首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L. camara is a terrible weed, exerting huge detrimental effect on biodiversity. Its leaves and flowers contain toxins, lantadene A and B, so unfit for herbivory by ruminants. This weed stunts the growth of neighbouring plants owing to the allelopathic effect of its root leachate. The seeds tide over adverse period and germinate when favourable conditions prevail. Further, pruning makes the thicket denser. Almost all removal strategies of this weed have been unsuccessful so far. So, management of this weed by utilization is required. Recent studies have reported that L. camara improves soil quality by enriching it with nitrogen, exhibits termiticidal effect, acts as lignocellulosic substrate for cultivation of edible mushrooms, acts as potential insecticide and fumigant for grains storage against weevils, antifungal agent, herbicide against water hyacinths. L. camara has bioactive ingredients exhibiting anticancer, antiulcerogenic, hypolipidemic, larvicidal and anti-inflammatory activity. L. camara fibre has been reported to be suitable candidate as reinforcement in biomaterials. Also, this plant extract is effective in bovine dermatophilosis therapy. L. camara has also immense industrial importance, as a source of oleanolic acid and carboxymethylcellulose. L. camara biomass can be implicated as a substrate for bioethanol and biogas production. This invasive weed can also serve as livelihood options, as the woody twigs can be utilized for aesthetic and durable furniture making apart from the use as firewood. The latest published papers on the novel uses of L. camara have been reviewed, with the objective of providing a thrust to weed management by utilization.  相似文献   

2.
Calceolaria spp. is regarded both as a notorious weed and a popular ornamental garden plant and have medicinal application. Some taxa of the America distributed Calceolaria genus are toxic to insects and its effect has been associated with the presence of diterpenes, triterpenes and naphthoquinones. However, Calceolaria spp. also produces a number of flavonoids and phenylpropanoids that have been shown to possess interesting biological activities. All these aspects are considered in this review to allow an evaluation of the potential for utilization of the large biodiversity of Calceolaria available. The phytochemistry of many members of the Calceolaria genus is included.  相似文献   

3.
Cogongrass (Imperata cylindria) is an invasive weed and harmful to ecological systems and agricultural production in many countries. It was found that plant extracts and root exudates of sweet potato (Ipomoea batatas) exhibit allelopathic potential and inhibit the growth of cogongrass to a greater extent than either barnyardgrass (Echinochloa crus-galli), Indian goose-grass (Eleushine indica), or lettuce (Lactuca sativa) in bioassays. Greenhouse trials indicated that sweet potato soil reduced the emergence of the noxious weed by 50 %, yet exhibited either weaker inhibition or the promotion of barnyardgrass, Bidens (Bidens pilosa), and Leucaena (Leucaena leucocephala), while the desired growth of upland rice (Oryza sativa) was not affected. In cogongrass fields, the incorporation of 1–2 tons aboveground parts and cultivation of sweet potato provided 80–85 % weed control. On the other hand, the reduction of congograss in fields may be offset by the alternate invasion of B. pilosa which multiplied its biomass by 2–6 times with sweet potato amended soils. The findings of this study indicate that sweet potato is an effective crop in the biologic management of the invasive cogongrass in agricultural fields, thus the interactive mechanism between sweet potato and the invasive weed demands further investigation. Ecologically, this study highlights the specificity of allelopathic interactions between cogongrass and sweet potato that is helpful to minimize the disturbance from infestation of this invasive weed against native species and crops.  相似文献   

4.
China has become one of the countries most seriously affected by invasive alien weeds in the world. Weeds impact agriculture, the environment and human health, and conventional control methods such as herbicides are expensive, damaging to human health and unsustainable. As the impacts and costs of weed control in China increase, there is an urgent need to manage some of the more important weeds through more sustainable methods. Classical biological control of invasive alien weeds is environmentally-friendly and sustainable. Biological control in China began in the 1930s with the introduction of two agents into Hong Kong for the control of Lantana camara. Since then, a further seven biological control agents have been introduced into China to control four weed species. In addition, 11 biological control agents targeting seven weed species have naturally spread into China. Together, these biological control agents are helping to control some of China's worst weeds. However, these efforts are only a small portion of the weeds that could be targeted for weed biological control. This paper reviews the current status of weed biological control efforts against introduced weeds in ten provinces and regions in southern China and provides a platform to identify the most effective and appropriate weed biological control opportunities and programmes to pursue in the future. Introducing additional safe and effective biological control agents into China to help manage some of the worst weeds in the region should reduce the use of herbicides and impacts on human health and the environment, while increasing productivity and food security.  相似文献   

