首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The DNA nucleotide sequence of the valS gene encoding valyl-tRNA synthetase of Escherichia coli has been determined. The deduced primary structure of valyl-tRNA synthetase was compared to the primary sequences of the known aminoacyl-tRNA synthetases of yeast and bacteria. Significant homology was detected between valyl-tRNA synthetase of E. coli and other known branched-chain aminoacyl-tRNA synthetases. In pairwise comparisons the highest level of homology was detected between the homologous valyl-tRNA synthetases of yeast and E. coli, with an observed 41% direct identity overall. Comparisons between the valyl- and isoleucyl-tRNA synthetases of E. coli yielded the highest level of homology detected between heterologous enzymes (19.2% direct identity overall). An alignment is presented between the three branched-chain aminoacyl-tRNA synthetases (valyl- and isoleucyl-tRNA synthetases of E. coli and yeast mitochondrial leucyl-tRNA synthetase) illustrating the close relatedness of these enzymes. These results give credence to the supposition that the branched-chain aminoacyl-tRNA synthetases along with methionyl-tRNA synthetase form a family of genes within the aminoacyl-tRNA synthetases that evolved from a common ancestral progenitor gene.  相似文献   

2.
M Lazard  M Mirande  J P Waller 《Biochemistry》1985,24(19):5099-5106
Native isoleucyl-tRNA synthetase and a structurally modified form of methionyl-tRNA synthetase were purified to homogeneity following trypsinolysis of the high molecular weight complex from sheep liver containing eight aminoacyl-tRNA synthetases. The correspondence between purified isoleucyl-tRNA synthetase and the previously unassigned polypeptide component of Mr 139 000 was established. It is shown that dissociation of this enzyme from the complex has no discernible effect on its kinetic parameters. Both isoleucyl- and methionyl-tRNA synthetases contain one zinc ion per polypeptide chain. In both cases, removal of the metal ion by chelating agents leads to an inactive apoenzyme. As the trypsin-modified methionyl-tRNA synthetase has lost the ability to associate with other components of the complex [Mirande, M., Kellermann, O., & Waller, J. P. (1982) J. Biol. Chem. 257, 11049-11055], the zinc ion is unlikely to be involved in complex formation. While native purified isoleucyl-tRNA synthetase displays hydrophobic properties, trypsin-modified methionyl-tRNA synthetase does not. It is suggested that the assembly of the amino-acyl-tRNA synthetase complex is mediated by hydrophobic domains present in these enzymes.  相似文献   

3.
The methionyl-transfer ribonucleic acid (tRNA) synthetase of Escherichia coli K-12 eductants carrying P2-mediated deletions in the region of the structural gene of this enzyme was investigated. No structural alteration of this enzyme was observed in three eductants examined. These were isolated from strain AB311, which had a threefold higher level of methionyl-tRNA synthetase than most haploid strains examined. In two of the three eductants studied, the level of this enzyme was twofold higher than in their parental strain regardless of growth conditions used. In contrast, isoleucyl-, leucyl-, and valyl-tRNA synthetases had similar levels in all strains examined. Like valyl-tRNA synthetase, but to a lesser extent, methionyl-tRNA synthetase was subject to metabolic regulation. Coupling between the level of methionyl-tRNA synthetase and growth rate was observed even in strains that had an enhanced level of methionyl-tRNA synthetase. These results suggest that the formation of methionyl-tRNA synthetase remains subject to metabolic regulation even when the repression-like mechanism that controls the synthesis of this enzyme is altered. In addition, we report that in the merodiploid strain EM20031, which was haploid for the valyl-tRNA synthetase structural gene and diploid for the structural genes of methionyl-tRNA synthetase and D-serine deaminase, the levels of these latter two enzymes varied to a minor yet significant extent with the phosphate concentration of the culture medium; under the same conditions, the level of valyl-tRNA synthetase remained unchanged. Moreover, no variation of the levels of these three enzymes in response to phosphate was observed in the haploid strain HfrH. These results indicate that in the merodiploid strain EM20031, which carries the episome F32, the number of episomes per chromosome varies to some extent according to the phosphate concentration of the culture medium.  相似文献   

