首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is plausible that the nutritional quality of C3 plants will decline more under elevated atmospheric CO2 than will the nutritional quality of C4 plants, causing herbivorous insects to increase their feeding on C3 plants relative to C4 plants. We tested this hypothesis with a C3 and C4 grass and two caterpillar species with different diet breadths. Lolium multiflorum (C3) and Bouteloua curtipendula (C4) were grown in outdoor open top chambers at ambient (370 ppm) or elevated (740 ppm) CO2. Bioassays compared the performance and digestive efficiencies of Pseudaletia unipuncta (a grass-specialist noctuid) and Spodoptera frugiperda (a generalist noctuid). As expected, the nutritional quality of L. multiflorum changed to a greater extent than did that of B. curtipendula when grown in elevated CO2; levels of protein (considered growth limiting) declined in the C3 grass, while levels of carbohydrates (sugar, starch and fructan) increased. However, neither insect species increased its feeding rate on the C3 grass to compensate for its lower nutritional quality when grown in an elevated CO2 atmosphere. Consumption rates of P. unipuncta and S. frugiperda were higher on the C3 grass than the C4 grass, the opposite of the result expected for a compensatory response to the lower nutritional quality of the C4 grass. Although our results do not support the hypothesis that grass-specialist insects compensate for lower nutritional quality by increasing their consumption rates more than do generalist insects, the performance of the specialist was greater than that of the generalist on each grass species and at both CO2 levels. Mechanisms other than compensatory feeding, such as increased nutrient assimilation efficiency, appear to determine the relative performance of these herbivores. Our results also provide further evidence against the hypothesis that C4 grasses would be avoided by insect herbivores because a large fraction of their nutrients is unavailable to herbivores. Instead, our results are consistent with the hypothesis that C4 grasses are poorer host plants primarily because of their lower nutrient levels, higher fiber levels, and greater toughness.  相似文献   

2.
The Argentine hake, Merluccius hubbsi, is one of the most important fishing species in the Argentine Sea due to its great abundance and high-quality meat. The study of the nutritional condition is widely used to determine the physiological state of the fish larvae and to estimate their survival possibilities. The larval nutritional condition reflects the environmental conditions to which they have been exposed and represents a useful instrument to determine favourable nursery areas. It also provides tools for the comprehensive management of a population subjected to fishing exploitation. This study aimed to determine potential differences in the nutritional condition of M. hubbsi larvae from the two fishing stocks (Northern and Southern) of the species. The authors assessed the nutritional condition of larvae captured during the 2012 main reproductive peak in the nursery areas of each population. Two different methodologies were applied: a morphometrical approach, by recording five morphometric variables, and a biochemical technique, employing the RNA/DNA index (RDs) and its derived index of growth performance. The morphometrical indexes did not show differences in the larval condition between both stocks. Nonetheless, the RDs index did detect differences in the nutritional condition of larvae from different stocks. The RDs index of larvae in pre-flexion and flexion stages showed significant differences between stocks, indicating that these stages are more susceptible to starvation. The results suggest that the biochemical indexes prove to be more sensitive than the morphometric indexes to detect slight differences in hake larvae nutritional condition. The scope and limitations of these techniques for the analysis of the nutritional condition of larvae are discussed.  相似文献   

3.
The cotton bollworm Helicoverpa armigera is one of the most devastating insect pests. A set of protease enzymes allows this species to feed on different host plant species. Control measures in agriculture often involve the application of the pathogenic bacterium Bacillus thuringiensis subsp. kurstaki (Btk). In the present study, the effects of sublethal Btk doses are evaluated with respect to the food utilization indices and proteolytic activities of Helicoverpa armigera. Accordingly, the H. armigera larvae are fed with artificial diet containing sublethal Btk doses (LC5, LC10, LC15, LC20 and LC25) and a Btk‐free diet as control. All but one of the food utilization indices we measured is observed to increase significantly with increasing Btk doses. By contrast, the specific activity of total protease, chymotrypsin and elastase enzymes decrease significantly with an increasing Btk concentration. We conclude that Btk was not toxic to H. armigera larvae and any damage that it causes can be compensated for by H. armigera larvae via various mechanisms. In conclusion, increased nutritional indices in the larvae fed with Btk diet represent an important issue that needs to be considered to avoid the pest establishing Bt resistant populations. Meanwhile, the lack of effect of Btk sublethal concentrations on trypsin enzyme specific activity can bolster this challenge.  相似文献   