5.
外来入侵种紫茎泽兰研究进展与展望   总被引:47,自引:0,他引:47       下载免费PDF全文
紫茎泽兰(Eupatorium adenophorum)是20世纪40年代经中缅边境传入我国的一种外来入侵种,原产于中美洲的墨西哥和哥斯达黎加,现已在我国南方和西南地区广泛分布,并且其蔓延速度极快,引起了社会各界的广泛关注。近年来,随着研究的不断深入和拓展,新的研究成果不断涌现,使紫茎泽兰成功入侵的机理性问题不断被揭示出来。该文简要介绍了目前我国关于紫茎泽兰研究的几个热点问题,这些问题主要围绕着紫茎泽兰的分布和预测、入侵扩散机制以及防除方法3个方面展开。其中以紫茎泽兰作为典型外来入侵种来研究其入侵扩散机制的工作最多。该文就目前的研究进展做一综述,并提出今后的研究建议。  相似文献   

6.
Transport hubs of international trade and tourism are sites of unprecedented long-distance dispersal of species and novel ecological interactions. In cases of invasive plants released from their specialist natural enemies, novel interactions with both resident enemies and new arrivals can accumulate and potentially reduce weed competitiveness. I present here one dramatic example of this, where an invasive woody weed in southern California is being rapidly controlled by an accidentally introduced genus-specialist herbivorous insect. The New Zealand native shrub/small tree, Myoporum laetum, is a long-time popular ornamental plant in California and has become an invasive woody weed. In 2005, a Myoporum-specific thrips, Klambothrips myopori, was discovered (and described) in California feeding on M. laetum leaves. Several searches have failed to find K. myopori in New Zealand and a population has recently been discovered in Tasmania, Australia, feeding on Myoporum insulare. In 5 years, K. myopori has killed off about half of southern Californian M. laetum with almost all surviving individuals being gradually defoliated. Inadequate border biosecurity has resulted in inadvertent biological control, in a rapid timeframe, caused by a novel enemy. Unfortunately, K. myopori has subsequently been accidentally transported from California to Hawaii where it is now killing off Hawaiian native Myoporum sandwicense. Transport hubs can both connect weeds with natural enemies and disperse those enemies more widely.  相似文献   

7.
The safety of weed biological control depends upon the selection and utilization of the target weed by the agent while causing minimal harm to non-target species. Selection of weed species by biological control agents is determined by the presence of behavioral cues, generally host secondary plant compounds that elicit oviposition and feeding responses. Non-target species that possess the same behavioral cues as found in the target weed may be at risk of damage by classical biological control agents. Here we conducted host range tests and examined secondary plant compounds of several test plant species. We studied the specialist herbivore Nystalea ebalea (Lepidoptera: Notodontidae) a Neotropical species, present in Florida as a surrogate biological control agent of the weed, Brazilian peppertree Schinus terebinthifolia, invasive in Florida and Hawaii. We found that the larvae had the greatest survival when fed the target weed, the Neotropical species Spondias purpurea, the Florida native species Rhus copallinum, and the ornamental Pistacia chinensis. Reduced survival and general larval performance were found on the native species Metopium toxiferum and Toxicodendron radicans. Both the volatiles and the allergen urushiols were chemically characterized for all species but urushiol diversity and concentration best predicted host range of this herbivore species. These results provide insight into host selection and utilization by one oligophagous Schinus herbivore. Other potential biological control agents may also be sensitive to plants that contain urushiols and if so, they may pose minimal risk to these native species.  相似文献   

