首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This bench scale study investigated the suitability of MBT material for treatment by anaerobic digestion and the impacts of co-digestion of these wastes with sewage sludge. The results suggest that MBT material is amenable to anaerobic digestion with sewage sludge. The main problems for scale-up are related to the physical composition of the MBT material, the accumulation of heavy metals and other inert contaminants and the impact of both of these factors on final sludge quality. Full-scale trials would be required to assess the long-term impacts of MBT waste on anaerobic digestion, if this form of co-digestion were to be pursued. The material contamination that presents a barrier to the direct recycling of MBT material in land-applications is also a major hurdle in commercial co-digestion. Better quality input material would be likely to result in higher methane yields and fewer restrictions on the utilisation of the product in recycling.  相似文献   

2.
Biodrying is a variation of aerobic decomposition, used within mechanical–biological treatment (MBT) plants to dry and partially stabilise residual municipal waste. Biodrying MBT plants can produce a high quality solid recovered fuel (SRF), high in biomass content. Here, process objectives, operating principles, reactor designs, parameters for process monitoring and control, and their effect on biodried output quality are critically examined. Within the biodrying reactors, waste is dried by air convection, the necessary heat provided by exothermic decomposition of the readily decomposable waste fraction. Biodrying is distinct from composting in attempting to dry and preserve most of biomass content of the waste matrix, rather than fully stabilise it. Commercial process cycles are completed within 7–15 days, with mostly H2O(g) and CO2 loses of ca. 25–30% w/w, leading to moisture contents of <20% w/w. High airflow rate and dehumidifying of re-circulated process air provides for effective drying. We anticipate this review will be of value to MBT process operators, regulators and end-users of SRF.  相似文献   

3.
Zhu B  Gikas P  Zhang R  Lord J  Jenkins B  Li X 《Bioresource technology》2009,100(3):1122-1129
This study was conducted to determine the characteristics and biogas production potential of organic materials separated from municipal solid wastes using a rotary drum reactor (RDR) process. Four different types of wastes were first pretreated with a commercial RDR system at different retention times (1, 2 and 3 d) and the organic fractions were tested with batch anaerobic digesters with 2.6 g VS L(-1) initial loading. The four types of waste were: municipal solid waste (MSW), a mixture of MSW and paper waste, a mixture of MSW and biosolids, and a mixture of paper and biosolids. After 20 d of thermophilic digestion (50+/-1 degrees C), it was found that the biogas yields of the above materials were in the range of 457-557 mL g VS(-1) and the biogas contained 57.3-60.6% methane. The total solid and volatile solid reductions ranged from 50.2% to 65.0% and 51.8% to 66.8%, respectively. For each material, the change of retention time in the RDR from 1 to 3d did not show significant (alpha=0.05) influence on the biogas yields of the recovered organic materials. Further studies are needed to determine the minimum retention time requirements in the RDR system to achieve effective separation of organic from inorganic materials and produce suitable feedstock for anaerobic digesters.  相似文献   

4.
Mechanical biological treatment (MBT) of mixed waste streams is becoming increasingly popular as a method for treating municipal solid waste (MSW). Whilst this process can separate many recyclates from mixed waste, the resultant organic residue can contain high levels of heavy metals and physical and biological contaminants. This review assesses the potential end uses and sustainable markets for this organic residue. Critical evaluation reveals that the best option for using this organic resource is in land remediation and restoration schemes. For example, application of MSW-derived composts at acidic heavy metal contaminated sites has ameliorated soil pollution with minimal risk. We conclude that although MSW-derived composts are of low value, they still represent a valuable resource particularly for use in post-industrial environments. A holistic view should be taken when regulating the use of such composts, taking into account the specific situation of application and the environmental pitfalls of alternative disposal routes.  相似文献   

5.

Background, aim, and scope  

Municipal solid waste (MSW) management organizations commonly address both waste treatment and diversion activities in their management plans, yet the application of life cycle assessment (LCA) to MSW rarely incorporates the effects of waste prevention activities (WPAs) in an explicit manner. The primary objective of this paper is to further develop the methodological options for attributional LCAs of MSW to address waste prevention, including product reuse.  相似文献   

6.

