首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ca2+-dependent K+ transport and plasma membrane NADH dehydrogenase activities have been studied in several ‘high-K+’ (human, rabbit and guinea pig) and ‘low-K+’ (dog, cat and sheep) erythrocytes. All the species except sheep showed Ca2+-dependent K+ transport. NADH-ferricyanide reductase was detected in all the species and showed positive correlation with the flavin contents of the membranes. NADH-cytochrome c reductase was very low or absent in dog, sheep and guinea pig membranes. No correlation was found between NADH dehydrogenase and Ca2+-dependent K+ channel activities in the species studied. Nor were any of the above activities correlated with (Na+ + K+)-ATPase activity.  相似文献   

2.
α-Aminoisobutyrate accumulation by human fetal liver explants in organ culture is stimulated by dibutyryl cyclic AMP (N6, 2′O-dibutyryl adenosine 3′–5′: cyclic monophosphate), glucagon or insulin. Theophylline increased the effect of submaximal concentrations of dibutyryl cyclic AMP or glucagon. Maximal concentrations of glucagon and dibutyryl cyclic AMP yielded the same results as either agent alone. A period of about 4–6 h was required to observe the stimulatory effect of dibutyryl cyclic AMP or insulin, which could be completely prevented by simultaneous incubation with cycloheximide. Maximal effects of either dibutyryl cyclic AMP or glucagon plus insulin produced additive results. These data support the hypothesis that insulin acts via a mechanism independent of the glucagon—cyclic AMP pathway in liver tissue.In addition, the pharmacologic receptor for glucagon was detected in liver explants from a 30-mm (crown - rump) specimen (6 weeks gestation). The liver had the competence to respond to dibutyryl cyclic AMP by the 36-mm stage. Tissue from a 36-mm specimen did not respond to insulin, but a clear response was elicited from a specimen at the 48-mm stage. These data demonstrate the ability of human fetal liver to respond to hormones at a very early stage in gestation.  相似文献   

3.
The influence of fatty acid on the interconversion of the pyruvate dehydrogenase complex (PDH) between its active (dephospho-) and inactive (phospho-) forms and on the intramitochondrial ATPADP, NADHNAD+ and acetyl-CoACoASH ratios was studied in isolated rat liver mitochondria. Conditions were found in which the PDH activity was inversely correlated only with the NADHNAD+ ratio. Under other conditions the PDH activity was inversely correlated solely with the acetyl-CoACoASH ratio. These experiments suggest that the activity of the regulatory enzymes involved in the inactivation and reactivation of the pyruvate dehydrogenase multienzyme complex may be controlled by both the intramitochondrial NADHNAD+ and acetyl-CoACoASH ratios.  相似文献   

4.
This paper describes the interaction of apamin, the bee venom neurotoxin, with its receptor in the guinea pig colon. The pharmacological activity of the toxin was assayed by measuring its contracting effect on guinea pig colon preparations that had been previously relaxed by neurotensin. The IC50 value of apamin in this in vitro bioassay is 7 nM. These pharmacological data are compared to the binding properties of apamin to smooth muscle membranes prepared from guinea pig colon. The highly radiolabeled monoiododerivative of apamin binds to its colon receptor with a dissociation constant Kd1 = 36 pM. The maximal binding capacity of colonic membranes is 30dfmol/mg of protein. The dissociation constant of the unmodified toxin is 23 pM. The difference between the toxin concentrations that produce half-maximal effects in the binding and pharmacological studies arises from the different experimental conditions used for the two assays.  相似文献   

5.
(1) H+/electron acceptor ratios have been determined with the oxidant pulse method for cells of denitrifying Paracoccus denitrificans oxidizing endogenous substrates during reduction of O2, NO?2 or N2O. Under optimal H+-translocation conditions, the ratios H+O, H+N2O, H+NO?2 for reduction to N2 and H+NO?2 for reduction to N2O were 6.0–6.3, 4.02, 5.79 and 3.37, respectively. (2) With ascorbate/N,N,N′,N′-tetramethyl-p-phenylenediamine as exogenous substrate, addition of NO?2 or N2O to an anaerobic cell suspension resulted in rapid alkalinization of the outer bulk medium. H+N2O, H+NO?2 for reduction to N2 and H+NO?2 for reduction to N2O were ?0.84, ?2.33 and ?1.90, respectively. (3) The H+oxidant ratios, mentioned in item 2, were not altered in the presence of valinomycinK+ and the triphenylmethylphosphonium cation. (4) A simplified scheme of electron transport to O2, NO?2 and N2O is presented which shows a periplasmic orientation of the nitrite reductase as well as the nitrous oxide reductase. Electrons destined for NO?2, N2O or O2 pass two H+-translocating sites. The H+electron acceptor ratios predicted by this scheme are in good agreement with the experimental values.  相似文献   