4.
An analysis of intake and utilization of an artificial medium by larvae of the soybean looper, Pseudoplusia includens Walker, Lepidoptera: Noctuidae, was performed using 4 methods: standard gravimetric, chromic oxide, Calco Oil Red, and 14C-glucose. Each method was used in conjunction with standard gravimetry. The relative merits of the indirect methods were analyzed in terms of precision and accuracy for ECI and ECD estimation, cost, and overall versatility. Only the gravimetric method combined ca. 80% precision in ECI and ECD estimation with low cost and maximum versatility. Calco Oil Red at 0.1% w/v was detrimental to the larvae. Cr2O3 caused reduced intake but conversion was increased resulting in normal development and growth of larvae. The radioisotopic method had the advantage of providing a direct means of measuring expired CO2. The need to operate under a totally enclosed system, however, poses some serious difficulties in the use of radioisotopes. There seems to be little advantage in any of the proposed indirect methods, except if there are unusual difficulties in separating the excreta from the medium.Supported in part by the Brazilian Programa de Ensino Agricola Superior (PEAS/Michigan State University Contract); by NSF and EPA through grant (NSF GB-37418) to the University of California; and USDA-SEA grant 616-15-68. The findings and opinions expressed herein are those of the authors and not necessarily those of the sponsoring agencies or institutions.  相似文献   

5.
Multiple‐choice assays were conducted in the laboratory to examine the effect of CO2‐induced changes in leaf quality on growth, nutritional indices and preferences of the gypsy moth (Lymantria dispar) larvae. The tested tree species, one‐year‐old aspen (Populus pseudo‐simonii Kitag.), two‐year‐old birch (Betula platyphylla) and three‐year‐old oak (Quercus mongolica Fisch.) were transplanted to open‐top chambers at ambient or elevated CO2 (650 ppm) concentrations in May 2005. The present study was conducted in 2006. Leaves from the upper and lower crowns of each tree species were sampled and analysed, respectively. On both measurement dates (24 July 2006 and 16 August 2006), there were significant CO2 effects on levels of condensed tannin, starch, nitrogen and C : N ratio. But only on the latter date, were the concentrations of total phenolics, soluble sugar, carbon and total non‐structural carbohydrates significantly affected by elevated CO2. Leaf dry weight content and specific leaf weight were almost completely unaffected by CO2 enrichment. Gypsy moth larvae exhibited a clear selectivity for tested leaf types (leaves from the upper and lower crowns of each tree species) even in their early instar stage, with the upper leaves of P. pseudo‐simonii being the most preferable and the lower leaves of Q. mongolica being the least preferred. The changes in leaf quality significantly reduced larval growth and altered partial indices of insect performance (e.g., relative growth rate and relative consumption rate). However, at least in this short‐term choice feeding assay (13 days), the CO2‐induced changes in leaf quality had no significant effects on food preference behaviour of the gypsy moth larvae, neither within the limited range of host plants nor within the leaves at different canopy heights of the same tree species.  相似文献   

