首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biodegradation of organic matter is required to reduce the potential of municipal solid waste for producing gaseous emissions and leaching contaminants. Therefore, we studied leachates of an aerobic-treated waste from municipal solids and a sewage sludge mixture that were re-circulated to decrease the concentration of biodegradable organic matter in laboratory-scale reactors. After 12 months, the total organic C and biological and chemical oxygen demands were reduced, indicating the biodegradation of organic compounds in the leachates. Curie-point pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and pyrolysis-field ionization mass spectrometry (Py-FIMS) revealed that phenols, alkylaromatic compounds, N-containing compounds and carbohydrates were the predominate compounds in the leachates and solid waste. Leachate re-circulation led to a higher thermal stability of the residual organic matter as indicated by temperature-resolved Py-FIMS. Admixture of sewage sludge to solid waste was less effective in removing organic compounds from the leachates. It resulted in drastic higher and more bio-resistant loads of organic matter in the leachates and revealed increased proportions of alkylaromatic compounds. The biodegradation of organic matter in leachates, re-circulated through municipal solid waste, offers the potential for improved aerobic waste treatments and should be investigated on a larger scale.  相似文献   

2.
X.F. Lou  J. Nair 《Bioresource technology》2009,100(16):3792-3798
Municipal solid waste is a significant contributor to greenhouse gas emissions through decomposition and life-cycle activities processes. The majority of these emissions are a result of landfilling, which remains the primary waste disposal strategy internationally. As a result, countries have been incorporating alternative forms of waste management strategies such as energy recovery from landfill gas capture, aerobic landfilling (aerox landfills), pre-composting of waste prior to landfilling, landfill capping and composting of the organic fraction of municipal solid waste. As the changing global climate has been one of the major environmental challenges facing the world today, there is an increasing need to understand the impact of waste management on greenhouse gas emissions. This review paper serves to provide an overview on the impact of landfilling (and its various alternatives) and composting on greenhouse gas emissions taking into account streamlined life cycle activities and the decomposition process. The review suggests greenhouse gas emissions from waste decomposition are considerably higher for landfills than composting. However, mixed results were found for greenhouse gas emissions for landfill and composting operational activities. Nonetheless, in general, net greenhouse gas emissions for landfills tend to be higher than that for composting facilities.  相似文献   

3.
Mahar RB  Liu J  Li H  Nie Y 《Biodegradation》2009,20(3):319-330
The conventional landfilling does not promote sustainable waste management due to uncontrolled emissions which potentially degrade the environment. Pretreatment of municipal solid waste prior to landfilling significantly enhances waste stabilization, reduces the emissions and provides many advantages. Therefore, pretreatment of municipal solid waste methods were investigated. The major objectives of biological pretreatment are to degrade most easily degradable organic matters of MSW in a short duration under controlled conditions so as to produce desired quality for landfill. To investigate the suitable pretreatment method prior to landfilling for developing countries four pretreatment simulators were developed in the laboratory: (i) anaerobic simulator (R1), (ii) aerobic pretreatment simulator by natural convection of air (R2), (iii) aerobic pretreatment simulator by natural convection of air with leachate recirculation (R3) and (iv) forced aeration and leachate recirculation (R4). During the pretreatment organic matter, elemental composition, i.e., carbon, hydrogen, nitrogen and settlement were determined for bench scale experiments. A two-component kinetic model is proposed for the biodegradation of organic matter. Biodegradation kinetic constants were determined for readily and slowly degradable organic matter. The biodegradation of organic matter efficiency in terms of kinetic rate constants for the pretreatment simulators was observed as R4 > R3 > R2 > R1. Biodegradation rate constants for readily degradable matter in simulators R4 and R3 were 0.225 and 0.222 per day. R3 and R4 simulators were more effective in reducing methane emissions about 45% and 55%, respectively, as compared to anaerobic simulator R1. Pretreatment of MSW, by natural convection of air with leachate recirculation R3 is sustainable method to reduce the emissions and to stabilize the waste prior to landfilling.  相似文献   

