首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C-mannosylation of Trp-7 in human ribonuclease 2 (RNase 2) is a novel kind of protein glycosylation that differs fundamentally from N- and O-glycosylation in the protein-sugar linkage. Previously, we established that the specificity determinant of the acceptor substrate (RNase 2) consists of the sequence W-x-x-W, where the first Trp becomes C-mannosylated. Here we investigated the reaction with respect to the mannosyl donor and the involvement of a glycosyltransferase. C-mannosylation of Trp-7 was reduced 10-fold in CHO (Chinese hamster ovary) Lec15 cells, which are deficient in dolichyl-phosphate-mannose (Dol-P-Man) synthase activity, compared with wild-type cells. This was not a result of a decrease in C-mannosyltransferase activity. Rat liver microsomes were used to C-mannosylate the N-terminal dodecapeptide from RNase 2 in vitro, with Dol-P-Man as the donor. This microsomal transferase activity was destroyed by heat and protease treatment, and displayed the same acceptor substrate specificity as the in vivo reaction studied previously. The C-C linkage between the indole and the mannosyl moiety was demonstrated by tandem electrospray mass spectrometry analysis of the product. GDP-Man, in the presence of Dol-P, functioned as a precursor in vitro with membranes from wild-type but not CHO Lec15 cells. In contrast, with Dol-P-Man both membrane preparations were equally active. It is concluded that a microsomal transferase catalyses C-mannosylation of Trp-7, and that the minimal biosynthetic pathway can be defined as: Man –> –> GDP-Man –> Dol-P-Man –> (C2-Man-)Trp.  相似文献   

2.
Here, we show that Escherichia coli Ribonuclease III cleaves specifically the RNA genome of hepatitis C virus (HCV) within the first 570 nt with similar efficiency within two sequences which are ~400 bases apart in the linear HCV map. Demonstrations include determination of the specificity of the cleavage sites at positions C27 and U33 in the first (5′) motif and G439 in the second (3′) motif, complete competition inhibition of 5′ and 3′ HCV RNA cleavages by added double-stranded RNA in a 1:6 to 1:8 weight ratio, respectively, 50% reverse competition inhibition of the RNase III T7 R1.1 mRNA substrate cleavage by HCV RNA at 1:1 molar ratio, and determination of the 5′ phosphate and 3′ hydroxyl end groups of the newly generated termini after cleavage. By comparing the activity and specificity of the commercial RNase III enzyme, used in this study, with the natural E.coli RNase III enzyme, on the natural bacteriophage T7 R1.1 mRNA substrate, we demonstrated that the HCV cuts fall into the category of specific, secondary RNase III cleavages. This reaction identifies regions of unusual RNA structure, and we further showed that blocking or deletion of one of the two RNase III-sensitive sequence motifs impeded cleavage at the other, providing direct evidence that both sequence motifs, besides being far apart in the linear RNA sequence, occur in a single RNA structural motif, which encloses the HCV internal ribosome entry site in a large RNA loop.  相似文献   

3.
The LEXE motif, conserved in eukaryotic type DNA polymerases, is placed close to the polymerization active site. Previous studies suggested that the second Glu was involved in binding a third noncatalytic ion in bacteriophage RB69 DNA polymerase. In the protein-primed DNA polymerase subgroup, the LEXE motif lacks the first Glu in most cases, but it has a conserved Phe/Trp and a Gly preceding that position. To ascertain the role of those residues, we have analyzed the behavior of mutants at the corresponding φ29 DNA polymerase residues Gly-481, Trp-483, Ala-484, and Glu-486. We show that mutations at Gly-481 and Trp-483 hamper insertion of the incoming dNTP in the presence of Mg2+ ions, a reaction highly improved when Mn2+ was used as metal activator. These results, together with previous crystallographic resolution of φ29 DNA polymerase ternary complex, allow us to infer that Gly-481 and Trp-483 could form a pocket that orients Val-250 to interact with the dNTP. Mutants at Glu-486 are also defective in polymerization and, as mutants at Gly-481 and Trp-483, in the pyrophosphorolytic activity with Mg2+. Recovery of both reactions with Mn2+ supports a role for Glu-486 in the interaction with the pyrophosphate moiety of the dNTP.  相似文献   