4.
The kinetics of derepression of valyl-, isoleucyl-, and leucyl-transfer ribonucleic acid (tRNA) synthetase formation was examined during valine-, isoleucine-, and leucine-limited growth. When valine was limiting growth, valyl-tRNA synthetase formation was maximally derepressed within 5 min, whereas the rates of synthesis of isoleucyl-, and leucyl-tRNA synthetases were unchanged. Isoleucine-restricted growth caused a maximal derepression of isoleucyl-tRNA synthetase formation in 5 min and derepression of valyl-tRNA synthetase formation in 15 min with no effect on leucyl-tRNA synthetase formation. When leucine was limiting growth, leucyl-tRNA synthetase formation was immediately derepressed, whereas valyl- and isoleucyl-tRNA synthetase formation was unaffected by manipulation of the leucine supply to the cells. These results support our previous findings that valyl-tRNA synthetase formation is subject to multivalent repression control by both isoleucine and valine. In contrast, repression control of iso-leucyl- and leucyl-tRNA synthetase formation is specifically mediated by the supply of the cognate amino acid.  相似文献   

5.
We report the DNA sequence of the valS gene from Bacillus stearothermophilus and the predicted amino acid sequence of the valyl-tRNA synthetase encoded by the gene. The predicted primary structure is for a protein of 880 amino acids with a molecular mass of 102,036. The molecular mass and amino acid composition of the expressed enzyme are in close agreement with those values deduced from the DNA sequence. Comparison of the predicted protein sequence with known protein sequences revealed a considerable homology with the isoleucyl-tRNA synthetase of Escherichia coli. The two enzymes are identical in some 20-25% of their amino acid residues, and the homology is distributed approximately evenly from N-terminus to C-terminus. There are several regions which are highly conservative between the valyl- and isoleucyl-tRNA synthetases. In one of these regions, 15 of 20 amino acids are identical, and in another, 10 of 14 are identical. The valyl-tRNA synthetase also contains a region HLGH (His-Leu-Gly-His) near its N-terminus equivalent to the consensus HIGH (His-Ile-Gly-His) sequence known to participate in the binding of ATP in the tyrosyl-tRNA synthetase. This is the first example of extensive homology found between two different aminoacyl-tRNA synthetases.  相似文献   

6.
Chloroplastic and cytoplasmic valyl- and leucyl-tRNA synthetases purified from Euglena gracilis show a monomeric structure. The molecular weights of the two valyl-tRNA synthetases are identical (126 000) while those of the leucyl-tRNA synthetases are different (100 000 for the chloroplastic and 116 000 for the cytoplasmic enzyme). The tryptic maps and the amino acid compositions reveal differences between the chloroplastic valyl- and leucyl-tRNA synthetases and their cytoplasmic homologues. These results suggest that a chloroplastic aminoacyl-tRNA synthetase and its cytoplasmic counterpart are coded for by distinct genes.  相似文献   

7.
The VASI gene encoding the valyl-tRNA synthetase from yeast was isolated and sequenced. The gene-derived amino acid sequence of yeast valyl-tRNA synthetase was found to be 23% homologous to the Escherichia coli isoleucyl-tRNA synthetase. This is the highest level of homology reported so far between two distinct aminoacyl-tRNA synthetases and is indicative of an evolutionary relationship between these two molecules. Within these homologous sequences, two functional regions could be recognized: the HIGH region which forms part of the binding site of ATP and the KMSKS region which is recognized as the consensus sequence for the binding of the 3'-end of tRNA (Hountondji, C., Dessen, Ph., and Blanquet, S. (1986) Biochemie (Paris) 68, 1071-1078). Secondary structure predictions as well as the presence of both HIGH and KMSKS regions, delineating the nucleotide-binding domain and the COOH-terminal helical domain in aminoacyl-tRNA synthetases of known three-dimensional structure, suggest that the yeast valyl-tRNA synthetase polypeptide chain can be folded into three domains: an NH2-terminal alpha-helical region followed by a nucleotide-binding topology and a COOH-terminal domain composed of alpha-helices which probably carries major sites in tRNA binding.  相似文献   