4.
Goal and Background  Geographical and technological differences in Life Cycle Inventory data are an important source for uncertainty in the result of Life Cycle Assessments. Knowledge on their impact on the result of an LCA is scarce, and also knowledge on how to manage them in an LCA case study. Objective  Goal of this paper is to explore these differences for municipal solid waste incinerator plants, and to develop recommendations for managing technological and geographical differences. Methodology  The paper provides a definition of technological and geographical differences, and analyses their possible impacts. In a case study, the differences are caused intentionally in ‘games’, by virtually transplanting incineration plants to a different location and by changing parameters such as the composition of the waste input incinerated. The games are performed by using a modular model for municipal solid waste incinerator plants. In each case, an LCA including an Impact Assessment is calculated to trace the impact of these changes, and the results are compared. Conclusions  The conclusions of the paper are two-fold: (1) reduce the differences in inventory data where their impact on the result is high; where it is possible reducing them to a great extent, and the effort for performing the change acceptable; in the case of incineration plants: Adapt the flue gas treatment, especially a possible DeNOx step, to the real conditions; (2) make use of modular process models that allow adapting plant parameters to better meet real conditions, but be aware of possible modelling errors. The paper invites the scientific community to validate the model used for a waste incinerator plant, and suggest putting up similar models for other processes, preferably those of similar relevance for Life Cycle Inventories.  相似文献   

5.
Incineration is currently a widely used method for the disposal of municipal solid waste in major American cities. The efficacy of several incinerator types to destroy bacteria associated with solid waste was evaluated, with emphasis on fecal and food sources. Samples of solid waste and its residue after incineration, taken from four incinerators of different design, were homogenized in phosphate buffer at pH 7.5. Samples of these homogenates were quantitatively examined for (i) total bacterial cell number, (ii) total coliforms, (iii) fecal coliforms, and (iv) heat-resistant spore-formers. Survival of coliforms in the residue after incineration was considered an indication of inadequate incinerator design or operation, or both. Of the four incinerators tested, only one produced residue devoid of fecal coliforms; three others produced residue containing fecal coliform populations of 5 to 2,400 per g. An inverse relationship was noted between the efficacy of incinerators in destroying fecal coliforms and the heat resistance (80 C) of total bacterial populations surviving in their respective residues. This could be due to the selection of heat-resistant cells during incineration.  相似文献   

6.
Goal and Background  Geographical and technological differences in Life Cycle Inventory data are an important source for uncertainty in the result of Life Cycle Assessments. Knowledge on their impact on the result of an LCA is scarce, and also knowledge on how to manage them in an LCA case study. Objective  Goal of this paper is to explore these differences for municipal solid waste incinerator plants, and to develop recommendations for managing technological and geographical differences. Methodology  The paper provides a definition of technological and geographical differences, and analyses their possible impacts. In a case study, the differences are caused intentionally in ‘games’, by virtually transplanting incineration plants to a different location and by changing parameters such as the composition of the waste input incinerated. The games are performed by using a modular model for municipal solid waste incinerator plants. In each case, an LCA including an Impact Assessment is calculated to trace the impact of these changes, and the results are compared. Conclusions  The conclusions of the paper are two-fold: (1) reduce the differences in inventory data where their impact on the result is high; where it is possible reducing them to a great extent, and the effort for performing the change acceptable; in the case of incineration plants: Adapt the flue gas treatment, especially a possible DeNOx step, to the real conditions; (2) make use of modular process models that allow adapting plant parameters to better meet real conditions, but be aware of possible modelling errors. We invite the scientific community to validate the model used for a waste incinerator plant, and suggest putting up similar models for other processes, preferably those of similar relevance for Life Cycle Inventories.  相似文献   

7.
For the inventory analysis of environmental impacts associated with products in Life Cycle Assessment (LCA) there is a great need for estimates of emissions from waste products disposed at municipal solid waste landfills (product specific emissions). Since product specific emissions can not be calculated or measured directly at the landfills, they must be estimated by modeling of landfill processes. This paper presents a landfill model based on a large number of assumptions and approximations concerning landfill properties, waste product properties and characteristics of various kinds of environmental protection systems (e.g. landfill gas combustion units and leachate treatment units). The model is useful for estimation of emissions from waste products disposed in landfills and it has been made operational in the computer tool LCA-LAND presented in a following paper. In the model, waste products are subdivided into five groups of components: general organic matter (e.g. paper), specific organic compounds (e.g. organic solvents), inert components (e.g. PVC), metals (e.g. cadmium), and inorganic non-metals (e.g. chlorine,) which are considered individually. The assumptions and approximations used in the model are to the extent possible scientifically based, but where scientific information has been missing, qualified estimates have been made to fulfill the aim of a complete tool for estimation of emissions. Due to several rough simplifications and missing links in our present understanding of landfills, the uncertainty associated with the model is relatively high.  相似文献   