6.
The clonal analysis of the development of the dorsal mesothoracic (wing) disc shows that clones initiated after a given time do not cross over certain demarcation lines in the adult cuticle. The property of M+M+ (non-Minute) recombinant cells to overgrow the MM+ background cells was used to demonstrate the establishment of clonal restrictions during development. It has been shown that M+M+ clones initiated at a given time of development share common demarcation lines that delimit what we call “a developmental compartment.” As development time and cell proliferation of the anlage proceed, large compartments become split into pairs of smaller ones. A study of the number of cells in a given compartment at the time of its splitting into subcompartments indicates that the “developmental segregation” takes place in groups of neighboring cells and suggests that the number of segregated cells is different and characteristic for each compartment. Within a given compartment, a single clone of M+M+ cells gives rise to 60–90% of the total number of adult cells. This phenomenon is reminiscent of the regulative properties of the morphogenetic fields, and the relation of these to developmental compartments is discussed. Since homoeotic mutants transform entire developmental compartments into one another, the hypothesis is advanced that homoeotic genes control compartment development.  相似文献   

7.
A microsomal fraction rich in (Na+ + K+)-ATPase has been isolated from the outer medulla of pig kidney. (Mg2+ + K+)-activated ouabain-sensitive phosphatase activity was studied in this preparation treated with arylsulphatase, an enzyme that specifically hydrolyzes ceramide galactose-3-sulphate. The activity of phosphatase was inactivated in proportion to the amount of sulphatide hydrolyzed. A maximum inactivation of ouabain-sensitive activity was obtained with 60% of the sulphatide content hydrolyzed. The inactivation caused by arylsulphatase was partially reversed by the sole addition of sulphatide. The evidence offered in this paper about sulphatide function in the sodium pump mechanism supports the idea that sulphatides are involved in the K+-activated phosphatase, a partial reaction of the (Na+ + K+)-ATPase.  相似文献   

8.
Human red cell and guinea pig kidney (Na+ + K+)-ATPase were phosphorylated at 0°C. Using concentrations of ATP ranging from 10?6 to 10?8 M, ATP-dependent regulation of reactivity is observed with red cell but not kidney (Na+ + K+)-ATPase at 0°C. In particular, with the red cell enzyme only, the following are observed: (i) the ratio of enzyme-bound ATP (E·ATP, measured by the pulse-chase method of Post, R.L., Kume, S., Tobin, T., Orcutt, B. and Sen, A.K. (1969) J. Gen. Physiol. 54, 306s-326s) to steady-state level of total phosphoenzyme (EP) decreases with decrease in ATP concentration and (ii) the apparent turnover of phosphoenzyme (ratio of Na+-stimulated ATP hydrolysis to level of total EP at steady state) also varies as a function of ATP concentration. In addition, when EP is formed at very low ATP (0.02 μM), and then EDTA is added, rapid disappearance of a fraction of EP occurs, presumably due to ATP resynthesis, only with the red cell enzyme. These differences in behaviour of the red cell and kidney enzymes are explained on the basis of the observed predominance of K+-insensitive EP in red cell, but K+-sensitive EP in kidney (Na+ + K+)-ATPase at 0°C.  相似文献   

9.
Incubation of rabbit kidney microsomes with pig pancreatic phospholipase A2 produced residual membrane preparations with very low (Na+ + K+)-ATPase activity. The activity could be restored by recombination with lipid vesicles of negatively-charged glycerophospholipids. Vesicles of pure phosphatidylcholine and phosphatidylethanolamine were virtually inactive in this respect, but could reactivate in the presence of cholate.Incubation of the microsomes with a combination of phospholipase C (Bacillus cereus) and sphingomyelinase C (Staphylococcus aureus) resulted in 90–95% release of the phospholipids. The residual membrane contained only phosphatidylinositol and still showed 50–100% of the (Na+ + K+)-ATPase activity.  相似文献   