4.
Characterizing the denatured state ensemble is crucial to understanding protein stability and the mechanism of protein folding. The aim of this research was to see if fluorescence could be used to gain new information on the denatured state ensemble. Ribonuclease Sa (RNase Sa) contains no Trp residues. We made five variants of RNase Sa by adding Trp residues at locations where they are found in other members of the microbial ribonuclease family. To better understand the protein denatured state, we also studied the fluorescence properties of the following peptides: N-acetyl-Trp-amide (NATA), N-acetyl-Ala-Trp-Ala-amide (AWA), N-acetyl-Ala-Ala-Trp-Ala-Ala-amide (AAWAA), and the five pentapeptides with the same sequence as the Trp substitution sites in RNase Sa. The major conclusions are: 1), the wavelength of maximum fluorescence intensity, λmax, does not differ significantly for the peptides and the denatured proteins; 2), the fluorescence intensity at λmax, IF, differs significantly for the five Trp containing variants of RNase Sa; 3), the IF differences for the denatured proteins are mirrored in the peptides, showing that the short-range effects giving rise to the IF differences in the peptides are also present in the proteins; 4) the IF values for the denatured proteins are more than 30% greater than for the peptides, showing the presence of long-range effects in the proteins; 5), fluorescence quenching of Trp by acrylamide and iodide is more than 50% greater in the peptides than in the denatured proteins, showing that long-range effects limit the accessibility of the quenchers to the Trp side chains in the proteins; and 6), these results show that nonlocal effects in the denatured states of proteins influence Trp fluorescence and accessibility significantly.  相似文献   

5.
Combinatorial association of DNA-binding proteins on composite binding sites enhances their nucleotide sequence specificity and functional synergy. As a paradigm for these interactions, Pax-5 (BSAP) assembles ternary complexes with Ets proteins on the B cell-specific mb-1 promoter through interactions between their respective DNA-binding domains. Pax-5 recruits Ets-1 to bind the promoter, but not the closely related Ets protein SAP1a. Here we show that, while several different mutations increase binding of SAP1a to an optimized Ets binding site, only conversion of Val68 to an acidic amino acid facilitates ternary complex assembly with Pax-5 on the mb-1 promoter. This suggests that enhanced DNA binding by SAP1a is not sufficient for recruitment by Pax-5, but instead involves protein–protein interactions mediated by the acidic side chain. Recruitment of Ets proteins by Pax-5 requires Gln22 within the N-terminal β-hairpin motif of its paired domain. The β-hairpin also participates in recognition of a subset of Pax-5-binding sites. Thus, Pax-5 incorporates protein–protein interaction and DNA recognition functions in a single motif. The Caenorhabditis elegans Pax protein EGL-38 also binds specifically to the mb-1 promoter and recruits murine Ets-1 or the C.elegans Ets protein T08H4.3, but not the related LIN-1 protein. Together, our results define specific amino acid requirements for Pax–Ets ternary complex assembly and show that the mechanism is conserved between evolutionarily related proteins of diverse animal species. Moreover, the data suggest that interactions between Pax and Ets proteins are an important mechanism that regulates fundamental biological processes in worms and humans.  相似文献   