8.
As aminoacyl adenylate surrogates, a series of methionyl and isoleucyl phenolic analogues containing bioisosteric linkers mimicking ribose have been investigated. Inhibition of synthesized compounds to the aminoacylation reaction by the corresponding Escherichia coli methionyl-tRNA and isoleucyl-tRNA synthetases indicated that 18 was found to be a potent inhibitor of isoleucyl-tRNA synthetase. A molecular modeling study demonstrated that in 18, isovanillate and hydroxamate served as proper surrogates for adenine and ribose in isoleucyl adenylate, respectively.  相似文献   

9.
Comprehensive steady-state and transient kinetic studies of the synthetic and editing activities of Escherichia coli leucyl-tRNA synthetase (LeuRS) demonstrate that the enzyme depends almost entirely on post-transfer editing to endow the cell with specificity against incorporation of norvaline into protein. Among the three class I tRNA synthetases possessing a dedicated post-transfer editing domain (connective peptide 1; CP1 domain), LeuRS resembles valyl-tRNA synthetase in its reliance on post-transfer editing, whereas isoleucyl-tRNA synthetase differs in retaining a distinct tRNA-dependent synthetic site pre-transfer editing activity to clear noncognate amino acids before misacylation. Further characterization of the post-transfer editing activity in LeuRS by single-turnover kinetics demonstrates that the rate-limiting step is dissociation of deacylated tRNA and/or amino acid product and highlights the critical role of a conserved aspartate residue in mediating the first-order hydrolytic steps on the enzyme. Parallel analyses of adenylate and aminoacyl-tRNA formation reactions by wild-type and mutant LeuRS demonstrate that the efficiency of post-transfer editing is controlled by kinetic partitioning between hydrolysis and dissociation of misacylated tRNA and shows that trans editing after rebinding is a competent kinetic pathway. Together with prior analyses of isoleucyl-tRNA synthetase and valyl-tRNA synthetase, these experiments provide the basis for a comprehensive model of editing by class I tRNA synthetases, in which kinetic partitioning plays an essential role at both pre-transfer and post-transfer steps.  相似文献   

10.
The size distribution of methionyl-tRNA synthetase in extracts from sheep liver is compared to that of lysyl-tRNA, isoleucyl-tRNA, leucyl-tRNA and seryl-tRNA synthetases by gel filtration on Biogel A-5m. Extraction conditions are described which lead to isolation of methionyl-tRNA synthetase exclusively in the form of complexes of molecular weight close to 10(6). Limited trypsin treatment of these aggregates releases a fully active low-molecular-weight form of methionyl-tRNA synthetase which was purified to a specific activity of 674 units/mg at 25 degrees C with a yield of 40%. The homogeneous enzyme appears to be undistinguishable from the corresponding enzyme derived from sheep lactating mammary gland, as judged by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and by titration with antibodies raised against the enzyme purified from liver.  相似文献   

11.
Evidence is presented that the editing mechanisms of aminoacyl-tRNA synthetase operate by two alternative pathways: pre-transfer, by hydrolysis of the non-cognate aminoacyl adenylate; post-transfer, by hydrolysis of the mischarged tRNA. The methionyl-tRNA synthetases from Escherichia coli and Bacillus stearothermophilus and isoleucyl-tRNA synthetase from E. coli, for example, are shown to reject misactivated homocysteine rapidly by the pre-transfer route. A novel feature of this reaction is that homocysteine thiolactone is formed by the facile cyclisation of the homocysteinyl adenylate. Valyl-tRNA synthetases, on the other hand, reject the more readily activated non-cognate amino acids by primarily the post-transfer route. The features governing the choice of pathway are discussed.  相似文献   