6.
A large proportion of gypsy moths (Lymantria dispar (L.)) are likely to experience multiple species diets in the field due to natural wandering and host switching which occurs with these insects. Nutritional indices in fourth and fifth instar gypsy moth larvae were studied in the field for insects that were switched to a second host species when they were fourth instars. The tree species used as hosts were northern pin oak (Quercus ellipsoidalis E. J. Hill), white oak (Q. alba L.), big-tooth aspen (Populus grandidentata Michx.), and trembling aspen (P. tremuloides Michx.). Conclusions of this study include: 1) Insects which fed before the host switch on northern pin oak performed better after the host switch than did insects with other types of early dietary experience. While the northern pin oak-started insects had very low relative food consumption rates on their second host species immediately after the switch, one instar later they had the highest ranked consumption rates. During both instars they had the second highest efficiencies of converting ingested and digested food to body mass. High food consumption rates and relatively high efficiency of food conversion helped these insects to obtain the highest ranked mean relative growth rates in the fifth instar compared to the relative growth rates obtained by insects from any of the other first host species. 2) Among the four host species examined, a second host of trembling aspen was most advantageous for the insects. Feeding on this species after the switch led to higher larval weights and higher relative growth rates for insects than did any of the other second host species. The insects on trembling aspen attained excellent growth despite only mediocre to low food conversion efficiencies. The low efficiencies were offset by high relative food consumption rates. 3) Low food consumption rates often tend to be paired with high efficiency of conversion and vice versa. 4) There is no discernable tendency for the first plant species eaten to cause long-term inductions which affect the ability of gypsy moths to utilize subsequent host plants. Insects did not tend to consume more, grow faster, or be more efficient if their second host plant was either the same as their rearing plant or congeneric to it. Methods are delineated which allow values of nutritional indices to be obtained for insects on intact host plants under field conditions. These methods are useful for the purpose of answering questions about the relative effects that different diet treatments have on insect response.  相似文献   

7.
To determine how nutritional indices for insects fed leaves are affected by the experimental conditions and the physiology of the plant material, we used larvae of the buckmoth, Hemileuca lucina Hy. Ed. (Saturniidae) and their hostplant Spiraea latifolia Ait. Bork (Rosaceae). Under experimental conditions identical to those used to determine larval nutritional indices, we found that the age of leaves (new versus mature) significantly affected their metabolism and water loss, but simulated herbivory did not directly affect leaf metabolism. Over a 6-day test, nitrogen concentration showed an initial increase followed by a gradual decline, and was higher in new leaves compared to mature leaves. New leaves increased in protein concentration and then gradually returned to the initial level, whereas mature leaves changed little over the 6-day test. These changes in percent nitrogen and protein may largely reflect the disproportional changes in non-nitrogenous materials. Solitary and grouped larvae had similar growth rates on new leaves, but they differed on mature leaves. Deliberate manipulation of larvae during the course of an experiment significantly reduced relative growth rates by increasing duration of the stadium rather than by decreasing biomass gained. Two methods of estimating larval gut contents at mid-stadium were compared: weight of frass produced and weight of digestive tract and contents. After the end of the 4-day test period used to determine nutritional indices, the digestive tracts with food accounted for 10.8% of the larval dry weight. Larval frass produced in 24 h after the end of the test period comprised 9.3% of the larval dry weight. Correction factors for plant metabolism changed nutritional indices by 1 to 8%, while those for larval gut contents altered indices by 2 to 15%.  相似文献   

8.
An indirect method using chromic oxide (Cr2O3) for measuring percentage utilization and consumption of dry matter in diets by two species of phytophagous insects is described and results are compared with those of the classical gravimetric method. Fifth-instar larvae of the two-striped grasshopper, Melanoplus bivittatus Say, and fifth-instar larvae of the pale western cutworm, Agrotis orthogonia Morr., were fed individually. Diets were prepared from lyophilized tissues of the wheat plant to which about 4 per cent of the inert index compound, chromic oxide, was added. Three diets varying widely in nutritive value were compared for both utilization and consumption. When residual food and excreta could be quantitatively recovered, measurements by the two methods generally agreed. However, the chromic oxide procedure for measuring utilization gives more reliable results than did the gravimetric method, is convenient, and can be used even when quantitative recovery of excreta is not possible.  相似文献   