6.
Interaction of C5 protein with RNA aptamers selected by SELEX   总被引:1,自引:0,他引:1  
Lee JH  Kim H  Ko J  Lee Y 《Nucleic acids research》2002,30(24):5360-5368
RNA aptamers binding to C5 protein, the protein component of Escherichia coli RNase P, were selected and characterized as an initial step in elucidating the mechanism of action of C5 protein as an RNA-binding protein. Sequence analyses of the RNA aptamers suggest that C5 protein binds various RNA molecules with dissociation constants comparable to that of M1 RNA, the RNA component of RNase P. The dominant sequence, W2, was chosen for further study. Interactions between W2 and C5 protein were independent of Mg2+, in contrast to the Mg2+ dependency of M1 RNA–C5 protein interactions. The affinity of W2 for C5 protein increased with increasing concentration of monovalent NH4+, suggesting interactions via hydrophobic attraction. W2 forms a fairly stable complex with C5 protein, although the stability of this complex is lower than that of the complex of M1 RNA with C5 protein. The core RNA motif essential for interaction with C5 protein was identified as a stem–loop structure, comprising a 5 bp stem and a 20 nt loop. Our results strongly imply that C5 protein is an interacting partner protein of some cellular RNA species apart from M1 RNA.  相似文献   

7.
Twoα-neurotoxins, Oh-4 and Oh-7, from the king cobra (Ophiophagus hannah) venom were subjected to Trp modification with 2-nitrophenylsulfenyl chloride (NPS-Cl). One major NPS derivative was isolated from the modified mixtures of Oh-4 and two from Oh-7 by HPLC. Amino acid analysis and sequence determination revealed that Trp-27 in Oh-4, and Trp-30 and Trp-26 and 30 in the two Oh-7 derivatives, were modified, respectively. Sulfenylation of Trp-27 in Oh-4 caused about 70% drop in lethal toxicity and nicotinic acetylcholine receptor-binding activity. Modification of Trp-30 in Oh-7 resulted in the decrease of lethal toxicity by 36% and binding activity by 61%. The activities were further lost when the conserved Trp-26 in Oh-7 was modified. Sulfenylation of the Trp residues did not significantly affect the secondary structure of the toxins as revealed by the CD spectra. These results indicate that the Trp residues in these two longα-neurotoxins may be involved in the receptor binding.  相似文献   

8.
Loria A  Pan T 《Nucleic acids research》2001,29(9):1892-1897
The bacterial RNase P holoenzyme catalyzes the formation of the mature 5′-end of tRNAs and is composed of an RNA and a protein subunit. Among the two folding domains of the RNase P RNA, the catalytic domain (C-domain) contains the active site of this ribozyme. We investigated specific binding of the Bacillus subtilis C-domain with the B.subtilis RNase P protein and examined the catalytic activity of this C-domain–P protein complex. The C-domain forms a specific complex with the P protein with a binding constant of ~0.1 µM. The C-domain–P protein complex and the holoenzyme are equally efficient in cleaving single-stranded RNA (~0.9 min–1 at pH 7.8) and substrates with a hairpin–loop 3′ to the cleavage site (~40 min–1). The holoenzyme reaction is much more efficient with a pre-tRNA substrate, binding at least 100-fold better and cleaving 10–500 times more efficiently. These results demonstrate that the RNase P holoenzyme is functionally constructed in three parts. The catalytic domain alone contains the active site, but has little specificity and affinity for most substrates. The specificity and affinity for the substrate is generated by either the specificity domain of RNase P RNA binding to a T stem–loop-like hairpin or RNase P protein binding to a single-stranded RNA. This modular construction may be exploited to obtain RNase P-based ribonucleoprotein complexes with altered substrate specificity.  相似文献   