12.
The ILS1 gene encoding for cytoplasmic isoleucyl-tRNA synthetase from Saccharomyces cerevisiae was subcloned from a 5.4-kb insert of the shuttle vector YEp13 to M13mp8 and M13mp9. Nucleotide sequence analysis of a 4.3-kb BamHI-HpaI fragment revealed a single open reading frame from which we deduced the amino-acid sequence of the enzyme. Independently obtained amino-acid sequence information from ten tryptic peptides of the purified enzyme confirmed the gene-derived structure. The enzyme is comprised of 1073 amino-acids consistent with earlier determinations of its molecular mass. The codon usage of ILS1 is typical of abundant yeast proteins. A significant homology to E. coli isoleucyl- and valyl-tRNA synthetases as well as to yeast valyl-tRNA synthetase was detected. The characteristic amino-acid residues of the aminoacyl-adenylate site and of the potential binding site of the 3'-end of tRNA found in other synthetases are present in the structure.  相似文献   

13.
Internuclear distances obtained from transferred nuclear Overhauser effects were used in combination with distance geometry calculations to define the E. coli isoleucyl-tRNA synthetase bound conformation of Mg(alpha, beta-methylene)ATP both in the absence and in the presence of the cognate and noncognate amino acids L-isoleucine and L-valine, respectively. A single nucleotide structure having an anti adenine-ribose glycosidic torsional angle of -114 degrees was found to satisfy the experimental distance constraints. The nearly identical anti glycosidic torsional angles observed in all three complexes demonstrate that the conformation of the adenosine moiety of the enzyme-bound nucleotide is not sensitive to the presence or to the nature of the amino acid bound at the aminoacyladenylate site. In addition, the acceptable range of Mg(alpha, beta-methylene)ATP conformations bound to the E. coli isoleucyl-tRNA synthetase was found to be nearly identical to that previously determined for the E. coli methionyl-tRNA synthetase (Williams and Rosevear (1991) J. Biol. Chem. 266, 2089-2098). Thus, the predicted structural homology between the isoleucyl- and methionyl-tRNA synthetases, both members of the same class of synthetases on the basis of common consensus sequences, is further supported by consensus enzyme-bound nucleotide conformations.  相似文献   

14.
A Théobald  D Kern  R Giegé 《Biochimie》1988,70(2):205-213
Essential lysine residues were sought in the catalytic site of baker's yeast aspartyl-tRNA synthetase (an alpha 2 dimer of Mr 125,000) using affinity labeling methods and periodate-oxidized adenosine, ATP, and tRNA(Asp). It is shown that the number of periodate-oxidized derivatives which can be bound to the synthetase via Schiff's base formation with epsilon-NH2 groups of lysine residues exceeds the stoichiometry of specific substrate binding. Furthermore, it is found that the enzymatic activities are not completely abolished, even for high incorporation levels of the modified substrates. The tRNA(Asp) aminoacylation reaction is more sensitive to labeling than is the ATP-PPi exchange one; for enzyme preparations modified with oxidized adenosine or ATP this activity remains unaltered. These results demonstrate the absence of a specific lysine residue directly involved in the catalytic activities of yeast aspartyl-tRNA synthetase. Comparative labeling experiments with oxidized ATP were run with several other aminoacyl-tRNA synthetases. Residual ATP-PPi exchange and tRNA aminoacylation activities measured in each case on the modified synthetases reveal different behaviors of these enzymes when compared to that of aspartyl-tRNA synthetase. When tested under identical experimental conditions, pure isoleucyl-, methionyl-, threonyl- and valyl-tRNA synthetases from E. coli can be completely inactivated for their catalytic activities; for E. coli alanyl-tRNA synthetase only the tRNA charging activity is affected, whereas yeast valyl-tRNA synthetase is only partly inactivated. The structural significance of these experiments and the occurrence of essential lysine residues in aminoacyl-tRNA synthetases are discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The ileS gene encoding the isoleucyl-tRNA synthetase of the thermophilic archaebacterium Methanobacterium thermoautotrophicum Marburg was isolated and sequenced. ileS was closely flanked by an unknown open reading frame and by purL and thus is arranged differently from the organizations observed in several eubacteria or in Saccharomyces cerevisiae. The deduced amino acid sequence of isoleucyl-tRNA synthetase was compared with primary sequences of isoleucyl-, valyl-, leucyl-, and methionyl-tRNA synthetases from eubacteria and yeast. The archaebacterial enzyme fitted well into this group of enzymes. It contained the two short consensus sequences observed in class I aminoacyl-tRNA synthetases as well as regions of homology with enzymes of the isoleucine family. Comparison between the isoleucyl-tRNA synthetases of M. thermoautotrophicum yielded 36% amino acid identity with the yeast enzyme and 32% identity with the corresponding enzyme from Escherichia coli. The ileS gene of the pseudomonic acid-resistant M. thermoautotrophicum mutant MBT10 was also sequenced. The mutant enzyme had undergone a glycine to aspartic acid transition at position 590, in a conserved region comprising the KMSKS consensus sequence. The inhibition constants of pseudomonic acid, KiIle and KiATP, for the mutant enzyme were 10-fold higher than those determined for the wild-type enzyme. Both the mutant and the wild-type ileS gene were expressed in E. coli, and their products displayed the expected difference in sensitivity toward pseudomonic acid.  相似文献   

