首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influenza virus hemagglutinin contains four major regions that are recognized by antibodies able to neutralize viral infectivity. To investigate the effect of an antibody response directed against each of these sites on viral evolution, influenza virus A/PR/8/34 (H1N1) was grown in allantois-on-shell cultures in the presence of a mixture of monoclonal antihemagglutinin antibodies. This selection mixture contained antibodies (two or three antibodies per antigenic site) whose concentrations were adjusted to achieve equal neutralization titers against each of the four antigenic sites. By varying the ratio of input virus to selection mixture concentration, we observed that variant viruses emerged under conditions of partial neutralization. Each of the four variants characterized in detail differed from the parental virus in its interaction with cellular receptors and exhibited minimal changes in antigenicity. Thus, these variants were virtually indistinguishable from wild-type viruses, as assessed by the binding of 103 monoclonal antihemagglutinin antibodies in an indirect radioimmunoassay. Despite this, many of the same antibodies demonstrated decreased titers to the variants in hemagglutination inhibition tests. The magnitude of the differences depended on the indicator erythrocytes used (much greater differences were detected with chicken erythrocytes than with human erythrocytes). Hemagglutination mediated by the variants was more resistant to neuraminidase treatment of erythrocytes than hemagglutination mediated by the parental virus. These findings are consistent with the idea that the variants were initially selected by virtue of their increased avidity for host cell receptors. Sequencing of viral RNA revealed that each of the variants differed from the parental virus by a single amino acid alteration in its HA1 subunit. Two of the changes were close to the proposed receptor binding site on hemagglutinin and could directly alter receptor binding, while a third was located near the trimer interface and may have increased receptor binding by altering monomer-monomer interactions.  相似文献   

2.
Neutralizing monoclonal antibodies specific for the fusion (F) glycoprotein of human parainfluenza type 3 virus (PIV3) were used to select neutralization-resistant antigenic variants. Sequence analysis of the F genes of the variants indicated that their resistance to antibody binding, antibody-mediated neutralization or to both was a result of specific amino acid substitutions within the neutralization epitopes of the F1 and F2 subunits. Comparison of the locations of PIV3 neutralization epitopes with those of Newcastle disease and Sendai viruses indicated that the antigenic organization of the fusion proteins of paramyxoviruses is similar. Furthermore, some of the PIV3 epitopes recognized by syncytium-inhibiting monoclonal antibodies are located in an F1 cysteine cluster region which corresponds to an area of the measles virus F protein involved in fusion activity.  相似文献   

3.
The biological activity of monoclonal antibodies specific for the hemagglutinin protein of measles virus strain CAM recognizing six epitope groups according to their binding properties to measles virus strain CAM/R401 was investigated in vivo in our rat model of measles encephalitis. When injected intraperitoneally into measles virus-infected suckling rats, some monoclonal antibodies modified the disease process and prevented the necrotizing encephalopathy seen in untreated animals. The analysis of measles virus brain isolates revealed emergence of variants that resisted neutralization with the passively transferred selecting monoclonal antibody but not with other monoclonal antibodies. Monoclonal antibody escape mutants were also isolated in vitro, and their neurovirulence varied in the animal model. Sequence data from the hemagglutinin gene of measles virus localize a major antigenic surface determinant of the hemagglutinin protein between amino acid residues 368 and 396, which may be functionally important for neurovirulence. The data indicate that the interaction of antibodies with the measles virus H protein plays an important role in the selection of neurovirulent variants. These variants have biological properties different from those of the parent CAM virus.  相似文献   

4.
Sindbis virus variants evidencing a complex and bidirectional tendency toward spontaneous antigenic change were isolated and characterized. Variants were selected on the basis of their escape from neutralization by individual monoclonal antibodies to either of the two envelope glycoproteins, E2 and E1. Multisite variants, including one altered in three neutralization sites, were obtained by selecting mutants consecutively in the presence of different neutralizing monoclonal antibodies. Two phenotypic revertants, each of which reacquired prototype antigenicity, were back-selected on the basis of their reactivity with a neutralizing monoclonal antibody. An incidental oligonucleotide marker distinguished these and the variant from which they arose from parental Sindbis virus and other mutants, thereby confirming that the revertants were true progeny of the antigenic variant. Prototype Sindbis virus and variants derived from it were compared on the basis of their reactivities with each of a panel of monoclonal antibodies; patterns revealed a minimum of five independently mutable Sindbis virus neutralization epitopes, segregating as three antigenic sites (two E2 and one E1).  相似文献   

