首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, hammerhead ribozyme (HHR) motifs have been utilized as powerful tools for gene regulation. Here we present a novel design of expanded full-length HHRs that allows attaching additional functionalities to the ribozyme. These features allowed us to construct a very efficient artificial riboswitch in bacteria. Following the design of naturally occurring three-way junctions we attached an additional helix (IV) to stem I of the HHR while maintaining very fast cleavage rates. We found that the cleavage activity strongly depends on the exact design of the junction site. Incorporation of the novel ribozyme scaffold into a bacterial mRNA allowed the control of gene expression mediated by autocatalytic cleavage of the ribozyme. Appending an aptamer to the newly introduced stem enabled the identification of very powerful theophylline-inducible RNA switches by in vivo screening. Further investigations revealed a cascading system operating beyond the ribozyme-dependent mechanism. In conclusion, we extended the hammerhead toolbox for synthetic biology applications by providing an additional position for the attachment of regulatory modules for in vivo control of gene expression.  相似文献   

2.
The hammerhead ribozyme is able to cleave RNA in a sequence-specific manner. These ribozymes are usually designed with four basepairs in helix II, and with equal numbers of nucleotides in the 5′ and 3′ hybridizing arms that bind the RNA substrate on either side of the cleavage site. Here guidelines are given for redesigning the ribozyme so that it is small, but retains efficient cleavage activity. First, the ribozyme may be reduced in size by shortening the 5′ arm of the ribozyme to five or six nucleotides; for these ribozymes, cleavage of short substrates is maximal. Second, the internal double-helix of the ribozyme (helix II) may be shortened to one or no basepairs, forming a miniribozyme or minizyme, respectively. The sequence of the shortened helix+loop II greatly affects cleavage rates. With eight or more nucleotides in both the 5′ and the 3′ arms of a miniribozyme containing an optimized sequence for helix+loop II, cleavage rates of short substrates are greater than for analogous ribozymes possessing a longer helix II. Cleavage of genelength RNA substrates may be best achieved by miniribozymes.  相似文献   

3.
4.
5.
Several new and unexpected insights into the metalloenzymology of ribozymes have been achieved in the past year. From a mechanistic point of view, the NMR and crystal structures of a small Pb(2+)-dependent ribozyme have been particularly revealing.  相似文献   

6.
Hammerhead ribozymes in crystals change conformation in response to deprotonation of the nucleophilic 2' OH, thereby aligning the hydroxyl for in-line displacement at the scissile phosphate. Published data do not address whether deprotonation affects folding in solution. Allosteric hammerhead "TRAPs," when activated by the appropriate oligonucleotide, show the expected log-linear relation between initial cleavage rate and pH. In contrast, attenuated TRAPs shows biphasic kinetics in which a rapid burst is followed by slow cleavage that is nearly independent of pH. Attenuated ribozymes are stimulated by urea at both low and high pH, confirming that rearrangement of secondary structure is rate-limiting for the attenuated ribozymes once they have folded. Plots of burst magnitude versus pH in the absence of urea show a sharp transition around pH 8.3, which is near the kinetic pKa for the cleavage reaction in Mg2+. Raising the pH after folding at pH 7.5 did not activate attenuated ribozymes even when the RNA was incubated at the elevated pH for extended periods prior to addition of Mg2+. In contrast, lowering the pH after folding at pH 9.5 rapidly re-established attenuation. Deprotonation of the ribozyme-substrate complex thus appears to alter the folding landscape such that a metastable "pre-activated" complex forms before the thermodynamically more stable attenuated state can be attained. From the initial partition into active and inactive conformers, we estimate that this deprotonation contributes approximately 1.2 kcal/mol toward stabilization of the active fold at a crucial step during folding of the TRAP. Assuming that the nucleophilic 2' OH is the relevant acid, its deprotonation would thus serve a dual role of favoring productive fold and enhancing the nucleophilicity of this oxygen.  相似文献   