16.
Yeast-mitochondrial methionyl-tRNA synthetase was purified 1060-fold from mitochondrial matrix proteins of Saccharomyces cerevisiae using a four-step procedure based on affinity chromatography (heparin-Ultrogel, tRNA(Met)-Sepharose, Agarose-hexyl-AMP) to yield to a single polypeptide of high specific activity (1800 U/mg). Like the cytoplasmic methionyl-tRNA synthetase (Mr 85,000), the mitochondrial isoenzyme is a monomer, but of significantly smaller polypeptide size (Mr 65,000). In contrast, the corresponding enzyme of Escherichia coli is a dimer (Mr 152,000) made up of identical subunits. The measured affinity constants of the purified mitochondrial enzyme for methionine and tRNA(Met) are similar to those of the cytoplasmic isoenzyme. However, the two yeast enzymes exhibit clearly different patterns of aminoacylation of heterologous yeast and E. coli tRNA(Met). Furthermore, polyclonal antibodies raised against the two proteins did not show any cross-reactivity by inhibition of enzymatic activity and by the highly sensitive immunoblotting technique, indicating that the two enzymes share little, if any, common antigenic determinants. Taken together, our results further support the belief that the yeast mitochondrial and cytoplasmic methionyl-tRNA synthetases are different proteins coded for by two distinct nuclear genes. Like the yeast cytoplasmic aminoacyl-tRNA synthetases, the mitochondrial enzymes displayed affinity for immobilized heparin. This distinguishes them from the corresponding enzymes of E. coli. Such an unexpected property of the mitochondrial enzymes suggests that they have acquired during evolution a domain for binding to negatively charged cellular components.  相似文献   

17.
Methionyl-tRNA synthetase occurs free and as high-molecular-weight multi-enzyme complexes in rat liver. The free form is purified to near homogeneity by conventional column chromatography and affinity chromatography on tRNA-Sepharose. The native molecular weight of free methionyl-tRNA synthetase is 64 500, based on its sedimentation coefficient of 4.5 S and Stokes radius of 33 A. The free methionyl-tRNA synthetase apparently belongs to alpha-type subunit structure, since the subunit molecular weight is 68 000, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Methionyl-tRNA synthetase is dissociated from the high-molecular-weight synthetase complex by controlled trypsinization, according to Kellermann, O., Viel, C. and Waller, J.P. (Eur. J. Biochem. 88 (1978) 197-204). The dissociated, free methionyl-tRNA synthetase is subsequently purified to near homogeneity. The subunit structure of dissociated methionyl-tRNA synthetase is identical to that of endogenous free methionyl-tRNA synthetase. Anti-serum raised against Mr 104 000 protein in the synthetase complex, specifically inhibited methionyl-tRNA synthetase in both the free and the high-molecular-weight forms to the same extent. These results suggest that the occurrence of multiple forms of methionyl-tRNA synthetases in mammalian cells may, in part, be due to proteolytic cleavage.  相似文献   