9.
Protein import into peroxisomes relies on the import receptor Pex5, which recognizes proteins with a peroxisomal targeting signal 1 (PTS1) in the cytosol and directs them to a docking complex at the peroxisomal membrane. Receptor-cargo docking occurs at the membrane-associated protein Pex14. In human cells, this interaction is mediated by seven conserved diaromatic penta-peptide motifs (WXXX(F/Y) motifs) in the N-terminal half of Pex5 and the N-terminal domain of Pex14. A systematic screening of a Pex5 peptide library by ligand blot analysis revealed a novel Pex5-Pex14 interaction site of Pex5. The novel motif composes the sequence LVAEF with the evolutionarily conserved consensus sequence LVXEF. Replacement of the amino acid LVAEF sequence by alanines strongly affects matrix protein import into peroxisomes in vivo. The NMR structure of a complex of Pex5-(57–71) with the Pex14-N-terminal domain showed that the novel motif binds in a similar α-helical orientation as the WXXX(F/Y) motif but that the tryptophan pocket is now occupied by a leucine residue. Surface plasmon resonance analyses revealed 33 times faster dissociation rates for the LVXEF ligand when compared with a WXXX(F/Y) motif. Surprisingly, substitution of the novel motif with the higher affinity WXXX(F/Y) motif impairs protein import into peroxisomes. These data indicate that the distinct kinetic properties of the novel Pex14-binding site in Pex5 are important for processing of the peroxisomal targeting signal 1 receptor at the peroxisomal membrane. The novel Pex14-binding site may represent the initial tethering site of Pex5 from which the cargo-loaded receptor is further processed in a sequential manner.  相似文献   

10.

Background

S-nitrosation – the formation of S-nitrosothiols (RSNOs) at cysteine residues in proteins – is a posttranslational modification involved in signal transduction and nitric oxide (NO) transport. Recent studies would also suggest the formation of N-nitrosamines (RNNOs) in proteins in vivo, although their biological significance remains obscure. In this study, we characterized a redox-based mechanism by which N-nitroso-tryptophan residues in proteins may be denitrosated.

Methodology/Principal Findings

The denitrosation of N-acetyl-nitroso Trp (NANT) by glutathione (GSH) required molecular oxygen and was inhibited by superoxide dismutase (SOD). Transnitrosation to form S-nitrosoglutathione (GSNO) was observed only in the absence of oxygen or presence of SOD. Protein denitrosation by GSH was studied using a set of mutant recombinant human serum albumin (HSA). Trp-214 and Cys-37 were the only two residues nitrosated by NO under aerobic conditions. Nitroso-Trp-214 in HSA was insensitive to denitrosation by GSH or ascorbate while denitrosation at Cys-37 was evident in the presence of GSH but not ascorbate. GSH-dependent denitrosation of Trp-214 was restored in a peptide fragment of helix II containing Trp-214. Finally, incubation of cell lysates with NANT revealed a pattern of protein nitrosation distinct from that observed with GSNO.

Conclusions

We propose that the denitrosation of nitrosated Trp by GSH occurs through homolytic cleavage of nitroso Trp to NO and a Trp aminyl radical, driven by the formation of superoxide derived from the oxidation of GSH to GSSG. Overall, the accessibility of Trp residues to redox-active biomolecules determines the stability of protein-associated nitroso species such that in the case of HSA, N-nitroso-Trp-214 is insensitive to denitrosation by low-molecular-weight antioxidants. Moreover, RNNOs can generate free NO and transfer their NO moiety in an oxygen-dependent fashion, albeit site-specificities appear to differ markedly from that of RSNOs.  相似文献   

11.
The beta-chain of human interleukin 12 (IL-12) contains at position 319-322, the sequence Trp-x-x-Trp. In human RNase 2 this is the recognition motif for a new, recently discovered posttranslational modification, i.e., the C-glycosidic attachment of a mannosyl residue to the side chain of tryptophan. Analysis of C-terminal peptides of recombinant IL-12 (rHuIL-12) by mass spectrometry and NMR spectroscopy revealed that Trp-319beta is (partially) C-mannosylated. This finding was extended by in vitro mannosylation experiments, using a synthetic peptide derived from the same region of the protein as an acceptor. Furthermore, human B-lymphoblastoid cells, which secrete IL-12, were found to contain an enzyme that carries out the C-mannosylation reaction. This shows that nonrecombinant IL-12 is potentially C-mannosylated as well. This is only the second report on a C-mannosylated protein. However, the occurrence of the C-mannosyltransferase activity in a variety of cells and tissues, and the presence of the recognition motif in many proteins indicate that more C-mannosylated proteins may be found.  相似文献   