8.
The leachability of metals from fly ash produced by a coal‐fired electric plant and a municipal waste incinerator under acidic conditions was experimentally investigated. The results of these column‐leaching experiments show that a decrease in the pH of the leachant favors the extraction of metal ions from solid particles of both coal combustion fly ash and municipal waste incinerator fly ash. The significant increase in the extraction of cadmium, chromium, zinc, lead, mercury, and silver ions from the ash is attributed to the instability of the mineral phases that contain these metals under acidic conditions.  相似文献   

9.
Summary Co-disposal of 12 compounds representing major organic classes (aromatic hydrocarbons, halogenated hydrocarbons, pesticides, phenols, and phthalate esters) with shredded municipal solid waste was tested using a laboratory-scale column and pilot-scale lysimeter to characterize transport and transformation phenomena including sorption, volatilization and bioassimilation. Leachate and gases emitted from the lysimeters were examined for identifiable products of biotransformation. The results of this investigation provided a mechanistic evaluation of the attenuating and assimilative capacity of municipal solid waste landfills for specific organic compounds. Physical/chemical organic compound characteristics were related to refuse characteristics and composition to predict compound fate. Such knowledge is useful in developíng landfill management and operational strategies consistent with the need for control of pollutant releases.  相似文献   

10.
广州市固体废物管理与处置现状及对策   总被引:3,自引:0,他引:3  
黄小平  胡迪琴 《生态科学》2002,21(2):141-146
分析广州市工业固体废物、危险废物、生活垃圾、余泥渣土等管理与处置现状,揭示广州市现有固体废物管理处置存在的主要问题,并提出对策建议。分析表明,近年广州市工业固体废物年产生量呈上升趋势,工业固体废物排放量有所回升;1999年危险废物实现零排放,医疗垃圾的集中处置率达100%;居民生活垃圾清运处置率达100%。生活垃圾分类收集率为26%,加快了垃圾填埋场的改造和建设;余泥渣土的管理逐步规范化,市区余泥渣土排放工地申领排放证率保持100%。存在问题包括管理上欠长远规划、处置技术落后、二次污染、资源回收率低、资金匮乏等,尤其缺乏对危险废物、废旧电池的集中处置机构。  相似文献   

11.
The life-cycle greenhouse gaseous emissions and primary exergy resources consumption associated with a horizontal subsurface flow constructed wetland (HSSF) were investigated. The subject of study was a wetland for municipal wastewater treatment with a 700-person-equivalent capacity. The effects of two types of emergent aquatic macrophytes (Phragmites australis and Schoenoplectus californicus) and seasonality on greenhouse gas (GHG) gas emissions, the environmental remediation cost (ERC) and the specific environmental remediation cost (SERC) were assessed. The results indicate that GHG emissions per capita (12–22 kgCO2eq/p.e/yr) and primary exergy resources consumed (24–27 MJ/m3) for the HSSF are lower than those of a conventional wastewater treatment plant (67.9 kgCO2eq/p.e/yr and 96 MJ/m3). The SERC varied between 176 and 216 MJ/kg biological oxygen demand (BOD5) removal, which should be further reduced by 20% for an improved BOD5 removal efficiency above 90%. The low organic matter removal efficiency is associated with a high organic load and low bacterial development. Seasonality has a marked effect on the organic removal efficiency and the SERC, but the macrophyte species does not.  相似文献   

12.
The biological stabilisation of the organic fraction of municipal solid waste (OFMSW) into a form stable enough for land application can be achieved via aerobic or anaerobic treatments. To investigate the rates of degradation (e.g. via electron equivalents removed, or via carbon emitted) of aerobic and anaerobic treatment, OFMSW samples were exposed to computer controlled laboratory-scale aerobic (static in-vessel composting), and anaerobic (thermophilic anaerobic digestion with liquor recycle) treatment individually and in combination. A comparison of the degradation rates, based on electron flow revealed that provided a suitable inoculum was used, anaerobic digestion was the faster of the two waste conversion process. In addition to faster maximum substrate oxidation rates, anaerobic digestion (followed by post-treatment aerobic maturation), when compared to static composting alone, converted a larger fraction of the organics to gaseous end-products (CO2 and CH4), leading to improved end-product stability and maturity, as measured by compost self-heating and root elongation tests, respectively. While not comparable to windrow and other mixed, highly aerated compost systems, our results show that in the thermophilic, in-vessel treatment investigated here, the inclusion of a anaerobic phase, rather than using composting alone, improved hydrolysis rates as well as oxidation rates and product stability. The combination of the two methods, as used in the DiCOM® process, was also tested allowing heat generation to thermophilic operating temperature, biogas recovery and a low odour stable end-product within 19 days of operation.  相似文献   