7.
Inhibition of gene expression with ribozymes   总被引:5,自引:0,他引:5  
Summary 1. Ribozymes can be designed to cleavein trans, i.e. several substrate molecules can be turned over by one molecule of the catalytic RNA. Only small molecular weight ribozymes, or small ribozymes, are discussed in this review with particular emphasis on the hammerhead ribozyme as this has been most widely used for the inhibition of gene expression by cleavage of mRNAs.2. Cellular delivery of the ribozyme is of crucial importance for the success of inhibition of gene expression by this methodology. Two modes of delivery can be envisaged, endogenous and exogenous delivery. Of the former several variants exist, depending on the vector used. The latter is still in its infancy, even though chemical modification has rendered such ribozymes resistant against degradation by serum nucleases without impairment of catalytic efficiency.3. Various successful applications of ribozymes for the inhibition of gene expression are discussed, with particular emphasis on HIV1 and cancer targets. These examples demonstrate the promise of this methodology.  相似文献   

8.
In order to design the best construct for therapeutic hammerhead ribozymes against AML1-MTG8, the t(8;21)-associated fusion mRNA of acute myeloid leukemia, we synthesized DNA/RNA chimeric ribozymes directed to the area adjacent to the fusion point between AML1 and MTG8. Catalytic efficiency and fusion gene specificity of ribozymes were examined by kinetic studies of the cleavage reactions of AML1-MTG8, AML1, and MTG8 RNAs transcribed in vitro. Ribozyme 2 (Rz2) specifically cleaved AML1-MTG8 RNA at three nucleotides downstream of the fusion junction with high efficiency. The highest cleavage efficiency was achieved by Rz4.3, which targeted non-contiguous sequences and cleaved at 19 nucleotides downstream of the fusion junction. Rz4.3 also cleaved MTG8 RNA but the cleavage efficiency was three orders of magnitude lower than that for AML1-MTG8 RNA. Therefore, Rz4.3 and Rz2 are the proper ribozymes for in vivo application to modulate gene expression of the AML1-MTG8.  相似文献   

9.
Weinberg MS  Rossi JJ 《FEBS letters》2005,579(7):1619-1624
trans-Cleaving hammerhead ribozyme variants were generated with mimicked non-conserved internal loop motifs derived from five structurally diverse natural cis-cleaving ribozymes. Most modified trans-cleaving variants showed enhanced single-turnover cleavage rates relative to minimal counterparts that lack tertiary interactions between internal loop motifs I and II, and relative to controls with sequence changes in loop I. The trans-cleaving ribozyme derived from the positive strand of peach latent mosaic viroid had the highest observed cleavage rate, suggesting a structurally optimized motif that facilitates rapid formation of the ribozyme catalytic center in a trans-reaction.  相似文献   

10.
Monitoring protein modification with allosteric ribozymes   总被引:1,自引:0,他引:1  
An allosteric ribozyme is an RNA-based enzyme (ribozyme) whose catalytic activity is modulated by molecular recognition of a protein. The direct coupling of a detectable catalytic event to molecular recognition by an allosteric ribozyme enables simple assays for quantitative protein detection. Most significantly, the mode of development and molecular recognition characteristics of allosteric ribozymes are fundamentally different from antibodies, providing them with functional characteristics that complement those of antibodies. Allosteric ribozymes can be developed using native proteins and, therefore, are often sensitive to protein conformation. In contrast, antibodies tend to recognize a series of adjacent amino acids as a consequence of antigen presentation and typically are not sensitive to protein conformation. Unlike antibody development, the development of allosteric ribozymes is a completely in vitro process that allows the specificity of an allosteric ribozyme to be tightly controlled. These significant differences from antibodies allow the pre-programmed development of conformation-state-specific protein detection reagents that can be used to investigate the activation-state of signal transduction components.  相似文献   

11.
石英晶体DNA传感器检测单链DNA   总被引:3,自引:0,他引:3  
利用自组装法,将5'末端标记有巯基醇的单链DNA探针,固定在4.43MHz AT切石英晶体的镀金表面,制成石英晶体DNA传感器,并用该DNA传感器进行了互补单链DNA定量定性检测的探索。  相似文献   