12.
13.
The proteins of the pancreatic ribonuclease A (RNase A) family catalyze the cleavage of the RNA polymer chain. The development of RNase inhibitors is of significant interest, as some of these compounds may have a therapeutic effect in pathological conditions associated with these proteins. The most potent low molecular weight inhibitor of RNase reported to date is the compound 5′-phospho-2′-deoxyuridine-3-pyrophosphate (P→5)-adenosine-3-phosphate (pdUppA-3′-p). The 3′,5′-pyrophosphate group of this compound increases its affinity and introduces structural features which seem to be unique in pyrophosphate-containing ligands bound to RNase A, such as the adoption of a syn conformation by the adenosine base at RNase subsite B2 and the placement of the 5′-β-phosphate of the adenylate (instead of the α-phosphate) at subsite P1 where the phosphodiester bond cleavage occurs. In this work, we study by multi-ns molecular dynamics simulations the structural properties of RNase A complexes with the ligand pdUppA-3′-p and the related weaker inhibitor dUppA, which lacks the 3′ and 5′ terminal phosphate groups of pdUppA-3′-p. The simulations show that the adenylate 5′-β-phosphate binding position and the adenosine syn orientation constitute robust structural features in both complexes, stabilized by persistent interactions with specific active-site residues of subsites P1 and B2. The simulation structures are used in conjunction with a continuum-electrostatics (Poisson-Boltzmann) model, to evaluate the relative binding affinity of the two complexes. The computed relative affinity of pdUppA-3′-p varies between −7.9 kcal/mol and −2.8 kcal/mol for a range of protein/ligand dielectric constants (εp) 2–20, in good agreement with the experimental value (−3.6 kcal/mol); the agreement becomes exact with εp = 8. The success of the continuum-electrostatics model suggests that the differences in affinity of the two ligands originate mainly from electrostatic interactions. A residue decomposition of the electrostatic free energies shows that the terminal phosphate groups of pdUppA-3′-p make increased interactions with residues Lys7 and Lys66 of the more remote sites P2 and P0, and His119 of site P1.  相似文献   

14.
The Pet54p protein is an archetypical example of a dual functioning (‘moonlighting’) protein: it is required for translational activation of the COX3 mRNA and splicing of the aI5β group I intron in the COX1 pre-mRNA in Saccharomyces cerevisiae mitochondria (mt). Genetic and biochemical analyses in yeast are consistent with Pet54p forming a complex with other translational activators that, in an unknown way, associates with the 5′ untranslated leader (UTL) of COX3 mRNA. Likewise, genetic analysis suggests that Pet54p along with another distinct set of proteins facilitate splicing of the aI5β intron, but the function of Pet54 is, also, obscure. In particular, it remains unknown whether Pet54p is a primary RNA-binding protein that specifically recognizes the 5′ UTL and intron RNAs or whether its functional specificity is governed in other ways. Using recombinant protein, we show that Pet54p binds with high specificity and affinity to the aI5β intron and facilitates exon ligation in vitro. In addition, Pet54p binds with similar affinity to the COX3 5′ UTL RNA. Competition experiments show that the COX3 5′UTL and aI5β intron RNAs bind to the same or overlapping surface on Pet54p. Delineation of the Pet54p-binding sites by RNA deletions and RNase footprinting show that Pet54p binds across a similar length sequence in both RNAs. Alignment of the sequences shows significant (56%) similarity and overlap between the binding sites. Given that its role in splicing is likely an acquired function, these data support a model in which Pet54p's splicing function may have resulted from a fortuitous association with the aI5β intron. This association may have lead to the selection of Pet54p variants that increased the efficiency of aI5β splicing and provided a possible means to coregulate COX1 and COX3 expression.  相似文献   