Background, aim, and scope  

This paper presents a study related to the application of the reliability-based life cycle assessment (LCA) to assess different alternatives for solid waste management in the Setúbal peninsula, Portugal. The current system includes waste collection, transport, sorting, recycling, and mechanical and biological treatment (MBT) by means of aerobic treatment and landfill. In addition, some future expansion plans are discussed.  相似文献   

7.
The effect of addition of a municipal solid waste (MSW) compost and its water-soluble and humic fraction to suppress the effect of Pythium ultimum on pea plants was studied and compared with that of a chemical pesticide (metalaxyl). The biotic and abiotic characteristics of compost involved in the biocontrol effects of these materials were also evaluated. The addition into soil of whole composts and their humic fractions reduced the effect of the pathogen on pea plants, significantly reducing the number of root lesions and Pythium populations and avoiding reductions of plant growth. The greatest pathogen suppression was achieved with the chemical pesticide. However, it also caused a significant decrease in the number of nontarget bacteria and fungi and on beneficial soil microorganisms such as Trichoderma and Pseudomonas. Addition of organic amendments increased population size of nontarget and specific biocontrol microorganisms. The humic fraction showed similar results to compost. All this suggests that metalaxyl has a nonspecific effect, producing adverse effects on aspects of soil quality. This was avoided if the chemical pesticide was reduced and replaced by organic amendments such as an MSW compost or its humic fraction.  相似文献   

8.
Background, aim, and scope  Life cycle assessment (LCA) applied to alternative waste management strategies is becoming a commonly utilised tool for decision makers. This LCA study analyses together material and energy recovery within integrated municipal solid waste (MSW) management systems, i.e. the recovery of materials separated with the source-separated collection of MSW and the energy recovery from the residual waste. The final aim is to assess the energetic and environmental performance of the entire MSW management system and, in particular, to evaluate the influence of different assumptions about recycling on the LCA results. Materials and methods  The analysis uses the method of LCA and, thus, takes into account that any recycling activity influences the environment not only by consuming resources and releasing emissions and waste streams but also by replacing conventional products from primary production. Different assumptions about the selection efficiencies of the collected materials and about the quantity of virgin material substituted by the reprocessed material were made. Moreover, the analysis considers that the energy recovered from the residual waste displaces the same quantity of energy produced in conventional power plants and boilers fuelled with fossil fuels. Results  The analysis shows, in the expanded model of the material and energy recovering chain, that the environmental gains are higher than the environmental impacts. However, when we reduce the selection efficiencies by 15%, the impact indicators worsen by a percentage included between 10% and 26%. This phenomenon is even more evident when we consider a substitution ratio of 1:<1 for paper and plastic: The worsening is around 15–20% for all the impact indicators except for the global warming for which the worsening is up to 45%. Discussion  Hypotheses about the selection efficiencies of the source-separated collected materials and about the substitution ratio have a great influence on the LCA results. Consequently, policy makers have to be aware of the fact that the impacts of an integrated MSW management system are highly dependent on the assumptions made in the modelling of the material recovery, as well as in the modelling of the energy recovery. Conclusions  LCA allows to evaluate the impacts of integrated systems and how these impacts change when the assumptions made during the modelling of the different single parts of the system are modified. Due to the significant impacts that hypotheses about material recovery have in the results, they should be expressed in a very transparent way in the report of LCA studies, together with the assumptions made about energy recovery. Recommendations and perspectives  The results suggest that the hypotheses about the value of the substitution ratio are very important, and the case of wood should therefore be better analysed and a substitution ratio of 1:<1 should be used, as for paper and plastic. It seems that the assumptions made about which material is replaced by the recycled one are very important too, and in this sense, more research is needed about what the recycled plastic may effectively substitute, in particular the polyolefin mix.  相似文献   

9.
10.
In product specific Life Cycle Assessment the environmental impacts resulting from the disposal of the product under study frequently have a strong influence on the overall result. Since the major disposal system - the Municipal Solid Waste Incineration (MSWI) and the Sanitary Landfill (SL) - are complex processes specially adapted for the treatment of a large variety of different types of waste with varying input composition, the direct determination of the environmental impacts coming from a single input component for example by measurements is not practicable. Two methods (Part I: MSWI, Part II: SL) of allocating the inventory positions caused by the processes MSWI and SL to individual input fractions are presented. The approaches described are based on process modelling for the calculation of the material and energy inputs and outputs of the disposal systems. For the MSWI process the material related allocation is carried out by means of a study of difference: The input/output balance is calculated with the process model for two variants with different input compositions. The input for the first variant consists of waste of average composition enlarged by a small amount of special waste fraction under study. In the second variant the calculation is done with an input consisting only of waste with average composition. The difference formed between the results of process calculation for both variants gives the effects of the treatment of the waste fraction under study in the disposal process.  相似文献   