13.
The influence of different organic fraction of municipal solid wastes during anaerobic thermophilic (55 degrees C) treatment of organic matter was studied in this work: food waste (FW), organic fraction of municipal solid waste (OFMSW) and shredded OFMSW (SH_OFMSW). All digester operated at dry conditions (20% total solids content) and were inoculated with 30% (in volume) of mesophilic digested sludge. Experimental results showed important different behaviours patterns in these wastes related with the organic matter biodegradation and biogas and methane production. The FW reactor showed the smallest waste biodegradation (32.4% VS removal) with high methane production (0.18 LCH4/gVS); in contrast the SH_OFMSW showed higher waste biodegradation (73.7% VS removal) with small methane production (0.05 LCH4/g VS). Finally, OFMSW showed the highest VS removal (79.5%) and the methane yield reached 0.08 LCH4/g VS. Therefore, the nature of organic substrate has an important influence on the biodegradation process and methane yield. Pre-treatment of waste is not necessary for OFMSW.  相似文献   

14.
Background, aim, and scope  Composting is a viable technology to treat the organic fraction of municipal solid waste (OFMSW) because it stabilizes biodegradable organic matter and contributes to reduce the quantity of municipal solid waste to be incinerated or land-filled. However, the composting process generates environmental impacts such as atmospheric emissions and resources consumption that should be studied. This work presents the inventory data and the study of the environmental impact of two real composting plants using different technologies, tunnels (CT) and confined windrows (CCW). Materials and methods  Inventory data of the two composting facilities studied were obtained from field measurements and from plant managers. Next, life cycle assessment (LCA) methodology was used to calculate the environmental impacts. Composting facilities were located in Catalonia (Spain) and were evaluated during 2007. Both studied plants treat source separated organic fraction of municipal solid waste. In both installations the analysis includes environmental impact from fuel, water, and electricity consumption and the main gaseous emissions from the composting process itself (ammonia and volatile organic compounds). Results and discussion  Inventory analysis permitted the calculation of different ratios corresponding to resources consumption or plant performance and process yield with respect to 1 t of OFMSW. Among them, it can be highlighted that in both studied plants total energy consumption necessary to treat the OFMSW and transform it into compost was between 130 and 160 kWh/t OFMSW. Environmental impact was evaluated in terms of global warming potential (around 60 kg CO2/t OFMSW for both plants), acidification potential (7.13 and 3.69 kg SO2 eq/t OFMSW for CT and CCW plant respectively), photochemical oxidation potential (0.1 and 3.11 kg C2H4 eq/t OFMSW for CT and CCW plant, respectively), eutrophication (1.51 and 0.77 kg /t OFMSW for CT and CCW plant, respectively), human toxicity (around 15 kg 1,4-DB eq/t OFMSW for both plants) and ozone layer depletion (1.66 × 10−5 and 2.77 × 10−5 kg CFC−11 eq/t OFMSW for CT and CCW plant, respectively). Conclusions  This work reflects that the life cycle perspective is a useful tool to analyze a composting process since it permits the comparison among different technologies. According to our results total energy consumption required for composting OFMSW is dependent on the technology used (ranging from 130 to 160 kWh/t OFMSW) as water consumption is (from 0.02 to 0.33 m3 of water/t OFMSW). Gaseous emissions from the composting process represent the main contribution to eutrophication, acidification and photochemical oxidation potentials, while those contributions related to energy consumption are the principal responsible for global warming. Recommendations and perspectives  This work provides the evaluation of environmental impacts of two composting technologies that can be useful for its application to composting plants with similar characteristics. In addition, this study can also be part of future works to compare composting with other OFMSW treatments from a LCA perspective. Likewise, the results can be used for the elaboration of a greenhouse gasses emissions inventory in Catalonia and Spain.  相似文献   