15.
The 150-residue protein TM1509 is encoded in gene YF09_THEMA of Thermotoga maritima. TM1509 has so far no functional annotation and belongs to protein family UPF0054 (PFAM accession number: PF02130) which contains at least 146 members. The NMR structure of TM1509 reveals an α+β fold comprising a four stranded β-sheet with topology A(↑), B(↑), D(↑), C(↓) as well as five α-helices I–V. The structures of most members of family PF02130 can be reliably constructed using the TM1509 NMR structure, demonstrating high leverage for exploration of fold space. A multiple sequence alignment of TM1509 with homologues of family UPF0054 shows that three polypeptide segments, as well as a putative zinc-binding consensus motif HGXLHLXGYDH located at the C-terminal end of α-helix IV, are highly conserved. The spatial arrangement of the three His residues of this UPF0054 consensus motif is similar to the arrangement found for the His residues in the HEXXHXXGXXH zinc-binding consensus motif of matrix metallo-proteases (MMPs). Moreover, the other conserved polypeptide segments form a large cavity which encloses the putative Zn-binding pocket and might confer specificity during catalysis. However, TM1509 and the other members of the UPF0054 family do not have the crucial Glu residue in position 2 of the MMP consensus motif. Intriguingly, the TM1509 structure indicates that the Asp in the UPF0054 consensus motif (Asp 111 in TM1509) may overtake the catalytic role of the Glu. This suggests that protein family UPF0054 might contain members of a hitherto uncharacterized class of metalloproteases.  相似文献   

16.
The Hfq protein, which shares sequence and structural homology with the Sm and Lsm proteins, binds to various RNAs, primarily recognizing AU-rich single-stranded regions. In this paper, we study the ability of the Escherichia coli Hfq protein to bind to a polyadenylated fragment of rpsO mRNA. Hfq exhibits a high specificity for a 100-nucleotide RNA harboring 18 3′-terminal A-residues. Structural analysis of the adenylated RNA–Hfq complex and gel shift assays revealed the presence of two Hfq binding sites. Hfq binds primarily to the poly(A) tail, and to a lesser extent a U-rich sequence in a single-stranded region located between two hairpin structures. The oligo(A) tail and the interhelical region are sensitive to 3′–5′ exoribonucleases and RNase E hydrolysis, respectively, in vivo. In vitro assays demonstrate that Hfq protects poly(A) tails from exonucleolytic degradation by both PNPase and RNase II. In addition, RNase E processing, which occurred close to the U-rich sequence, is impaired by the presence of Hfq. These data suggest that Hfq modulates the sensitivity of RNA to ribonucleases in the cell.  相似文献   

17.
Gram-positive bacteria contain sortase enzymes on their cell surfaces that catalyze transpeptidation reactions critical for proper cellular function. In vitro, sortases are used in sortase-mediated ligation (SML) reactions for a variety of protein engineering applications. Historically, sortase A from Staphylococcus aureus (saSrtA) has been the enzyme of choice to catalyze SML reactions. However, the stringent specificity of saSrtA for the LPXTG sequence motif limits its uses. Here, we describe the impact on substrate selectivity of a structurally conserved loop with a high degree of sequence variability in all classes of sortases. We investigate the contribution of this β7–β8 loop by designing and testing chimeric sortase enzymes. Our chimeras utilize natural sequence variation of class A sortases from eight species engineered into the SrtA sequence from Streptococcus pneumoniae. While some of these chimeric enzymes mimic the activity and selectivity of the WT protein from which the loop sequence was derived (e.g., that of saSrtA), others results in chimeric Streptococcus pneumoniae SrtA enzymes that are able to accommodate a range of residues in the final position of the substrate motif (LPXTX). Using mutagenesis, structural comparisons, and sequence analyses, we identify three interactions facilitated by β7–β8 loop residues that appear to be broadly conserved or converged upon in class A sortase enzymes. These studies provide the foundation for a deeper understanding of sortase target selectivity and can expand the sortase toolbox for future SML applications.  相似文献   