11.
Background, Aims and Scope During the combustion of municipal solid waste (MSW), energy is produced which can be utilized to generate electricity. However, electricity production from incineration has to be evaluated from the point view of the environmental performance. In this study, environmental impacts of electricity production from waste incineration plant in Thailand are compared with those from Thai conventional power plants. Methods The evaluation is based on a life cycle perspective using life cycle assessment (LCA) as the evaluation tool. Since MSW incineration provides two services, viz., waste management and electricity production, the conventional power production system is expanded to include landfilling without energy recovery, which is the most commonly used waste management system in Thailand, to provide the equivalent function of waste management. Results The study shows that the incineration performs better than conventional power plants vis-à-vis global warming and photochemical ozone formation, but not for acidification and nutrient enrichment. Discussion There are some aspects which may influence this result. If landfilling with gas collection and flaring systems is included in the analysis along with conventional power production instead of landfilling without energy recovery, the expanded system could become more favorable than the incineration in the global warming point of view. In addition, if the installation of deNOx process is employed in the MSW incineration process, nitrogen dioxide can be reduced with a consequent reduction of acidification and nutrient enrichment potentials. However, the conventional power plants still have lower acidification and nutrient enrichment potentials. Conclusions The study shows that incineration could not play the major role for electricity production, but in addition to being a waste management option, could be considered as a complement to conventional power production. To promote incineration as a benign waste management option, appropriate deNOx and dioxin removal processes should be provided. Separation of high moisture content waste fractions from the waste to be incinerated and improvement of the operation efficiency of the incineration plant must be considered to improve the environmental performance of MSW incineration. Recommendations This study provides an overall picture and impacts, and hence, can support a decision-making process for implementation of MSW incineration. The results obtained in this study could provide valuable information to implement incineration. But it should be noted that the results show the characteristics only from some viewpoints. Outlook Further analysis is required to evaluate the electricity production of the incineration plant from other environmental aspects such as toxicity and land-use.  相似文献   

12.
The evaluation of municipal solid waste (MSW) services using management systems (ISO 9001, ISO 14001, and OHSAS 18001) is important for improving the quality of such services. In this study, we prioritize and select performance indicators (PIs) for MSW service evaluation and organize them in a Balanced Scorecard (BSC) tool. The tool is applied for the period 2008–2011 to the public administration organization responsible for waste management in Loulé Municipality, Portugal, a region characterized by strong tourist seasonality. MSW management priorities are well established through EU directives and the application of PIs should allow service objectives to be quantified, including reducing the production of waste, increasing the quantity of recyclables, improving clients’ satisfaction with the service, improving workers’ motivation, decreasing the quantities of waste in landfills, and reducing service costs. The results indicate that the use of indicators and BSC tool can assess the strategic objectives of the organization and monitor its performance over time. The overall BSC assessment ratings were 51.7%, 66.1%, and 70.1% for 2009, 2010, and 2011, respectively, indicating an improvement in overall service performance over time. The results demonstrate that monitoring seasonal variations of PIs in tourist regions is important since these variations can help to explain annual changes in the factors affecting waste services management, their impacts on overall service quality, and the best time for measures to be applied. Based on this case study, the BSC can effectively contribute to improvements in the quality and cost of MSW services in areas characterized by strong seasonal variations in population and waste.  相似文献   

13.
Tools based on Life Cycle Thinking (LCT) are routinely used to assess the environmental and economic performance of integrated municipal solid waste (MSW) management systems. Life Cycle Assessment (LCA) is used to quantify the environmental impacts, whereas Life Cycle Costing (LCC) allows financial and economic assessments. These tools require specific experience and knowledge, and a large amount of data.The aim of this project is the definition of an indicator for the assessment of the environmental and economic sustainability of integrated MSW management systems. The challenge is to define a simple but comprehensive indicator that may be calculated also by local administrators and managers of the waste system and not only by scientists or LCT experts.The proposed indicator is a composite one, constituted by three individual indicators: two of them assess the environmental sustainability of the system by quantifying the achieved material and energy recovery levels, while the third one quantifies the costs. The composite indicator allows to compare different integrated MSW management systems in an objective way, and to monitor the performance of a system over time.The calculation of the three individual indicators has been tested on the integrated MSW management systems of the Lombardia Region (Italy) as well as on four of its provinces (Milano, Bergamo, Pavia, and Mantova).  相似文献   

14.
Compost has been proposed as a means of simultaneously diverting organic materials from landfills while producing a valuable product that improves tilth, organic matter content and nutrient supply of agricultural soils. Composts manufactured from different source materials may have markedly different properties however, even if they meet all regulatory requirements. We compared the capacity of composts made from three different combinations of organic wastes (horse manure and bedding, mink farm wastes, municipal solid waste (MSW) and sewage sludge) along with clarifier solids from a chemo-thermomechanical pulp mill, to enhance the growth of tomato (Lycopersicon esculentum L.) seedlings grown in nutrient-poor organic potting soil. Germination and seedling emergence of tomatoes, cress (Lapidium sativum L.) or radish (Raphanus sativus L.) were tested to assess phytotoxicity of the four amendments. Mink farm compost and horse manure compost stimulated root and shoot growth of tomato seedlings but MSW compost and pulp mill solids were strongly inhibitory. MSW compost and unamended potting soil also inhibited seedling emergence and pulp mill solids produced stunting and deformities in radish and cress seedlings. Both toxic constituents and nutrient imbalances may be responsible for the growth-inhibiting effects of these amendments. Application of pulp mill solids to agricultural soil without composting may lead to deleterious effects on vegetable crops.  相似文献   