9.
The sensitivity of Spodoptera littoralis second and fourth instar larvae to the heavy metals cadmium (Cd) and lead (Pb) was investigated under laboratory conditions. Both Cd and Pb, even, at very low concentrations, had relatively high toxic effects on S. littoralis larvae. Cd was more toxic to S. littoralis larvae than Pb. In addition, the mean percentage feeding deterrence (FDI%) of Cd and Pb was concentration-dependent. The nutritional indices (consumption index, growth rate, efficiency of converted ingested and digested food, and approximate digestibility) of S. littoralis second and fourth instar larvae were more affected in Cd-treatments compared with those of Pb-treatments. Therefore, the presence of such heavy metals in the environment would exert an adverse impact on S. littoralis larvae and their development.  相似文献   

10.
A possible method for detection of wood-boring insects in wood is the measurement of oxygen consumption. In order to develop such a method, several parameters have to be determined first. The most important one is to determine the respiration rate of possible pest species. To obtain the data for establishing the method mentioned above, the respiration rates of the following species were determined: the old house borer, Hylotrupes bajulus, common furniture beetle, Anobium punctatum and subterranean termite, Reticulitermes lucifugus. We compared the O2 consumption between different species as well as between adults and larvae of one species in different environmental conditions (temperature, day/night and light/dark regime). The most intensive respiration rates were found for the larvae of Hylotrupes bajulus (4.0 ml/g h O2) and Anobium punctatum (3.9 ml/g h O2). Less intensive breathing was measured by Reticulitermes lucifugus (workers 2.9 ml/g h, nymphs 2.6 ml/g.h and soldiers 2.0 ml/g h O2). These results indicate that it is possible to detect the presence of wood-boring insects respirometrically. To detect the presence of an individual insect in the wood by means of respirometry, the sensitivity of the instrument for oxygen measurement at the optimal conditions must be around 0.2 ml/h.  相似文献   

11.
Silicon (Si) has been reported to enhance plant resistance against biotic and abiotic stressors and also benefit plant growth. These effects are more pronounced in grass species, especially with soil‐applied Si. This study investigated the effects of Si application on rice resistance to Spodoptera frugiperda development and plant vegetative growth. Effects of Si on rice were assessed via soil and foliar applications and compared with untreated plants (control). Si was soil‐ and foliar‐applied as 1% silicic acid solution at a dosage equivalent to 1.4 t Si per ha. After application, leaf material was collected from Si‐treated and untreated plants and placed in Petri dishes with individual S. frugiperda neonate larvae, where development was followed to adult emergence and biological parameters recorded. Vegetative growth parameters recorded in rice plants were the height, chlorophyll content, fresh and dry weights of shoots, and shoot Si content. No effects of Si application were observed on the durations of larval and pupal stages, larval and pupal survival, and sex ratio of S. frugiperda. Insects fed leaves from Si‐treated plants exhibited lower leaf consumption, larval and pupal weights, longevity of males and females, number of eggs, and egg viability. The negative effects were correlated with higher rice Si content. Si application to rice increased plant height, chlorophyll content and dry weight. Our study demonstrates that foliar‐applied Si is as efficient as soil‐applied Si in negatively affecting S. frugiperda development and providing beneficial effects on rice plant growth.  相似文献   