5.
Monoclonal antibodies specific for herpes simplex virus type 1 (HSV-1) glycoproteins were used to demonstrate that HSV undergoes mutagen-induced and spontaneous antigenic variation. Hybridomas were produced by polyethylene glycol-mediated fusion of P3-X63-Ag8.653 myeloma cells with spleen cells from BALB/c mice infected with HSV-1 (strain KOS). Hybrid clones were screened for production of HSV-specific neutralizing antibody. The glycoprotein specificities of the antibodies were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of immunoprecipitates of radiolabeled infected-cell extracts. Seven hybridomas producing antibodies specific for gC, one for gB, and one for gD were characterized. All antibodies neutralized HSV-1 but not HSV-2. Two antibodies, one specific for gB and one specific for gC, were used to select viral variants resistant to neutralization by monoclonal antibody plus complement. Selections were made from untreated and bromodeoxyuridine- and nitrosoguanidine-mutagenized stocks of a plaque-purified isolate of strain KOS. After neutralization with monoclonal antibody plus complement, surviving virus was plaque purified by plating at limiting dilution and tested for resistance to neutralization with the selecting antibody. The frequency of neutralization-resistant antigenic variants selected with monoclonal antibody ranged from 4 X 10(-4) in nonmutagenized stocks to 1 X 10(-2) in mutagenized stocks. Four gC and four gB antigenic variants were isolated. Two variants resistant to neutralization by gC-specific antibodies failed to express gC, accounting for their resistant phenotype. The two other gC antigenic variants and the four gB variants expressed antigenically altered glycoproteins and were designated monoclonal-antibody-resistant, mar, mutants. The two mar C mutants were tested for resistance to neutralization with a panel of seven gC-specific monoclonal antibodies. The resulting patterns of resistance provided evidence for at least two antigenic sites on glycoprotein gC.  相似文献   

6.
During antigenic drift in influenza viruses, changes in antigenicity are associated with changes in amino acid sequence of the large hemagglutinin polypeptide, HA1. In ten variants of Hong Kong (H3N2) influenza virus selected with monoclonal antibodies, the proline residue at position 143 in HA1 changed to serine, threonine, leucine or histidine. In other variants, asparagine 133 changed to lysine, glycine 144 to aspartic acid and serine 145 to lysine. All these changes are possible by single base changes in the RNA except the last, which requires a double base change. Residues 142 to 146 also changed in field strains of Hong Kong influenza isolated between 1968 and 1977 (Laver et al., 1980). The single amino acid sequence changes in HA1 of the monoclonal variants were detected by comparing the compositions of the soluble tryptic peptides from the variants with the known sequences of these peptides from wild-type virus. Two insoluble tryptic peptides, comprising residues 110 to 140 and 230 to 255 in the HA1 molecule, were not examined and we do not know if additional changes occurred in these regions.In order to determine whether sequential changes at the same position occurred during antigenic drift, antibody prepared against the new antigenic site on the variants in which proline 143 changed to histidine or threonine was used to select second generation variants of these variants. In the first case, the glycine residue (144) next to the histidine changed to aspartic acid, and in the second, the threonine residue at position 143 reverted to proline and the virus regained the antigenicity of wild-type.Although monoclonal antibodies revealed dramatic antigenic differences between the variants and wild-type virus, only those variants with changes at position 144 of glycine to aspartic acid or at position 145 of serine to lysine could be distinguished from wild-type virus using heterogeneous rabbit or ferret antisera. The other variants, including those which showed sequence changes in widely separated positions of HA1, could not be distinguished from wild-type with heterogeneous antisera.These findings suggest that sequence changes in the region comprising residues 142 to 146 of HA1 affect an important antigenic site on the hemagglutinin molecule, but how these changes affect the antigenic properties, or whether this region actually forms part of the antigenic site is not known.  相似文献   