8.
Biological control of alligator weed Alternanthera philoxeroides (Mart.) Griseb. using Agasicles hygrophila, a Chrysomelid beetle, has been successful in limiting growth in water, but not on land. In order to understand a possible genetic basis of this difference, technique using inter-simple sequence repeats (ISSR) markers was applied to analyse genetic diversity of this invasive weed. No genetic variation was detected not only within or between populations growing in the same habitats, but also between land- and water-grown populations. Thus we consider that the genetic variation is not the baseline factor resulting in the biological control difference in China. The differential success of pupation by the beetle may be related to the phenotypic plasticity of the plant stem diameter, rather than to genotypic factors.  相似文献   

9.
The direct negative effects of invasive plant species on agriculture and biodiversity are well known, but their indirect effects on human health, and particularly their interactions with disease-transmitting vectors, remains poorly explored. This study sought to investigate the impact of the invasive Neotropical weed Parthenium hysterophorus and its toxins on the survival and energy reserves of the malaria vector Anopheles gambiae. In this study, we compared the fitness of An. gambiae fed on three differentially attractive mosquito host plants and their major toxins; the highly aggressive invasive Neotropical weed Parthenium hysterophorus (Asteraceae) in East Africa and two other adapted weeds, Ricinus communis (Euphorbiaceae) and Bidens pilosa (Asteraceae). Our results showed that female An. gambiae fitness varied with host plants as females survived better and accumulated substantial energy reserves when fed on P. hysterophorus and R. communis compared to B. pilosa. Females tolerated parthenin and 1-phenylhepta-1, 3, 5-triyne, the toxins produced by P. hysterophorus and B. pilosa, respectively, but not ricinine produced by R. communis. Given that invasive plants like P. hysterophorus can suppress or even replace less competitive species that might be less suitable host-plants for arthropod disease vectors, the spread of invasive plants could lead to higher disease transmission. Parthenium hysterophorus represents a possible indirect effect of invasive plants on human health, which underpins the need to include an additional health dimension in risk-analysis modelling for invasive plants.  相似文献   

10.

Background

Biological invasions are fundamentally biogeographic processes that occur over large spatial scales. Interactions with soil microbes can have strong impacts on plant invasions, but how these interactions vary among areas where introduced species are highly invasive vs. naturalized is still unknown. In this study, we examined biogeographic variation in plant-soil microbe interactions of a globally invasive weed, Centaurea solstitialis (yellow starthistle). We addressed the following questions (1) Is Centaurea released from natural enemy pressure from soil microbes in introduced regions? and (2) Is variation in plant-soil feedbacks associated with variation in Centaurea''s invasive success?

Methodology/Principal Findings

We conducted greenhouse experiments using soils and seeds collected from native Eurasian populations and introduced populations spanning North and South America where Centaurea is highly invasive and noninvasive. Soil microbes had pervasive negative effects in all regions, although the magnitude of their effect varied among regions. These patterns were not unequivocally congruent with the enemy release hypothesis. Surprisingly, we also found that Centaurea generated strong negative feedbacks in regions where it is the most invasive, while it generated neutral plant-soil feedbacks where it is noninvasive.

Conclusions/Significance

Recent studies have found reduced below-ground enemy attack and more positive plant-soil feedbacks in range-expanding plant populations, but we found increased negative effects of soil microbes in range-expanding Centaurea populations. While such negative feedbacks may limit the long-term persistence of invasive plants, such feedbacks may also contribute to the success of invasions, either by having disproportionately negative impacts on competing species, or by yielding relatively better growth in uncolonized areas that would encourage lateral spread. Enemy release from soil-borne pathogens is not sufficient to explain the success of this weed in such different regions. The biogeographic variation in soil-microbe effects indicates that different mechanisms may operate on this species in different regions, thus establishing geographic mosaics of species interactions that contribute to variation in invasion success.  相似文献   