12.
Allosteric ribozymes (aptazymes) can transduce the noncovalent recognition of analytes into the catalytic generation of readily observable signals. Aptazymes are easily engineered, can detect diverse classes of biologically relevant molecules, and have high signal-to-noise ratios. These features make aptazymes useful candidates for incorporation into biosensor arrays. Allosteric ribozyme ligases that can recognize a variety of analytes ranging from small organics to proteins have been generated. Upon incorporation into an array format, multiple different aptazyme ligases were able to simultaneously detect their cognate analytes with high specificity. Analyte concentrations could be accurately measured into the nanomolar range. The fact that analytes induced the formation of new covalent bonds in aptazyme ligases (as opposed to noncovalent bonds in antibodies) potentiated stringent washing of the array, leading to improved signal-to-noise ratios and limits of detection.  相似文献   

13.
Polyaniline (PANI) uricase biosensor prepared with template process is reported first in this paper. The fabrication process is as follows. Firstly, a PANI–uricase electrode is obtained using one-step process. Secondly, the electrode is hydrolyzed in 6.0 mol/dm3 hydrochloric acid solution to remove the uricase that may be affected by aniline monomer from PANI film. Finally, active uricase is immobilized into the PANI film based on the principle of the doping and undoping of the conducting polymer and a PANI–uricase biosensor is obtained. Some factors that affect response current are studied, such as temperature, pH, potential and substrate concentration. The determination of biosensors indicates that the response current of the biosensor prepared by template process decreases only by about 18% for 60 days, but that prepared by two-step process decreases by approximately 39% for 40 h. The uricase in PANI–uricase biosensor prepared by template process mainly interacts with the nitrogen linked to the quinoid ring. The biosensor is characterized with FTIR, UV-Vis and SEM for the first time.  相似文献   

14.
In this study, a new chemiluminescence (CL) flow-through biosensor for glucose was developed by immobilizing glucose oxidase (GOD) and horseradish peroxidase (HRP) on the eggshell membrane with glutaraldehyde as a cross-linker. The CL detection involved enzymatic oxidation of glucose to D-gluconic acid and hydrogen peroxide (H2O2) and then H2O2 oxidizing luminol to produce CL emission in the presence of HRP. The immobilization condition (e.g., immobilization time, GOD/HRP ratio, glutaraldehyde concentration) was studied in detail. It showed good storage stability at 4 degrees C over a 5-month period. The proposed biosensor exhibited short response time, high sensitivity, easy operation, and simple sensor assembly, and the proposed biosensor was successfully applied to the determination of glucose in human serum.  相似文献   

15.
Formaldehyde is a prevalent environmental toxin and a key intermediate in single carbon metabolism. The ability to monitor formaldehyde concentration is, therefore, of interest for both environmental monitoring and for metabolic engineering of native and synthetic methylotrophs, but current methods suffer from low sensitivity, complex workflows, or require expensive analytical equipment. Here we develop a formaldehyde biosensor based on the FrmR repressor protein and cognate promoter of Escherichia coli. Optimization of the native repressor binding site and regulatory architecture enabled detection at levels as low as 1 µM. We then used the sensor to benchmark the in vivo activity of several NAD‐dependent methanol dehydrogenase (Mdh) variants, the rate‐limiting enzyme that catalyzes the first step of methanol assimilation. In order to use this biosensor to distinguish individuals in a mixed population of Mdh variants, we developed a strategy to prevent cross‐talk by using glutathione as a formaldehyde sink to minimize intercellular formaldehyde diffusion. Finally, we applied this biosensor to balance expression of mdh and the formaldehyde assimilation enzymes hps and phi in an engineered E. coli strain to minimize formaldehyde build‐up while also reducing the burden of heterologous expression. This biosensor offers a quick and simple method for sensitively detecting formaldehyde, and has the potential to be used as the basis for directed evolution of Mdh and dynamic formaldehyde control strategies for establishing synthetic methylotrophy.  相似文献   