12.
The objective of this study was to determine how increasing atmospheric CO2 change plant tissue quality in four native grassland grass species (Agrostis stolonifera, Anthoxanthum odoratum, Festuca rubra, Poa pratensis) which are all larval food‐plants of Coenonympha pamphilus (Lepidoptera, Satyridae). We assessed the effect of these changes on the performance and larval food‐plant preference of C. pamphilus in a greenhouse experiment. Furthermore, we tested the interactive effects of elevated CO2 and soil nutritional availability in F. rubra and its effect an larval development of C. pamphilus. In general, elevated CO2 decreased leaf water concentration, nitrogen concentration and specific leaf area (SLA), while leaf starch concentration was increased in all grass species. A species‐specific reaction to elevated CO2 was only found for foliar starch concentration. P. pratensis did not increase its starch concentration under elevated CO2 conditions, whereas the other three species did. Fertilisation, investigated only for F. rubra, increased leaf nitrogen concentration and amplified the CO2‐induced decrease in leaf nitrogen. Development time of C. pamphilus was on the average prolonged by two days under elevated CO2 and the prolongation differed from 0.7 to 5.3 days among food‐plant species. Pupal fresh weight differed marginally between CO2 treatments. Fertilisation of the larval food‐plant F. rubra shortened development time by one day and significantly increased pupal and adult fresh weights. C. pamphilus larvae showed a clear food‐plant preference among grass species at the age of 36 h or older. Additionally, a change of food‐plant preference under elevated CO2 was found. Larvae at ambient CO2 preferred Agrostis stolonifera and F. rubra, while under elevated CO2Anthoxanthum odoratum and P. pratensis were preferred. The present study demonstrates that larval development of C. pamphilus is affected by food‐plant species and CO2 induced changes in foliar chemistry. Although we found some species‐specific reactions to elevated CO2 for foliar chemistry, no such CO2 by species interaction was found for insect development. The change in food‐plant preference of larvae under elevated CO2 implies potential changes in selection pressure for grass species and might therefore affect evolutionary processes.  相似文献   

13.
Tall fescue EST-SSR markers with transferability across several grass species   总被引:26,自引:0,他引:26  
Tall fescue (Festuca arundinacea Schreb.) is a major cool season forage and turf grass in the temperate regions of the world. It is also a close relative of other important forage and turf grasses, including meadow fescue and the cultivated ryegrass species. Until now, no SSR markers have been developed from the tall fescue genome. We designed 157 EST-SSR primer pairs from tall fescue ESTs and tested them on 11 genotypes representing seven grass species. Nearly 92% of the primer pairs produced characteristic simple sequence repeat (SSR) bands in at least one species. A large proportion of the primer pairs produced clear reproducible bands in other grass species, with most success in the close taxonomic relatives of tall fescue. A high level of marker polymorphism was observed in the outcrossing species tall fescue and ryegrass (66%). The marker polymorphism in the self-pollinated species rice and wheat was low (43% and 38%, respectively). These SSR markers were useful in the evaluation of genetic relationships among the Festuca and Lolium species. Sequencing of selected PCR bands revealed that the nucleotide sequences of the forage grass genotypes were highly conserved. The two cereal species, particularly rice, had significantly different nucleotide sequences compared to the forage grasses. Our results indicate that the tall fescue EST-SSR markers are valuable genetic markers for the Festuca and Lolium genera. These are also potentially useful markers for comparative genomics among several grass species.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

14.
Summary We tested the hypothesis that C4 grasses are inferior to C3 grasses as host plants for herbivorous insects by measuring the relative performance of larvae of a graminivorous lepidopteran, Paratrytone melane (Hesperiidae), fed C3 and C4 grasses. Relative growth rates and final weights were higher in larvae fed a C3 grass in Experiment I. However, in two additional experiments, relative growth rates and final weights were not significantly different in larvae fed C3 and C4 grasses. We examined two factors which are believed to cause C4 grasses to be of lower nutritional value than C3 grasses: foliar nutrient levels and nutrient digestibility. In general, foliar nutrient levels were higher in C3 grasses. In Experiment I, protein and soluble carbohydrates were digested from a C3 and a C4 grass with equivalent efficiencies. Therefore, differences in larval performance are best explained by higher nutrient levels in the C3 grass in this experiment. In Experiment II, soluble carbohydrates were digested with similar efficiencies from C3 and C4 grasses but protein was digested with greater efficiency from the C3 grasses. We conclude (1) that the bundle sheath anatomy of C4 grasses is not a barrier to soluble carbohydrate digestion and does not have a nutritionally significant effect on protein digestion and (2) that P. melane may consume C4 grasses at compensatory rates.  相似文献   