15.
Soil distribution of heavy metals caused by municipal solid waste (MSW) deposition and its implications for MSW management system in emerging cities was investigated in Abeokuta, Nigeria. Results indicated that the highest concentrations of Cu, Cr, Mn, and Zn were observed at 0-40 cm while Pb, Fe, and Ni accumulated at depths below 40 cm. Soils affected by waste deposits from market and auto-mechanic sites showed high levels of Fe, Cr, Pb, Cu, Mn, and Zn. The accumulation of heavy metals in the soils was probably due to the formation of metal-organo-complexes. Therefore, source separation of MSW with proper management systems is proposed to improve the indiscriminate surface dumping practiced at present, while the use of wastes affected sites for cultivation should be discouraged.  相似文献   

16.
赵薇  梁赛  于杭  邓娜 《生态学报》2017,37(24):8197-8206
结合城市生活垃圾管理系统特征,系统归纳基于生命周期评价(Life cycle assessment,LCA)方法的城市生活垃圾管理模型的发展现状,并对LCA方法在城市生活垃圾管理中的实践以及在我国开展城市生活垃圾管理LCA研究的应用前景进行评述。分析表明,LCA是城市生活垃圾管理领域的重要工具之一,基于LCA方法的城市生活垃圾管理模型在全生命周期环境影响评价与识别、处置工艺选择与改进、可持续生活垃圾管理决策支持等方面具有十分重要的应用价值。中国在本地化生活垃圾管理系统LCA模型开发、清单数据库和评价指标体系构建以及与其他研究方法集成等方面面临挑战。  相似文献   

17.
High emissions of nitrous oxide (N(2)O) have recently been documented at municipal solid waste (MSW) landfills. However, the biodiversity of the bacterial populations involved remains unexplored. In this study, we investigated communities of ammonia-oxidizing bacteria (AOB) and denitrifying bacteria associated with the leachates from three MSW disposal sites by examining the diversity of the ammonia monooxygenase structural gene amoA and the nitrous oxide reductase gene nosZ, respectively. Cloning and phylogenetic analysis of the functional genes revealed novel and similar groups of prokaryotes involved in nitrogen cycling in the leachates with different chemical compositions. All amoA sequences recovered grouped within the Nitrosomonas europaea cluster in the Betaproteobacteria, with the vast majority showed only relatively moderate sequence similarities to known AOB but were exclusively most similar to environmental clones previously retrieved from wastewater treatment plants. All nosZ sequences retrieved did not cluster with any hitherto reported nosZ genes and were only remotely related to recognized denitrifiers from the Gammaproteobacteria and thus could not be affiliated. Significant overlap was found for the three denitrifying nosZ leachate communities. Our study suggests a significant selection of the novel N-cycling groups by the unique environment at these MSW disposal sites.  相似文献   

18.
19.
20.
The current system of production and consumption needs end‐of‐life disposal to function, but the linkage between upstream production‐consumption with the downstream landfill as terminus is, at best, a tenuous, one‐way relationship, suggesting a partial system failure. A starting point to fix this link is to confront, systematically, the messy “black box” that is mixed waste landfilling, interrogate its contents locally, and determine a baseline that can be used to scale up results. Here, we develop a detailed model characterizing landfilled municipal solid waste (MSW) in the United States across the dimensions of material quantity, quality, location, and time. The model triangulates measurements spanning 1,161 landfills (representing up to 95% of landfilled MSW) and 15,169 solid waste samples collected and analyzed at 222 sites across the United States. We confirm that landfilled quantities of paper (63 million megagrams [Mg]), food waste (35 million Mg), plastic (32 million Mg, textiles (10 million Mg), and electronic waste (3.5 million Mg) are far larger than computed by previous top‐down U.S. government estimates. We estimate the cost of MSW landfill disposal in 2015 (10.7 billion U.S. dollars [USD]) and gross lost commodity value of recyclable material (1.4 billion USD). Further, we estimate landfill methane emissions to be up to 14% greater (mass basis) than the 2015 U.S. inventory. By principally relying on measurements of waste quantity and type that are recorded annually, the model can inform more effective, targeted interventions to divert waste materials from landfill disposal, improve local, regional, and national emission estimates, enhance dissipative loss estimates in material flow analyses, and illuminate the dynamics linking material, energy, and economic dimensions to production, consumption, and disposal cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号