15.
Goal and Scope  The potential environmental impacts associated with two landfill technologies for the treatment of municipal solid waste (MSW), the engineered landfill and the bioreactor landfill, were assessed using the life cycle assessment (LCA) tool. The system boundaries were expanded to include an external energy production function since the landfill gas collected from the bioreactor landfill can be energetically valorized into either electricity or heat; the functional unit was then defined as the stabilization of 600 000 tonnes of MSW and the production of 2.56x108 MJ of electricity and 7.81x108 MJ of heat. Methods  Only the life cycle stages that presented differences between the two compared options were considered in the study. The four life cycle stages considered in the study cover the landfill cell construction, the daily and closure operations, the leachate and landfill gas associated emissions and the external energy production. The temporal boundary corresponded to the stabilization of the waste and was represented by the time to produce 95% of the calculated landfill gas volume. The potential impacts were evaluated using the EDIP97 method, stopping after the characterization step. Results and Discussion  The inventory phase of the LCA showed that the engineered landfill uses 26% more natural resources and generates 81% more solid wastes throughout its life cycle than the bioreactor landfill. The evaluated impacts, essentially associated with the external energy production and the landfill gas related emissions, are on average 91% higher for the engineered landfill, since for this option 1) no energy is recovered from the landfill gas and 2) more landfill gas is released untreated after the end of the post-closure monitoring period. The valorization of the landfill gas to electricity or heat showed similar environmental profiles (1% more raw materials and 7% more solid waste for the heat option but 13% more impacts for the electricity option). Conclusion and Recommendations  The methodological choices made during this study, e.g. simplification of the systems by the exclusion of the identical life cycle stages, limit the use of the results to the comparison of the two considered options. The validity of this comparison could however be improved if the systems were placed in the larger context of municipal solid waste management and include activities such as recycling, composting and incineration.  相似文献   

16.
17.
Microbiological degradation of pesticides in yard waste composting.   总被引:2,自引:0,他引:2       下载免费PDF全文
Changes in public opinion and legislation have led to the general recognition that solid waste treatment practices must be changed. Solid-waste disposal by landfill is becoming increasingly expensive and regulated and no longer represents a long-term option in view of limited land space and environmental problems. Yard waste, a significant component of municipal solid waste, has previously not been separated from the municipal solid-waste stream. The treatment of municipal solid waste including yard waste must urgently be addressed because disposal via landfill will be prohibited by legislation. Separation of yard waste from municipal solid waste will be mandated in many localities, thus stressing the importance of scrutinizing current composting practices in treating grass clippings, leaves, and other yard residues. Yard waste poses a potential environmental health problem as a result of the widespread use of pesticides in lawn and tree care and the persistence of the residues of these chemicals in plant tissue. Yard waste containing pesticides may present a problem due to the recalcitrant and toxic nature of the pesticide molecules. Current composting processes are based on various modifications of either window systems or in-vessel systems. Both types of processes are ultimately dependent on microbial bioconversions of organic material to innocuous end products. The critical stage of the composting process is the thermophilic phase. The fate and mechanism of removal of pesticides in composting processes is largely unknown and in need of comprehensive analysis.  相似文献   

18.
Life cycle assessment of municipal waste water systems   总被引:3,自引:0,他引:3  
Life Cycle Assessment was applied to municipal planning in a study of waste water systems in Bergsjön, a Göteborg suburb, and Hamburgsund, a coastal village. Existing waste water treatment consists of mechanical, biological and chemical treatment. The heat in the waste water from Bergsjön is recovered for the district heating system. One alternative studied encompassed pretreatment, anaerobic digestion or drying of the solid fraction and treatment of the liquid fraction in sand filter beds. In another alternative, urine, faeces and grey water would separately be conducted out of the buildings. The urine would be used as fertilizer, whereas faeces would be digested or dried, before used in agriculture. The grey water would be treated in filter beds. Changes in the waste water system would affect surrounding technical systems (drinking water production, district heating and fertilizer production). This was approached through system enlargement. For Hamburgsund, both alternatives showed lower environmental impact than the existing system, and the urine separation system the lowest. Bergsjön results were more difficult to interpret. Energy consumption was lowest for the existing system, whereas air emissions were lower for the alternatives. Water emissions increased for some parameters and decreased for others. Phosphorous recovery was high for all three alternatives, whereas there was virtually no nitrogen recovery until urine separation was introduced.  相似文献   

