
Thiamine (vitamin B1) is an essential molecule for all life forms because thiamine diphosphate (ThDP) is an indispensable cofactor for oxidative energy metabolism. The less abundant thiamine monophosphate (ThMP), thiamine triphosphate (ThTP) and adenosine thiamine triphosphate (AThTP), present in many organisms, may have still unidentified physiological functions. Diseases linked to thiamine deficiency (polyneuritis, Wernicke-Korsakoff syndrome) remain frequent among alcohol abusers and other risk populations. This is the first comprehensive study on the distribution of thiamine derivatives in human biopsies, body fluids and cell lines.Methodology and Principal Findings
Thiamine derivatives were determined by HPLC. In human tissues, the total thiamine content is lower than in other animal species. ThDP is the major thiamine compound and tissue levels decrease at high age. In semen, ThDP content correlates with the concentration of spermatozoa but not with their motility. The proportion of ThTP is higher in humans than in rodents, probably because of a lower 25-kDa ThTPase activity. The expression and activity of this enzyme seems to correlate with the degree of cell differentiation. ThTP was present in nearly all brain and muscle samples and in ∼60% of other tissue samples, in particular fetal tissue and cultured cells. A low ([ThTP]+[ThMP])/([Thiamine]+[ThMP]) ratio was found in cardiovascular tissues of patients with cardiac insufficiency. AThTP was detected only sporadically in adult tissues but was found more consistently in fetal tissues and cell lines.Conclusions and Significance
The high sensitivity of humans to thiamine deficiency is probably linked to low circulating thiamine concentrations and low ThDP tissue contents. ThTP levels are relatively high in many human tissues, as a result of low expression of the 25-kDa ThTPase. Another novel finding is the presence of ThTP and AThTP in poorly differentiated fast-growing cells, suggesting a hitherto unsuspected link between these compounds and cell division or differentiation. 相似文献16.
17.
18.
19.
S Sano Y Matsuda S Miyamoto H Nakagawa 《Biochemical and biophysical research communications》1984,118(1):292-298
Two types of nucleoside diphosphatase were found in rat brain. One (Type L) had similar properties to those of the liver microsomal enzyme with respect to its isoelectric point, substrate specificity, Km values, optimum pH, activation by ATP and molecular weight. The other (Type B), which separated into multiple forms on isoelectric focusing, had lower Km values and a smaller molecular weight than the Type L enzyme, and was inhibited by ATP. The Type B enzyme catalyzed the hydrolysis of thiamine pyrophosphate as well as those of various nucleoside diphosphates at physiological pH, while Type L showed only nucleoside diphosphatase activity at neutral pH. These findings suggest that the two enzymes play different physiological roles in the brain. 相似文献