7.
Variants of molecularly cloned human immunodeficiency virus type 1 (HIV-1) were analyzed following selection for the ability to replicate after exposure to soluble, recombinant CD4 protein (rCD4). Two variants, 4/1 and 16/2, show 8-fold and 16-fold reduced sensitivity to rCD4 neutralization yet remain as sensitive as the parental wild-type (wt) virus to neutralization by rCD4-immunoglobulin G (IgG) chimeric molecules and to inhibition of cellular infection by anti-CD4 antibody. The 4/1 variant is more cytopathic, with faster cell fusion and replication kinetics than the wt virus. The gp120s derived from the 4/1 and 16/2 variants have 3-fold and 30-fold reduced binding affinities to rCD4, respectively. The 4/1 variant exhibits diminished shedding of virion gp120 induced by rCD4. The binding of and neutralization by V3 loop antibodies and other anti-gp120 antibodies is reduced for 4/1 but not for 16/2. Sequence analysis revealed a codon change at amino acid residue 435 in the C4 region of the gp120 of 16/2. This accounts for its rCD4 insensitivity, since the insertion of this mutation in the wt gp120 yields the same phenotype. The 4/1 variant has a codon change in the V3 region of gp120 (amino acid 311), which accounts for its reduced sensitivity to some neutralizing antibodies but not to rCD4. The ready selection of rCD4-resistant variants has obvious relevance for rCD4-based therapeutic stratagems.  相似文献   

8.
This study investigated whether a single amino acid change in the hemagglutinin (HA) molecule influenced the efficacy of formalin-inactivated influenza A (H3N1) vaccine candidates derived from high-growth reassortants between the standard donor of high-yield genes (A/PR/8/34 [H1N1]) and host cell variants generated from the same clinical isolate (A/Memphis/7/90 [H3N2]) by passage in embryonated chicken eggs. Two clones of the isolate generated by growth in eggs differed from the parent virus (represented by an MDCK cell-grown counterpart) solely by the presence of Lys (instead of Glu) at position 156 or Ile (instead of Ser) at position 186 in the HA1 subunit. The protective efficacy of egg-grown HA Lys-156 and HA Ile-186 reassortant variants was compared with that of the MDCK cell-grown reassortant vaccine. Classically, antibody titers in serum have been used to demonstrate vaccine efficacy. Here, parameters of B-cell responsiveness were monitored, including the kinetics, character, and localization of the primary antibody-forming cell (AFC) response and the development of B-cell memory in lymphoid tissues associated with the priming site (spleen) and responsive to pulmonary challenge with infectious virus (upper and lower respiratory tract lymph nodes). We show that the egg-grown HA Lys-156 variant induced an AFC profile vastly different from that elicited by the other two reassortant vaccines. The vaccine was poorly immunogenic; it induced antibodies that were cross-reactive prior to challenge but which, postchallenge with a lethal dose of the MDCK cell-grown reassortant virus, were targeted primarily to the HA Lys-156 variant, were of the immunoglobulin M isotype, were nonprotective, and were derived from the spleen. In contrast, the egg-grown HA Ile-186 variant was remarkably like the MDCK cell-grown virus in that protective immunoglobulin G antibodies were unaffected by the Ile-186 substitution but poorly recognized HA with Lys-156. Furthermore, memory AFC responsiveness was localized to regional lymphoid tissue in the upper respiratory tract, where challenge HA was found. Thus, it is recommended that in the selection of vaccine candidates, virus populations with the egg-adapted HA Lys-156 substitution be eliminated and that, instead, egg-grown isolates which minimally contain Ile-186 be used as logical alternatives to MDCK cell-grown viruses.  相似文献   