10.
Hepatocytes isolated from fed or starved rats were rapidly lysed using the recently described technique of turbulent flow (M. E. Tischler, P. Hecht, and J. R. Williamson, 1977, Arch. Biochem. Biophys., 181, 278–292). Pyridine nucleotide and metabolite contents were measured in the particulate fraction of both whole and disrupted cells after centrifugation through silicone oil. Lactate/pyruvate, β-hydroxybutyrate/acetoacetate, isocitrate/α-ketoglutarate, and malate/pyruvate ratios were determined for calculation of the free NADHNAD+ and NADPHNADP+ ratios in the cytosol and mitochondria. Lactate/pyruvate ratios measured in the extracellular and cytosolic compartments were in good agreement. Ratios of β-hydroxybutyrate/acetoacetate measured in the extracellular, cytosolic, and mitochondrial compartments also agreed well. Addition of ammonia to fed or starved rat liver cells incubated with lactate, pyruvate, β-hydroxybutyrate, and acetoacetate caused an oxidation of both the NAD and NADP redox states in the mitochondria and cytosol, although the NADP system was oxidized to a greater extent. Calculation of the free NADH and NAD concentrations in the cytosol provided values of about 1 and 400 to 500 μm, respectively, under control conditions. The concentrations of free NADH and NAD in the mitochondria were considerably higher, being 300 to 400 μm and 4 to 6 mm, respectively. The free andm bound NAD systems in both the cytosol and mitochondria were more oxidized in the presence of ammonia. NAD and NADP redox potential differences across the mitochondrial membrane (ΔEh) were not significantly affected by ammonia addition and were generally similar in cells from both fed and starved rats: ?52 and ?56 mV for the NAD system and ?19 to ?29 mV for the NADP system. For the NAD system the cytosolic potential was ?260 mV in the absence of ammonia and ?250 mV in its presence, the mitochondrial values being ?315 and ?303 mV, respectively. The average cytosolic NADP potential, on the other hand, was ?400 mV in the absence and ?384 mV in the presence of ammonia. The mitochondrial fractions yielded NADP potentials of ?420 mV in the absence of ammonia with both fed and starved rats. Ammonia decreased the mitochondrial NADP potential to ?404 mV in fed rats and to ?415 mV in starved rats. The calculated free NADHNAD+ and NADPHNADP+ ratios as well as metabolite concentrations were used to evaluate the mass action ratios of both cytosolic and mitochondrial enzymes. Cytosolic alanine aminotransferase remained near equilibrium in the absence and presence of ammonia, while cytosolic and mitochondrial aspartate aminotransferase reactions deviated up to fivefold. The glutamate dehydrogenase reaction was in near equilibrium with the NAD system, but deviated by three to four orders of magnitude from equilibrium with the NADP system in the direction favoring glutamate synthesis rather than deaminatión. Cytosolic malate dehydrogenase deviated from equilibrium by about one order of magnitude, while mitochondrial malate dehydrogenase and citrate synthase deviated by two to six orders of magnitude. These data emphasize the importance of regulation of the citric acid cycle at the citrate synthase step.  相似文献   

11.
The sugar composition of the growth medium influenced the NAD+NADH ratio, pyruvate and lactate production, and ATP levels in both normal and transformed fibroblast cell lines growing in tissue culture. Removal of glucose led to a rapid three- to fourfold rise in the NAD+NADH ratio, followed by a slower decline in the content of ATP. However, there was no change in the adenylate energy charge [(ATP + 12ADP)/(ATP + ADP + AMP)] over a 2-h period. The NAD+NADH ratio was restored to the original level within 10 s of glucose readdition. The NAD+NADHratios in cell lines growing on galactose were as high as for those incubated without sugars; growth on mannose or fructose produced intermediate ratios. There was an inverse relationship between the NAD+NADH ratio and pyruvate-lactate production for glucose, fructose and galactose. Thus, all cell lines had a high production of pyruvate and lactate but a low NAD+NADH ratio when grown on glucose. In contrast, when galactose served as the sugar source, acid production was low, while the ratio was high. All cell lines had comparable hexokinase activity, and glucose was the best substrate, mannose intermediate and fructose poorest. Hexokinase activity did not correlate with the relative degree of utilization of the sugars. These results suggest that the sugar composition of the growth medium affects the metabolic pattern of a cell line, including the NAD+NADH ratio, the ATP content and the production of pyruvate and lactate.  相似文献   