11.
The absence of natural enemies being keystone to the success of invasive alien plants (IAPs) can only be accepted once all the factors governing the invader and the ecosystems it invades have been established. Few studies have attempted this approach. This study reports on the relations between the invasive alien forb Campuloclinium macrocephalum (Less.) DC. (pompom weed), herbivory and the ecology of the rangelands invaded in South Africa. Eighty invaded rangelands in Gauteng Province were studied. Pompom weed herbivory was insignificant with the greatest damage being caused by native grasshoppers. Rainfall, topography and soil texture were the primary drivers of vegetation pattern. Pompom weed exhibited disturbance-mediated invasion strategies, favouring rangelands affected by non-sustainable commercial grazing practices, abandoned agricultural fields and drained wetlands. It invaded vegetation in poor condition with sward basal cover <19%. Weed density was exacerbated by high fire frequency. Vegetation susceptible to pompom weed was also invaded by other alien and native pasture weeds. The absence of natural enemies could give pompom weed a competitive advantage over native pioneer cohorts in disturbed rangelands, but is unlikely to increase fitness enabling its establishment in vegetation in good condition. Grazing strategies that promote the dominance of grass species adapted to frequent non-selective defoliation appear to restrict pompom weed better than degraded rangelands that are not utilised. Biotic resistance of rangelands to pompom weed invasion will be greatest in vegetation in good condition and under good management. The low abundance of pompom weed in rangelands in communal areas and fence-line contrasts in invaded and un-invaded road reserves warrants further investigation.  相似文献   

12.
Why invasive species can rapidly adapt to novel environments is a puzzling question known as the genetic paradox of invasive species. This paradox is explainable in terms of transposable elements (TEs) activity, which are theorized to be powerful mutational forces to create genetic variation. Mikania micrantha, a noxious invasive weed, in this sense provides an excellent opportunity to test the explanation. The genetic and epigenetic variation of 21 invasive populations of M. micrantha in southern China have been examined by using transposon display (TD) and transposon methylation display (TMD) techniques to survey 12 TE superfamilies. Our results showed that M. micrantha populations maintained an almost equally high level of TE‐based genetic and epigenetic variation and they have been differentiated into subpopulations genetically and epigenetically. A similar positive spatial genetic and epigenetic structure pattern was observed within 300 m. Six and seven TE superfamilies presented significant genetic and epigenetic isolation by distance (IBD) pattern. In total, 59 genetic and 86 epigenetic adaptive TE loci were identified. Of them, 51 genetic and 44 epigenetic loci were found to correlate with 25 environmental variables (including precipitation, temperature, vegetation coverage, and soil metals). Twenty‐five transposon‐inserted genes were sequenced and homology‐based annotated, which are found to be involved in a variety of molecular and cellular functions. Our research consolidates the importance of TE‐associated genetic and epigenetic variation in the rapid adaptation and invasion of M. micrantha.  相似文献   

13.
《农业工程》2022,42(6):600-604
Plants sustain several ecosystem functions thereby playing a crucial role in conservation management. Lantana camara an invasive weed has become the common part of a bushes. The mutualistic relationship between this weed plant and butterflies are well known. Butterflies depend on Lantana camara for food, oviposition site, larval development etc. In this context we are highlighting the role of this invasive weed for butterfly conservation and maintaining total butterfly abundance. In this study the species richness highest for the site where the bushes were dominated by Lantana camara and lowest for the site where LCA abundance was low. The butterfly abundance and LCA abundance maintain a strong positive relationship and LCA abundance, species richness and and butterfly abundance are strongly correlated and dominance is negatively correlated with other three variables. So we can use the Lantana camara as a model organism for conservation and maintaining the butterfly abundance in Purulia, West Bengal, India.  相似文献   

14.
Over the past few decades there has been avid interest in developing the strategies for the utilization of Fly ash (FA). Major foci have been on its agricultural application. It is often economical to use FA as a soil amendment. The potential of FA as a resource material in agriculture is due to its specific physical properties like’s texture, water holding capacity, bulk density, pH etc., and contains almost all the essential plant nutrients. It can be used as in soil that cannot substitute the chemical fertilizers or organic manure it can be used in combination with these to get additional benefits in terms of improvement in soil physical characteristics, increased yields etc. The amount and method of FA application in soil would vary with the type of soil, the crop, grown, the prevailing agro climatic condition and also with the FA characteristics. Although, as an input material FA has many benefits for agriculture applications like, improvement of nutrient deficiency, effectively control various pests infesting etc., in contrast FA also contains number of toxic heavy metals and also have natural radioactivity materials in it. Therefore, proper attention should be given on some important areas related to FA utilization such as long term studies of impact of FA on soil health, heavy metal uptake, plant physiology and growth, crop quality, and continuous monitoring on the soil characteristics. While using FA in agriculture problem of heavy metal toxicity and leaching due to excess dose should also be kept in mind.  相似文献   