9.
To analyze the pathogenesis of the neurotropic murine coronavirus JHMV, we used monoclonal antibodies to the E2 viral glycoprotein to select antigenic variant viruses. Monoclonal antibodies J.7.2 and J.2.2 were shown to bind to topographically distinct regions of the E2 molecule, and the variants selected with the two antibodies demonstrated very different disease pictures in mice. Variants selected with J.7.2 were, like the parental virus, highly virulent and caused an acute encephalitic illness. By contrast, J.2.2-selected variants predominantly caused a subacute paralytic disease clinically and extensive demyelination histologically. Antigenic differences among the variants and parental virus were readily demonstrable with anti-E2 monoclonal antibodies. However, no differences between the viruses could be shown in binding studies with monoclonal antibodies directed against either E1 or N, the other two JHMV structural proteins. Since only J.2.2 selected demyelinating variants with reduced neurovirulence, it is likely that this monoclonal antibody recognizes a subregion of the E2 molecule that is particularly important in JHMV pathogenesis.  相似文献   

10.
New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appear rapidly every few months. They have showed powerful adaptive ability to circumvent the immune system. To further understand SARS-CoV-2's adaptability so as to seek for strategies to mitigate the emergence of new variants, herein we investigated the viral adaptation in the presence of broadly neutralizing antibodies and their combinations. First, we selected four broadly neutralizing antibodies, including pan-sarbecovirus and pan-betacoronavirus neutralizing antibodies that recognize distinct conserved regions on receptor-binding domain (RBD) or conserved stem-helix region on S2 subunit. Through binding competition analysis, we demonstrated that they were capable of simultaneously binding. Thereafter, a replication-competent vesicular stomatitis virus pseudotyped with SARS-CoV-2 spike protein was employed to study the viral adaptation. Twenty consecutive passages of the virus under the selective pressure of individual antibodies or their combinations were performed. It was found that it was not hard for the virus to adapt to broadly neutralizing antibodies, even for pan-sarbecovirus and pan-betacoronavirus antibodies. The virus was more and more difficult to escape the combinations of two/three/four antibodies. In addition, mutations in the viral population revealed by high-throughput sequencing showed that under the selective pressure of three/four combinational antibodies, viral mutations were not prone to present in the highly conserved region across betacoronaviruses (stem-helix region), while this was not true under the selective pressure of single/two antibodies. Importantly, combining neutralizing antibodies targeting RBD conserved regions and stem helix synergistically prevented the emergence of escape mutations. These studies will guide future vaccine and therapeutic development efforts and provide a rationale for the design of RBD-stem helix tandem vaccine, which may help to impede the generation of novel variants.  相似文献   

11.
Ebola virus causes lethal hemorrhagic fever in humans, but currently there are no effective vaccines or antiviral compounds for this infectious disease. Passive transfer of monoclonal antibodies (MAbs) protects mice from lethal Ebola virus infection (J. A. Wilson, M. Hevey, R. Bakken, S. Guest, M. Bray, A. L. Schmaljohn, and M. K. Hart, Science 287:1664-1666, 2000). However, the epitopes responsible for neutralization have been only partially characterized because some of the MAbs do not recognize the short synthetic peptides used for epitope mapping. To identify the amino acids recognized by neutralizing and protective antibodies, we generated a recombinant vesicular stomatitis virus (VSV) containing the Ebola virus glycoprotein-encoding gene instead of the VSV G protein-encoding gene and used it to select escape variants by growing it in the presence of a MAb (133/3.16 or 226/8.1) that neutralizes the infectivity of the virus. All three variants selected by MAb 133/3.16 contained a single amino acid substitution at amino acid position 549 in the GP2 subunit. By contrast, MAb 226/8.1 selected three different variants containing substitutions at positions 134, 194, and 199 in the GP1 subunit, suggesting that this antibody recognized a conformational epitope. Passive transfer of each of these MAbs completely protected mice from a lethal Ebola virus infection. These data indicate that neutralizing antibody cocktails for passive prophylaxis and therapy of Ebola hemorrhagic fever can reduce the possibility of the emergence of antigenic variants in infected individuals.  相似文献   