19.
Background, Aims and Scope During the combustion of municipal solid waste (MSW), energy is produced which can be utilized to generate electricity. However, electricity production from incineration has to be evaluated from the point view of the environmental performance. In this study, environmental impacts of electricity production from waste incineration plant in Thailand are compared with those from Thai conventional power plants. Methods The evaluation is based on a life cycle perspective using life cycle assessment (LCA) as the evaluation tool. Since MSW incineration provides two services, viz., waste management and electricity production, the conventional power production system is expanded to include landfilling without energy recovery, which is the most commonly used waste management system in Thailand, to provide the equivalent function of waste management. Results The study shows that the incineration performs better than conventional power plants vis-à-vis global warming and photochemical ozone formation, but not for acidification and nutrient enrichment. Discussion There are some aspects which may influence this result. If landfilling with gas collection and flaring systems is included in the analysis along with conventional power production instead of landfilling without energy recovery, the expanded system could become more favorable than the incineration in the global warming point of view. In addition, if the installation of deNOx process is employed in the MSW incineration process, nitrogen dioxide can be reduced with a consequent reduction of acidification and nutrient enrichment potentials. However, the conventional power plants still have lower acidification and nutrient enrichment potentials. Conclusions The study shows that incineration could not play the major role for electricity production, but in addition to being a waste management option, could be considered as a complement to conventional power production. To promote incineration as a benign waste management option, appropriate deNOx and dioxin removal processes should be provided. Separation of high moisture content waste fractions from the waste to be incinerated and improvement of the operation efficiency of the incineration plant must be considered to improve the environmental performance of MSW incineration. Recommendations This study provides an overall picture and impacts, and hence, can support a decision-making process for implementation of MSW incineration. The results obtained in this study could provide valuable information to implement incineration. But it should be noted that the results show the characteristics only from some viewpoints. Outlook Further analysis is required to evaluate the electricity production of the incineration plant from other environmental aspects such as toxicity and land-use.  相似文献   

20.
CO2 reduction potentials by utilizing waste plastics in steel works   总被引:1,自引:0,他引:1  
Background, aim, and scope  Feedstock recycling has received attention as an effective method to recycle waste plastics. However, estimating the reduction potential by life cycle assessment using coke oven and blast furnace in steel works has been a challenging task due to the complex structure of energy flow in steel works. Municipal waste plastics consist of several plastic resins. Previous studies have generally disregarded the composition of waste plastics, which varies significantly depending on the geographical area. If the reduction potentials by using each plastic resin in steel works can be quantified, the potential of municipal waste plastics (mixtures of plastic resins) can be estimated by summing up the potential of each resin multiplied by the composition of each resin in municipal waste plastics. Therefore, the goal of this study is to investigate the reduction potentials of CO2 emissions by using individual plastic resins (polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET)) and those for municipal waste plastics in the coke oven and blast furnace. Materials and methods  A model was developed to clarify the energy flow in steel works. In order to estimate the changes in energy and material balance in coke ovens when waste plastics are charged, the equations to calculate the coke product yield, gas product yield, and oil product yields of each plastic resin were derived from previous studies. The Rist model was adopted to quantify the changes in the inputs and outputs when plastics were fed into a blast furnace. Then, a matrix calculation method was used to calculate the change in energy balance before and after plastics are fed into a coke oven. Results  It was confirmed that product yields of municipal waste plastics (mixtures of plastic resins) could be estimated by summing up the product yield of each plastic resin multiplied by the composition of each resin in municipal waste plastics. In both cases of coke oven and blast furnace feedstock recycling, the reduction potential of CO2 emissions varies significantly depending on the plastic resins. For example, in the case of coke oven chemical feedstock recycling, the reduction potential of PS and PP is larger than that of PE. On the other hand, in the case of blast furnace feedstock recycling, PE has the largest CO2 emissions reduction potential, whereas the CO2 emission reduction potential of PP is smaller than those of PE and PS. In both cases, PET has negative CO2 emission reduction potentials, i.e., there is an increase of CO2 emissions. In addition, the reduction potentials of CO2 emissions are slightly different in each city. Discussions  The differences in the reduction potentials of CO2 emissions by coke oven chemical feedstock recycling of each plastic resin is attributable to the differences in calorific values and coke product yields of each plastic resin. On the other hand, the difference in the CO2 emission reduction potential for each plastic resin in blast furnace feedstock recycling is attributable to the difference in calorific values and the carbon and hydrogen content of each plastic resin, which leads to a difference in the coke substitution effect by each plastic resin. In both cases, the difference in those of municipal waste plastics is mostly attributable to the amount of impurities (e.g., ash, water) in the municipal waste plastics. Conclusions  It was found that the reduction potential of CO2 emissions by coke oven and blast furnace feedstock recycling of municipal waste plastics (mixtures of plastic resins) could be estimated by summing up the potential of each resin multiplied by the composition of each resin in municipal waste plastics. It was also clarified that feedstock recycling of waste plastic in steel works is effective for avoiding the increase in CO2 emissions by incinerating waste plastics, such as those from household mixtures of different resins. Recommendations and perspectives  With the results obtained in this study, reduction potentials of CO2 emissions can be calculated for any waste plastics because differences in composition are taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号