15.
It has profound implications for species invasions and fitness, how weeds achieve reproductive success. We present the first study on the reproductive biology of Stellera chamaejasme, a toxic perennial weed which is abundant in the alpine meadows on the eastern Tibetan Plateau of China since the 1960s. S. chamaejasme has synchronogamy and herkogamous flowers, which last for about 11 days. Flowers can be yellow, white or reddish. Our results suggest that this species is self-incompatible and depends entirely on pollen vectors for seed production. All the pollinators observed were Lepidopteran species; however, the pollinator assemblage was significantly different among populations and likely independent on floral colour. Reproductive success and invasion of the weed might be a complex function of floral traits, breeding system and pollination ecology. Generally, plants with generalized pollination system are more invasive. However, our results suggest that specialized flowers and self-incompatibility in the present case may not prevent invasion of the weed.  相似文献   

16.
As a result of the rapid expansion in international travel and trade over the past few decades, invasive plants have become a problem of global proportions. Plant invasions threaten the existence of endangered species and the integrity of ecosystems, and their ravages cost national economies tens of billions of dollars every year. Strategies for managing the threats posed by plant invasions involve three main tactics: prevention, eradication, and control. The effectiveness of prevention, involving enactment of legislation to prohibit the entry and spread of noxious alien plants, has been questioned. Eradication of all but the smallest, most localized weed infestations generally is not regarded as economically feasible. Conventional weed control techniques, such as mechanical and chemical controls, because they are expensive, energy and labor intensive, and require repeated application, are impractical for managing widespread plant invasions in ecologically fragile conservation areas or low-value habitat, such as rangelands and many aquatic systems. In addition, mechanical means of control disturb the soil and may cause erosion; chemical herbicides have spurred the evolution of resistance in scores of weed species and, further, may pose risks to wildlife and human health. Because of drawbacks associated with conventional weed control methods, classical biological control, the introduction of selective exotic natural enemies to control exotic pests, increasingly is being considered and implemented as a safe, cost-effective alternative to address the invasive plant problem. Worldwide, biological weed control programs have had an overall success rate of 33 percent; success rates have been considerably higher for programs in individual countries. Benefits are several-fold. Biological control is permanent, energy-efficient, nonpolluting, and inexpensive relative to other methods. Economic returns on investment in biological weed control have been spectacular in some cases, and range from an estimated benefit/cost ratio of 2.3 to 4000 or more. Although the risks involved in biological control in general are considered unacceptable by some, biological weed control in particular has had an enviable safety record. Since establishment of the stringent standards and regulatory apparatus currently in place in the United States and elsewhere, there have been no reported cases of biological weed control causing significant harm to nontarget populations or to the environment at large.  相似文献   

17.
Parthenium hysterophorus L. (Parthenium) is an invasive weed species which is spreading worldwide affecting natural ecological systems, biodiversity, crop production and human health. The present study was conducted to evaluate the potential of plant growth promoting Pseudomonas putida NBRIC19 in detoxifying the phytotoxic effect of Parthenium. Significant increase in C/N ratio, macronutrients, and micronutrients was observed in P. putida NBRIC19-treated soil. P. putida NBRIC19 treatment of the soil provided protection to plant communities in Parthenium invaded area, as the species diversity had increased in the treatment as compared to non-bacterized soil. P. putida NBRIC19 treatment besides Parthenium, also succeeded in controlling other weed species like Commelina benghalensis and Cynodon dactylon. In addition to this, the impact of Parthenium was also studied on functional microbial diversity based on carbon source utilization pattern. It was observed that P. putida NBRIC19 treatment of soil had shifted the microflora in such a manner that utilization of toxic allelochemicals increased to lessen their phytotoxic effect. Taken together, these results suggest that soil treatment with P. putida NBRIC19 may be used as a promising biological control measure for controlling the phytotoxic effect of Parthenium and in protecting ecosystem integrity of neighboring plants in Parthenium invaded areas.  相似文献   