12.
Antigenic variants of foot-and-mouth disease virus (FMDV) were generated and frequently became dominant in clonal populations of FMDV (clone C-S8c1) grown in the absence of anti-FMDV antibodies. We have now passaged eight samples of the same FMDV clone in the presence of a limited amount of neutralizing polyclonal antibodies directed to the major antigenic site A of capsid protein VP1. Complex populations of variants showing increased resistance to polyclonal sera and to site A-specific monoclonal antibodies were selected. Some populations exhibited marked decreases in viral fitness. Multiple amino acid replacements within site A--and also elsewhere in VP1--accumulated upon passage of the virus in either the absence or the presence of neutralizing antibodies. However, antigenically critical replacements at one position in site A occurred repeatedly in FMDV passaged under antibody selection, but they were never observed in many passages carried out either in the absence of antiviral antibodies or in the presence of an irrelevant antiviral serum. Thus, even though antigenic variation of FMDV can occur in the absence or presence of immune selection, critical replacements which lead to important changes in antigenic specificity were observed only as a result of selection by neutralizing antibodies.  相似文献   

13.
The escape of human immunodeficiency virus type 1 from effects of neutralizing antibodies was studied by using neutralization-resistant (NR) variants generated by growing the neutralization-sensitive (NS) wild-type MN virus in the presence of human serum with neutralizing antibodies, more than 99% of which were directed at the V3 region of gp120. The variants obtained had broad neutralization resistance to human sera, without limitation with respect to the V3 specificity of the sera. The molecular basis for the resistance was evaluated with molecularly cloned viruses, as well as with pseudoviruses expressing envelope glycoproteins of the NS and NR phenotypes. Nucleotide sequence analyses comparing NS and NR clones revealed a number of polymorphisms, including six in the V1/V2 region, two in C4/V5 of gp120, three in the leucine zipper (LZ) domain of gp41, and two in the second external putative α-helix region of gp41. A series of chimeras from NS and NR env genes was constructed, and each was presented on pseudoviruses to locate the domain(s) which conferred the phenotypic changes. The neutralization phenotypes of the chimeric clones were found to be dependent on mutations in both the C4/V5 region of gp120 and the LZ region of gp41. Additionally, interaction between mutations in gp120 and gp41 was demonstrated in that a chimeric env gene consisting of a gp120 coding sequence from an NS clone and a gp41 sequence from an NR clone yielded a pseudovirus with minimal infectivity. The possible significance of predicted amino acid changes in these domains is discussed. The results indicate that polyvalent antibodies predominantly directed against V3 can induce NR through selection for mutations that alter interactions of other domains in the envelope complex.  相似文献   

14.
Twenty-six monoclonal antibodies (MAbs) (14 neutralizing and 12 nonneutralizing) were used to examine the antigenic structure, biological properties, and natural variation of the fusion (F) glycoprotein of human type 3 parainfluenza virus (PIV3). Analysis of laboratory-selected antigenic variants and of PIV3 clinical isolates indicated that the panel of MAbs recognizes at least 20 epitopes, 14 of which participate in neutralization. Competitive binding assays indicated that the 14 neutralization epitopes are organized into three nonoverlapping antigenic sites (A, B, and C) and one bridge site (AB) and that the 6 nonneutralization epitopes form four sites (D, E, F, and G). Most of the neutralizing MAbs were involved in nonreciprocal competitive binding reactions, suggesting that they induce conformational changes in other neutralization epitopes. Fusion-inhibition and complemented-enhanced neutralization assays indicated that antigenic sites AB, B, and C may correspond to functional domains of the F molecule. Our results indicated that antibody binding alone is not sufficient for virus neutralization and that many anti-F MAbs neutralize by mechanisms not involving fusion-inhibition. The degree of antigenic variation in the F epitopes of clinical strains was examined by binding and neutralization tests. It appears that PIV3 frequently develops mutations that produce F epitopes which efficiently bind antibodies, but are completely resistant to neutralization by these antibodies.  相似文献   