18.
Distribution of the aminoacyl-tRNA synthetase activity has been studied in the normal rabbit liver cells and in the model of protein synthesis damage, i.e. under experimental myocardial infarction (EMI). The activity of a number of aminoacyl-tRNA synthetases in postmitochondrial and postribosomal extracts from rabbit liver homogenate has been determined to increase 12 h after EMI. Gel filtration of the postribosomal extract on Sepharose 6B shows that the activity of aminoacyl-tRNA synthetases is distributed among the fractions with Mr 1.82 x 10(6), 0.84 x 10(6) and 0.12 = 0.35 x 10(6). The first two fractions (high-molecular-weight aminoacyl-tRNA synthetase complexes) contain arginyl-, glutamyl-, isoleucyl-, leucyl-, lysyl- and valyl-tRNA synthetases, whereas the low-molecular-weight fraction contains alanyl-, arginyl-, glycyl-, phenylalanyl-, seryl-, threonyl-, tryptophanyl- and tyrosyl-tRNA synthetases. In a case of EMI all the aminoacyl-tRNA synthetases translocate from the complexes with Mr 1.82 x 10(6) into the complexes with Mr 0.84 x 10(6), what provided evidence for the possibility to regulate protein synthesis by changes in compartmentalization of aminoacyl-tRNA synthetases.  相似文献   

19.
The ability of cAMP to inhibit isoleucyl-tRNA synthetase (IRS) formation has been demonstrated in wild type K-12 Escherichia coli and two adenyl-cyclase (cya) mutants. cAMP appeared not to have any effect on either the valyl- or arginyl-tRNA synthetase (VRS and ARS respectively). Addition of cAMP led to a reduction in rate of IRS synthesis but not VRS or ARS. Furthermore, derepression of IRS and VRS by isoleucine limitation was completely prevented by cAMP.Abbreviations IRS isoleucyl-tRNA synthetase - VRS valyl-tRNA synthetase - ARS arginyl-tRNA synthetase - cAMP cyclic adenosine-3,5-monophosphate - Cya adenyl cyclase Gene - CRP cAMP receptor protein - O.D. optical density  相似文献   

20.
Cultured Chinese hamster ovary cells were subjected to amino acid restriction to examine its effects on the level of expression of the nine aminoacyl-tRNA synthetase components of the multienzyme complex which was previously characterized (Mirande, M., Le Corre, D., and Waller, J.-P. (1985) Eur. J. Biochem. 147, 281-289). Lowering the methionine concentration in the medium from 100 to 1 microM led to growth arrest, rapid deacylation of tRNAMet, and progressive 2-fold elevation of the methionyl-tRNA synthetase level, as assessed by specific activity measurements and immunotitration. The levels of the other eight aminoacyl-tRNA synthetases were not affected. Total methionine deprivation led to the additional derepression of the leucyl- and isoleucyl-tRNA synthetase components, whereas the corresponding tRNAs remained fully acylated. These pleiotropic responses to total methionine restriction were abolished in the presence of 2 mM methioninol, suggesting that amino acid transport systems may play a role in the regulation of aminoacyl-tRNA synthetase expression. The effect of total deprivation of arginine, glutamine, isoleucine, leucine, lysine, or proline from the culture medium on the level of expression of the corresponding aminoacyl-tRNA synthetases was also examined. In all cases, no elevation of the level of the corresponding synthetase was observed. The behavior of methionyl-tRNA synthetase from Chinese hamster ovary cells displaying a 2-fold increased level of the enzyme due to methionine restriction was examined in detail. Failure to detect a free form of the enzyme by gel filtration, as well as the finding that the isolated complex displayed twice the amount of methionyl-tRNA synthetase relative to the other components, indicates that this multienzyme structure can accommodate at least one additional copy of one of its components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号