16.
Galactose oxidase was co-immobilised with peroxidase by drop-coating on the surface of a graphite electrode with adsorbed ferrocene. This system offers low detection limit – 0.51 mg galactose l–1 and fast response: 44 s in phosphate buffer or 25 s in borate buffer. Optimal working potential for galactose detection was 150 mV vs. SCE (saturated calomel electrode) with optimal pH of 7.85. The storage stability was highly improved, more than 12 times in comparison to control without stabilisers, by addition of DEAE-dextran and inositol. During repeated assays for 5.25 h, signal dropped only to 95% of original one. The response was linear in phosphate buffer in the range 1–110 mg l–1, while in borate buffer linear range was extended to 3–210 mg l–1 because of chelating effect of borate.  相似文献   

17.
18.
The development of a new electrochemical sensor consisting in a glass-sealed metal microelectrode coated by a polyethylenimine film is described. The use of polymers as the entrapping matrix for enzymes fulfils all the requirements expected for these materials without damaging the biological material. Since enzyme immobilization plays a fundamental role in the performance characteristics of enzymatic biosensors, we have tested four different protocols for enzyme immobilization to determine the most reliable one. Thus the characteristics of the potentiometric biosensors assembled were studied and compared and it appeared that the immobilization method leading to the most efficient biosensors was the one consisting in a physical adsorption followed by reticulation with dilute aqueous glutaraldehyde solutions. Indeed, the glutaraldehyde immobilized urease sensor provides many advantages, compared to the other types of sensors, since this type of urea biosensor exhibits short response times (15–30 s), sigmoidal responses for the urea concentration working range from 1×10−2.5 to 1×10−1.5 M and a lifetime of 4 weeks.  相似文献   

19.
We describe the amplification of amperometric l-lysine biosensor using l-lysine oxidase nanoparticles (LOxNPs) and graphene oxide nanoparticles (GrONPs) immobilized onto pencil graphite electrode (PGE). LOxNPs and GrONPs were characterized by UV spectroscopy and transmission electron microscopy (TEM). The working electrode (LOxNPs/GrONPs/PGE) was studied by scanning electron microscopy (SEM) and cyclic voltammetry at different stages of its construction. The biosensor showed optimum current at 0.7 V, pH 6.5, 35 °C, a detection limit of 0.01 μM, response time as 3.95 s and a wider linear range 0.01–1000 μM. The analytical recovery of added lysine in sera was 97 %. The within assay and between batch coefficients of variation for the biosensor were 0.068 and 0.074 % respectively. The biosensor measured l-lysine levels in sera of healthy adults and human immunodeficiency virus (HIV) patients. The biosensor exhibited good correlation with standard spectrophotometric method (R2 = 0.989). The biosensor lost 35 % of its original activity after its regular uses for a period of 180 days, while being stored dry at 4 °C.  相似文献   

20.
We report a flow‐injection biosensor system with a capacitive transducer for assay and quality control of human immunoglobulin G (hIgG). The sensing platform is based on self‐assembled monolayers (SAMs) of carboxylic acid terminated alkyl‐thiols with covalently attached concanavalin A. The electrochemical characteristics of the sensor surface were assessed by cyclic voltammetry using a permeable redox couple (potassium ferricyanide). The developed biosensor proved capable of performing a sensitive label‐free assay of hIgG with a detection limit of 1.0 µg mL?1. The capacitance response depended linearly on hIgG concentration over the range from 5.0 to 100 µg mL?1, in a logarithmic plot. Typical measurements were performed in 15 min and up to 18 successive assays were achieved without significant loss of sensitivity using a single electrode. In addition, the biosensor can detect hIgG aggregates with concentrations as low as 0.01% of the total hIgG content (5.0 µg mL?1). Hence, it represents a potential post‐size‐exclusion chromatography–UV (post‐SEC–UV) binding assay for in‐process quality control of hIgG, which cannot be detected by SEC–UV singly at concentrations below 0.3% of the total hIgG content. Biotechnol. Bioeng. 2009; 104: 312–320 © 2009 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号