12.
Soluble (Na++K+)-ATPase consisting predominantly of αβ-units with Mr below 170 000 was prepared by incubating pure membrane-bound (Na++K+)-ATPase (35–48 μmol Pi/min per mg protein) from the outer renal medulla with the non-ionic detergent dodecyloctaethyleneglycol monoether (C12E8). (Na++K+)-ATPase and potassium phosphatase remained fully active in the detergent solution at C12E8/protein ratios of 2.5–3, at which 50–70% of the membrane protein was solubilized. The soluble protomeric (Na++K+)-ATPase was reconstituted to Na+, K+ pumps in phospholipid vesicles by the freeze-thaw sonication procedure. Protein solubilization was complete at C12E8/protein ratios of 5–6, at the expense of partial inactivation, but (Na++K+)-ATPase and potassium phosphatase could be reactivated after binding of C12E8 to Bio-Beads SM2. At C12E8/protein ratios higher than 6 the activities were irreversibly lost. Inactivation could be explained by delipidation. It was not due to subunit dissociation since only small changes in sedimentation velocities were seen when the C12E8/protein ratio was increased from 2.9 to 46. As determined immediately after solubilization, S20,w was 7.4 S for the fully active (Na++K+)-ATPase, 7.3 S for the partially active particle, and 6.5 S for the inactive particle at high C12E8/protein ratios. The maximum molecular masses determined by analytical ultracentrifugation were 141 000–170 000 dalton for these protein particles. Secondary aggregation occurred during column chromatography, with formation of enzymatically active (αβ)2-dimers or (αβ)3-trimers with S20,w=10–12 S and apparent molecular masses in the range 273 000–386 000 daltons. This may reflect non-specific time-dependent aggregation of the detergent micelles.  相似文献   

13.
(1) A (K+ + H+)-ATPase containing membrane fraction, isolated from pig gastric mucosa, has been further purified by means of zonal electrophoresis, leading to a 20% increase in specific activity and an increase in ratio of (K+ + H+)-ATPase to basal Mg2+-ATPase activity from 9 to 20. (2) The target size of (Na+ + K+)-ATPase, determined by radiation inactivation analysis, is 332 kDa, in excellent agreement with the earlier value of 327 kDa obtained from the subunit composition and subunit molecular weights. This shows that the Kepner-Macey factor of 6.4·1011 is valid for membrane-bound ATPases. (3) The target size of (K+ + H+)-ATPase is 444 kDa, which, in connection with a subunit molecular weight of 110000, suggests a tetrameric assembly of the native enzyme. The ouabain-insensitive K+-stimulated p-nitrophenylphosphatase activity has a target size of 295 kDa. (4) In the presence of added Mg2+ the target sizes of the (K+ + H+)-ATPase and its phosphatase activity are decreased by about 15%, while that for the (Na+ + K+)-ATPase is not significantly changed. This observation is discussed in terms of a Mg2+-induced tightening of the subunits composing the (K+ + H+)-ATPase molecule.  相似文献   

14.
1. Extensive treatment of rabbit kidney microsomes with phosphatidylinositol-specific phospholipase C under various conditions never resulted in more than 75% hydrolysis of the substrate. 2. The non-degraded fraction of the phosphatidylinositol (10–12 nmol per mg microsomal protein) could be recovered only by an acidic extraction procedure. 3. The (Na+ + K+)-ATPase activity found in those membranes was not affected by this treatment. 4. Complete degradation of phosphatidylinositol could be easily achieved when the phospholipase was applied to rat liver microsomes which do not contain any detectable (Na+ + K+)-ATPase activity. 5. It is concluded that in rabbit kidney microsomes a close association exist between the (Na+ + K+)-ATPase and that fraction of the phosphatidylinositol that is directly involved in the maintenance of its activity.  相似文献   

15.
The organization of the genital disc in XX;dsxD+ animals, which have elements of both male and female genitalia, has been analyzed. The intersexual disc contains three major regions, which were isolated by fragmentation. After metamorphosis in host larvae, these regions produced the male genitalia, the female genitalia, and the analia, respectively. Thus, in contrast to the wild-type male and female constitution, the intersexual genetic constitution of XX;dsxD+ animals allows both genital primordia to develop and to differentiate adult structures. A fate map of the intersexual disc is presented. Observations made on the morphology of the genital disc and its derivatives in XX;dsxD+ animals and other “intersexual” genetic constitutions are compared and discussed in terms of the development of the sexual dimorphism.  相似文献   