15.
The present study was designed to determine the antibody specificity for the human immunodeficiency virus type 1 (HIV-1) V3 domains of infectious and noninfectious virions present in the serum of AIDS patients. To accomplish this, HIV-1 was isolated in the presence of autologous antibodies from the serum samples of six AIDS patients in HIV-1-negative donor peripheral blood mononuclear cells by short-term cultivation. The isolated virus, defined as the infectious cell-free virus (iCFV), was characterized by sequence analysis of the proviral DNA coding for the third hypervariable (V3) region of the external glycoprotein gp120. This was carried out by amplifying and cloning the V3 region. In all six cases studied, 20 randomly selected V3 clones derived from the proviral DNA of the iCFV, 20 clones from patient cell-free virus, and 20 clones from cell-integrated virus were sequenced to study the distribution and frequency of the intrapatient virus population. The number of major virus variants in the six patients ranged from three to nine. The various V3 sequences found in the AIDS patients showed the typical amino acid pattern of the syncytium-inducing and non-syncytium-inducing viral phenotypes characteristic for the late stage of infection. However, only one patient-specific iCFV variant was detected within the 20 V3 clones analyzed per virus isolation. For the six patients a total of 34 V3-loop variants, either iCFV or non-iCFV, was observed. All 34 V3-loop sequences were expressed as glutathione-S-transferase fusion proteins (V3-GST). The autologous antibody response to the V3-GST fusion proteins was studied by Western immunoblot analysis. A strong antibody response to almost all non-iCFV V3-GST proteins was found in the sera of the six patients. In contrast, the autologous antibody response to the six iCFV V3 loops was undetectable (in four patients) or very faint (in two patients) compared with that to the non-iCFV V3 loops. Five of the six iCFV loops showed positively charged amino acids at positions strongly associated with the syncytium-inducing phenotype. These findings suggest that our in vitro isolation system selects for virions which are not recognized by V3-specific antibodies and are infectious both in vitro and in vivo.  相似文献   

16.
Eggs deposited by different migrating wild bird species in pond farm areas in Hungary were examined for yolk antibodies to different variants of human A/H3N2 influenza virus. Antibodies to Victoria/75 and Texas/77 occurred in 17.9 and 32.0% of gull eggs, and 5.6 and 16.4% of common tern eggs, respectively, while antibodies to A/H1N1/77 occurred in roughly similar proportions (10.2 and 13.4%) in the eggs of both species. Infection of the gull and tern populations of given areas by human and avian influenza A viruses differed greatly in two consecutive hatching periods. While in 1978 7.6 and 1.1% of the gull and tern eggs, respectively, contained antibodies to the avian subtype Havl, no such antibodies were found in 1977. Subtype A/H3N2/Texas/77 virus was isolated from adult gulls and 1-3 weeks old gull chicks, and subtype H1N1 virus from mallard ducks. Three months before the onset of the Texas/77 epidemic, 95% of SPF chickens, and 71-81% of chickens hatched 3 months after termination of the A/H1N1/77 epidemic, had had HI, VN and SRH antibodies to the Texas/77 strain and A/H1N1/77 strains, respectively.  相似文献   

17.
Immunogenic tumor variants were previously derived after transplantation in vivo into nude mice of NIH/3T3-transformed cell lines. Nude-passaged cell lines were rejected by immunocompetent H-2q NIH mice, were recognized by specific CTL clones, and expressed new retroviral Ag. The aim of the present work was to investigate whether somatically acquired proviral sequences were present in the genome of nude-passaged cells and to test directly for a causative relationship between murine leukemia virus (MuLV) expression and immunogenicity. Southern blot analysis of PstI-digested DNA indicated that in contrast to the parental NIH/3T3 transformed cell lines (pT, T12N/5a, NS-1) all the nude-passaged immunogenic variants (pT-nude, T12N/5a-nude, NS-1-nude) contained newly acquired ecotropic-related proviruses. Immediately after in vitro establishment, these tumors displayed multiple integration sites as assessed by analysis of 3' proviral-cellular junctions. Long term in vitro culture of one of the cell lines (pT-nude) resulted in a cell line (pT-nude/vitro) that was clonal or oligo-clonal with respect to viral integration. Northern blot analysis established that the new proviruses were actively transcribed in all the immunogenic variants. To assess whether the somatically acquired ecotropic proviral sequences encode for target structures recognized by specific CTL, obtained after immunization of NIH mice with pT-nude, the parental cell line pT was transfected with plasmids containing the entire AKV MuLV genome, the cloned AKV gag or env genes. Screening of transfectants for their ability to stimulate the production of TNF by anti-pT-nude effectors indicated that cells transfected with the entire ecotropic virus or with MuLV-env gene products could be recognized by an NIH anti-pT-nude CTL line and NIH anti-pT-nude Kq-restricted CTL clones as well as the immunizing target pT-nude.  相似文献   