15.
Atmospheric carbon dioxide (CO2) enrichment may increase plant growth more than the uptake of chemical elements from soil. Increased CO2 also may alter element levels in biomass from multi-species vegetation by changing plant species abundances. We measured concentrations of ten elements in aboveground tissues of three C4 grasses that had been exposed for 2–3 growing seasons to a continuous gradient in CO2 from 250 to 500 μmol mol−1. The grasses, Bouteloua curtipendula, Schizachyrium scoparium, and Sorghastrum nutans, are competitive dominants in assemblages of tallgrass prairie vegetation growing on each of three soil types along a field CO2 gradient in central Texas, USA. Our objective was to determine whether CO2 influences element concentrations in grass mixtures by changing concentrations in individual species or shifting species abundances. Increased CO2 had little effect on element concentrations in grasses compared to differences observed among grass species and soils. Increasing CO2 from the pre-Industrial to elevated levels reduced the phosphorus concentration in grasses grown on a clay and sandy loam soil. Concentrations of most other elements did not respond to CO2 treatment. Cover of the mid-grass Bouteloua declined at higher CO2 levels as cover of the taller grass Sorghastrum increased. Concentrations of several elements were lower in Bouteloua than Sorghastrum; hence, this exchange of species at higher CO2 increased element concentrations in grass assemblages. Potential consequences include an improvement in the nutritional quality of plants for herbivores. Results highlight the underappreciated impact that CO2 enrichment may have on ecosystem functioning by changing plant composition.  相似文献   

16.
Rearing insects in controlled conditions is a prerequisite to supply high-quality specimens for bioassays. However, while artificial diets and standardized rearing methods have been developed for many phytophagous insects, especially Lepidoptera, there are limited published diets for root-feeding Coleoptera which are commonly fed either grass roots or pieces of vegetables as a simple alternative to artificial diets during bioassays. These feeding options, while convenient, can be considered suboptimal as they do not maximise the insects' development and health. Additionally, it is also important to develop standardised screening methods designed to test sublethal effects of control agents which may have repellent, antifeedant, antimetabolic and/or delayed mortality effects. The greyback canegrub (Dermolepida albohirtum, Waterhouse) is the most damaging native pest of Australian sugarcane, but no rearing method or artificial diet has ever been developed for this species. Our objectives were to improve bioassay methodology for D. albohirtum by describing and developing standard rearing and health assessment protocols. We describe a successful rearing method to raise healthy D. albohirtum larvae with a total of 48.8% of first instars successfully moulting to the second instar. We also tested a modified artificial diet which increased the weight, size and food uptake of larvae compared to traditional methods (i.e., pieces of carrots). For example, the average weight increase of larvae fed with the modified diet was 3.4 times higher than for carrot-fed larvae while modified diet-fed larvae were 2.1 times wider than if they were fed with carrots. Finally, we developed a method to measure larval activity which can be used to identify sublethal effects of control agents such as effects on activity level. Our methods may also be applied to improve bioassay methodology for other root-feeding Coleoptera.  相似文献   