18.
Biological control of alligator weed Alternanthera philoxeroides (Mart.) Griseb. has been successful in limiting growth in water in areas with mild or warm winters, but not on land. Until recently, herbicides have had very limited short term and no long term effectiveness. Several herbicides that now provide better control include: glyphosate over water, and metsulfuron and dichlobenil on land and in shallow water. The latter two are limited by lack of selectivity, contamination of water, and cost. Mechanical or manual control has provided local eradication of the weed at a few locations where infestations were small. Alligator weed is still spreading with new outbreaks on New South Wales, Australia (NSW) coastal beach areas and coastal river systems, and on inland waterbodies. Its use as a cultivated vegetable by some ethnic communities has resulted in many new locations in all eastern Australia states: Queensland to Tasmania. It is predicted that it will spread throughout much of coastal and inland southern Australia. The difficulties with management of this weed indicate that every effort should be made to prevent further invasion of wetlands and, in particular, its introduction to Africa, where it is predicted that all wetlands could support destructive levels of alligator weed growth.  相似文献   

19.
Acetyl-CoA carboxylase (ACCase) alleles carrying one point mutation that confers resistance to herbicides have been identified in arable grass weed populations where resistance has evolved under the selective pressure of herbicides. In an effort to determine whether herbicide resistance evolves from newly arisen mutations or from standing genetic variation in weed populations, we used herbarium specimens of the grass weed Alopecurus myosuroides to seek mutant ACCase alleles carrying an isoleucine-to-leucine substitution at codon 1781 that endows herbicide resistance. These specimens had been collected between 1788 and 1975, i.e., prior to the commercial release of herbicides inhibiting ACCase. Among the 734 specimens investigated, 685 yielded DNA suitable for PCR. Genotyping the ACCase locus using the derived Cleaved Amplified Polymorphic Sequence (dCAPS) technique identified one heterozygous mutant specimen that had been collected in 1888. Occurrence of a mutant codon encoding a leucine residue at codon 1781 at the heterozygous state was confirmed in this specimen by sequencing, clearly demonstrating that resistance to herbicides can pre-date herbicides in weeds. We conclude that point mutations endowing resistance to herbicides without having associated deleterious pleiotropic effects can be present in weed populations as part of their standing genetic variation, in frequencies higher than the mutation frequency, thereby facilitating their subsequent selection by herbicide applications.  相似文献   

20.
On the basis of gene frequency data of three flavone glycosylating genes, populations of the agricultural weed Silene latifolia (Caryophyllaceae) in Europe can be divided into two chemical races: an eastern and a western race. Morphological data also show a clear east-west division. When the two datasets are combined at least nine different geographical races can be distinguished using cluster analysis. Because these observations are hard to explain by selection, it has been proposed that these different races probably originated as a consequence of migration during the spread of agriculture over Europe in the past. To discriminate between selection and genetic drift many more selectively neutral easy-to-score characters are needed. In order to test whether random amplified polymorphic DNAs (RAPDs) might be suitable for this purpose, we performed a small-scale RAPD analysis on 16 geographical different populations. Using Jaccard's coefficient of similarity, we calculated genetic distances by pair-wise comparisons of both unique and shared amplification products, and a dendrogram was subsequently constructed using an unweighted pair-group method with arithmetical averages (UPGMA). On the basis of the dendrogram two clusters were discerned that clearly coincide with the aforementioned east-west division in populations. As there has been little or no artificial selection on this weed, its migration routes may be a good reflection of the different geographical routes agriculture has taken. We propose that a phylogenetic analysis of RAPD data of many more populations may provide additional information on the spread of agriculture over Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号