18.
HIV transmission via breastfeeding accounts for a considerable proportion of infant HIV acquisition. However, the origin and evolution of the virus population in breast milk, the likely reservoir of transmitted virus variants, are not well characterized. In this study, HIV envelope (env) genes were sequenced from virus variants amplified by single-genome amplification from plasmas and milk of 12 chronically HIV-infected, lactating Malawian women. Maximum likelihood trees and statistical tests of compartmentalization revealed interspersion of plasma and milk HIV env sequences in the majority of subjects, indicating limited or no compartmentalization of milk virus variants. However, phylogenetic tree analysis further revealed monotypic virus variants that were significantly more frequent in milk (median proportion of identical viruses, 29.5%; range, 0 to 61%) than in plasma (median proportion of identical viruses, 0%; range, 0 to 26%) (P = 0.002), suggesting local virus replication in the breast milk compartment. Moreover, clonally amplified virus env genes in milk produced functional virus Envs that were all CCR5 tropic. Milk and plasma virus Envs had similar predicted phenotypes and neutralization sensitivities to broadly neutralizing antibodies in both transmitting and nontransmitting mothers. Finally, phylogenetic comparison of longitudinal milk and plasma virus env sequences revealed synchronous virus evolution and new clonal amplification of evolved virus env genes in milk. The limited compartmentalization and the clonal amplification of evolving, functional viruses in milk indicate continual seeding of the mammary gland by blood virus variants, followed by transient local replication of these variants in the breast milk compartment.  相似文献   

19.
Y Suzuki  H Kato  C W Naeve    R G Webster 《Journal of virology》1989,63(10):4298-4302
Antigenic variants of influenza virus A/Mem/1/71-Bel/42 (H3N1) selected with monoclonal antibodies and having single substitutions in their hemagglutinins were examined for their ability to hemagglutinate and hemolyse erythrocytes coated with different gangliosides. The majority of variants, including one with a substitution near the receptor-binding site (Asn-133----Lys), did not differ from the parent in specificity for receptor molecules. However, a substitution in HA1 at residue 205 (Ser----Tyr), which is distant from the receptor-binding site in antigenic site D, affected hemagglutination and hemolysis of erythrocytes coated with sialyl-paraglobosides. The variant preferentially recognized N-acetylneuraminic acid-alpha 2,6-galactose linkages to sialylparaglobosides, whereas the parent and other variants preferentially recognized N-acetylneuraminic acid-alpha 2,3-galactose linkages. In the trimeric hemagglutinin molecule, residue 205 is located across the subunit interface from the receptor-binding site. The bulky hydrophobic tyrosine in the variant may cause a conformational change in the receptor-binding pocket on the neighboring subunit and influence receptor binding.  相似文献   

20.
We have previously identified 11 epitopes located in two topologically nonoverlapping antigenic sites (A and B) and a third bridging site (C) on the human type 3 parainfluenza virus (PIV3) hemagglutinin-neuraminidase (HN) glycoprotein by using monoclonal antibodies (MAbs) which inhibit hemagglutination and virus infectivity (K. L. Coelingh, C. C. Winter, and B. R. Murphy, Virology 143:569-582, 1985). We have identified three additional antigenic sites (D, E, and F) on the HN molecule by competitive-binding assays of anti-HN MAbs which have no known biological activity. Epitopes in sites A, D, and F are conserved on the bovine PIV3 HN glycoprotein and also among a wide range of human isolates. The dideoxy method was used to identify nucleotide substitutions in the HN genes of antigenic variants selected with neutralizing MAbs representing epitopes in site A which are shared by human and bovine PIV3. The deduced amino acid substitutions in the variants were located in separate hydrophilic stretches of HN residues which are conserved in the primary structures of the HN proteins of both human and bovine PIV3 strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号