17.
Elevated levels of CO2 and O3 affect plant growth and phytochemistry, which in turn can alter physiological performance of associated herbivores. Little is known, however, about how generalist insect herbivores respond behaviorally to CO2‐ and O3‐mediated changes in their host plants. This research examined the effects of elevated CO2 and O3 levels on host plant preferences and consumption of forest tent caterpillar (FTC, Malacosoma disstria Hbn.) larvae. Dual choice feeding assays were performed with foliage from birch (Betula papyrifera Marsh.) and aspen (Populus tremuloides Michx., genotypes 216 and 259). Trees were grown at the Aspen Free Air CO2 Enrichment (FACE) facility near Rhinelander, WI, USA, and had been exposed to ambient or elevated concentrations of CO2 and/or O3. Levels of nutritional and secondary compounds were quantified through phytochemical analyses. The results showed that elevated O3 levels increased FTC larval preferences for birch compared with aspen, whereas elevated CO2 levels had the opposite effect. In assays with the two aspen genotypes, addition of both CO2 and O3 caused a shift in feeding preferences from genotype 259 to genotype 216. Consumption was unaffected by experimental treatments in assays comparing aspen and birch, but were increased for larvae given high O3 foliage in the aspen genotype assays. Elevated levels of CO2 and O3 altered tree phytochemistry, but did not explain shifts in feeding preferences. The results demonstrate that increased levels of CO2 and O3 can alter insect host plant preferences both between and within tree species. Also, consequences of altered host quality (e.g., compensatory consumption) may be buffered by partial host shifts in situations when alternative plant species are available. Environmentally induced changes in host plant preferences may have the potential to alter the distribution of herbivory across plant genotypes and species, as well as competitive interactions among them.  相似文献   

18.
Leaf‐chewing insects are commonly believed to be unable to crush the nutrient‐rich bundle sheath cells (BSC) of C4 grasses. This physical constraint on digestion is thought to reduce the nutritional quality of these grasses substantially. However, recent evidence suggests that BSC are digested by grasshoppers. To directly assess the ability of grasshoppers to digest C4 grass BSC, leaf particles of Bouteloua curtipendula (Poaceae) were examined from the digestive tracts of two grasshopper species: Camnula pellucida (Scudder) (primarily a grass feeder) and Melanoplus sanguinipes (Fabricius) (a forb and grass generalist) (Orthoptera: Acrididae). Transmission electron microscopy was used to make the first observations of BSC crushing by herbivorous insects. Camnula pellucida and M. sanguinipes crushed over 58% and 24%, respectively, of the BSC in ingested leaf tissues. In addition, chloroplast and cell membranes were commonly disrupted in uncrushed BSC, permitting soluble nutrients to be extracted, even when BSC walls remain intact. The greater efficiency with which C. pellucida crushes BSC is consistent with the idea that grass‐feeding species are better adapted for handling grass leaf tissues than are generalist species. By demonstrating the effectiveness with which the BSC of B. curtipendula can be crushed and extracted by both species of grasshoppers, this study suggests one reason why C4 grasses are not generally avoided by grasshoppers: at least some C4 grasses can be more easily digested than has been hypothesized.  相似文献   

19.
The consumotion, utilization and growth of third-instar larvae of black beetle, Heteronychus arator (F.) feeding on roots of ryegrass (Lolium perenne), paspalum (Paspalum dilatatum) and white clover (Trifolium repens) were studied. Consumption was greater on the grasses than on white clover when assessed by gravimetric methods. Larvae had a higher growth rate on the grasses. Utilization of the roots of the three species was similar indicating that poor growth on white clover is the result of low consumption probably induced by the presence of feeding deterrents in the roots.This work is part of a study carried out by the senior author for the degree of D. Phil. at the University of Waikato.  相似文献   

20.
Bamboo is a silicon accumulating plant. In leaves, the major place of silicon (Si) deposition is the epidermis, with the highest concentration of Si in silica cells. In bamboo roots, the deposition of Si is found only in endodermal cell walls. The silicification of leaves and roots was examined in the economically important bamboo plant Phyllostachys heterocycla, using an environmental scanning electron microscope coupled with X-ray microanalysis, as well as gravimetric quantification. The content of Si on a dry weight basis measured by gravimetric quantification was 7.6% in leaves and 2.4% in roots, respectively. Moreover, quantification of EDX data showed high Si impregnation of the inner tangential endodermal walls. Si content in this part of the root endodermal cell walls was even higher than that in the outer leaf epidermal walls, where conspicuous deposition of Si often occurs in grass plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号