16.
Showdomycin inhibited pig brain (Na+ + K+)-ATPase with pseudo first-order kinetics. The rate of inhibition by showdomycin was examined in the presence of 16 combinations of four ligands, i.e., Na+, K+, Mg2+ and ATP, and was found to depend on the ligands added. Combinations of ligands were divided into five groups in terms of the magnitude of the rate constant; in the order of decreasing rate constants these were: (1)Na+ + Mg2+ + ATP, (2) Mg2+, Mg2+ + K+, K+ and none, (3) Na+ + Mg2+, Na+, K+ + Na+ and Na+ + K+ + Mg2+, (4) Mg2+ + K+ + ATP, K+ + ATP and Mg2+ + ATP, (5)K+ + Na+ + ATP, Na+ + ATP, Na+ + ATP, Na+ + K+ + Mg2+ + ATP and ATP. The highest rate was obtained in the presence of Na+, Mg2+ and ATP. The apparent concentrations of Na+, Mg2+ and ATP for half-maximum stimulation of inhibition (K0.5s) were 3 mM, 0.13 mM and 4μM, respectively. The rate was unchanged upon further increase in Na+ concentration from 140 to 1000 mM. The rates of inhibition could be explained on the basis of the enzyme forms present, including E1, E2, ES, E1-P and E2-P, i.e., E2 has higher reactivity with showdomycin than E1, while E2-P has almost the same reactivity as E1-P. We conclude that the reaction of (Na+ + K+)-ATPase proceeds via at least four kinds of enzyme form (E1, E2, E1 · nucleotide and EP), which all have different conformations.  相似文献   

17.
The effect of estradiol, progesterone, tamoxifen, estradiol + progesterone or estradiol + tamoxifen on the [3H]acetylation of histones in the fetal uterus of guinea pig was studied. The fetuses were injected subcutaneously ‘in situ’ with the hormones or tamoxifen + [3H]acetate alone. In 10 min, estradiol stimulated the acetylation of histone 10–12-times with respect to the control animals. Progesterone and tamoxifen blocked this effect. It is suggested that histone acetylation is an early step induced by estrogen action during intrauterine life and that progesterone and tamoxifen suppress this mechanism very effectively.  相似文献   

18.
DNA-dependent RNA polymerase has been studied in adult mouse liver and mouse blastocysts. The enzyme from mouse liver was resolved into three enzyme forms by DEAE-Sephadex chromatography. Two of the forms, IA and IB, are insensitive to α-amanitin, have low Mn2+Mg2+ activity ratios, and are optimally active at low ionic strength. Form II is inhibited by α-amanitin, has a higher Mn2+Mg2+ activity ratio, and is most active at high ionic strength. An optimal reaction temperature of 37 ° C was found for all enzyme forms. All of the isolated enzyme forms are inhibited by the exotoxin from Bacillus thuringiensis and the inhibition can be partially reversed by increased ATP levels. Forms IA and IB are most active with native template while form II prefers denatured DNA.The blastocyst RNA polymerase activity exhibits similar requirements for divalent metal ions and ionic strength to the purified liver enzymes. The maximum inhibition of blastocyst RNA polymerase obtained with α-amanitin and exotoxin differs from that observed for purified liver enzymes but is similar to the inhibition of liver homogenate. However, the concentrations of inhibitor required for maximum inhibition by α-amanitin and exotoxin is different for the blastocyst and liver homogenate enzymes.  相似文献   

19.
(1) A membrane fraction enriched in (Na+ + K+)-ATPase (EC 3.6.1.3) was obtained from optic ganglia of the squid (Loligo pealei) by density gradient fractionation of membranes followed by treatment with either SDS or Brij-58. The resulting membrane had an (Na+ + K+)-ATPase specific activity of approx. 2 units/mg and was >95% ouabain-sensitive. (2) The (Na+ + K+)-ATPase had a Km for ATP of 0.42 ± 0.04 mM and a pH optimum of 7.0. It was inhibited by ouabain with a Ki of 0.32 ± 0.04 μM. (3) Optimum monovalent cation concentrations were: 240 mM NaCl, 60 mM KCl, tested with NaCl + KCl = 300 mM. (4) The Mg2+ dependence of hydrolysis varied with the absolute ATP concentration. At 3 mM ATP, theKm for Mg2+ was 0.86 ± 0.10 mM, and at 6 mM ATP, the Km was 1.86 ± 0.44 mM. High levels of Mg2+ caused inhibition of hydrolysis. (5) The interactions of Na+ and K+ were examined over a range of conditions. K+ levels caused modulations in the Na+ dependence in the range of 1–150 mM. (6) The (Na+ + K+)-ATPase prepared from squid optic ganglion displays properties similar to those of the sodium pump in injected nerves.  相似文献   

20.
Intact synaptosomes prepared from rat brain were incubated with phosphatidylserine vesicles. The synaptosomes incorporated the phospholipid in proportion to its concentration in the preincubation medium. The activity of membrane-bound enzyme Na+K+ ATPase increased proportionally after treatment with phosphatidylserine liposomes.When breaking phosphatidylserine-enriched synaptosomes by osmotic shock or by sonication and when preparing synaptosomal membranes, the expected increase of Na+K+ ATPase activity was not seen. Therefore, cellular integrity was fundamental in order to see the effect of phosphatidylserine on Na+K+ ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号