18.
Staphylococcus aureus (S. aureus) pathogenesis is a complex process involving a diverse array of extracellular and cell wall components. ClfB, an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules) family surface protein, described as a fibrinogen-binding clumping factor, is a key determinant of S. aureus nasal colonization, but the molecular basis for ClfB-ligand recognition remains unknown. In this study, we solved the crystal structures of apo-ClfB and its complexes with fibrinogen α (Fg α) and cytokeratin 10 (CK10) peptides. Structural comparison revealed a conserved glycine-serine-rich (GSR) ClfB binding motif (GSSGXGXXG) within the ligands, which was also found in other human proteins such as Engrailed protein, TCF20 and Dermokine proteins. Interaction between Dermokine and ClfB was confirmed by subsequent binding assays. The crystal structure of ClfB complexed with a 15-residue peptide derived from Dermokine revealed the same peptide binding mode of ClfB as identified in the crystal structures of ClfB-Fg α and ClfB-CK10. The results presented here highlight the multi-ligand binding property of ClfB, which is very distinct from other characterized MSCRAMMs to-date. The adherence of multiple peptides carrying the GSR motif into the same pocket in ClfB is reminiscent of MHC molecules. Our results provide a template for the identification of other molecules targeted by S. aureus during its colonization and infection. We propose that other MSCRAMMs like ClfA and SdrG also possess multi-ligand binding properties.  相似文献   

19.
In the lipocalin family, the conserved interaction between the main α-helix and the β-strand H is an ideal model to study protein side chain dynamics. Site-directed tryptophan fluorescence (SDTF) has successfully elucidated tryptophan rotamers at positions along the main alpha helical segment of tear lipocalin (TL). The rotamers assigned by fluorescent lifetimes of Trp residues corroborate the restriction expected based on secondary structure. Steric conflict constrains Trp residues to two (t, g ) of three possible χ1 (t, g , g +) canonical rotamers. In this study, investigation focused on the interplay between rotamers for a single amino acid position, Trp 130 on the α-helix and amino acids Val 113 and Leu 115 on the H strand, i.e. long range interactions. Trp130 was substituted for Phe by point mutation (F130W). Mutations at positions 113 and 115 with combinations of Gly, Ala, Phe residues alter the rotamer distribution of Trp130. Mutations, which do not distort local structure, retain two rotamers (two lifetimes) populated in varying proportions. Replacement of either long range partner with a small amino acid, V113A or L115A, eliminates the dominance of the t rotamer. However, a mutation that distorts local structure around Trp130 adds a third fluorescence lifetime component. The results indicate that the energetics of long-range interactions with Trp 130 further tune rotamer populations. Diminished interactions, evident in W130G113A115, result in about a 22% increase of α-helix content. The data support a hierarchic model of protein folding. Initially the secondary structure is formed by short-range interactions. TL has non-native α-helix intermediates at this stage. Then, the long-range interactions produce the native fold, in which TL shows α-helix to β-sheet transitions. The SDTF method is a valuable tool to assess long-range interaction energies through rotamer distribution as well as the characterization of low-populated rotameric states of functionally important excited protein states.  相似文献   

20.
Cryptochrome (CRY) is the primary circadian photoreceptor in Drosophila. Upon light absorption, dCRY undergoes a conformational change that enables it to bind to Timeless (dTIM), as well as to two different E3 ligases that ubiquitylate dTIM and dCRY, respectively, resulting in their proteolysis and resetting the phase of the circadian rhythm. Purified dCRY contains oxidized flavin (FADox), which is readily photoreduced to the anionic semiquinone through a set of 3 highly conserved Trp residues (Trp triad). The crystal structure of dCRY has revealed a fourth Trp (Trp-536) as a potential electron donor. Previously, we reported that the Trp triad played no role in photoinduced proteolysis of dCRY in Drosophila cells. Here we investigated the role of the Trp triad and Trp-536, and the redox status of the flavin on light-induced proteolysis of both dCRY and dTIM and resetting of the clock. We found that both oxidized (FADox) and reduced (FAD) forms of dCRY undergo light-induced conformational change in vitro that enable dCRY to bind JET and that Trp triad and Trp-536 mutations that block known or presumed intraprotein electron transfer reactions do not affect dCRY phototransduction under bright or dim light in vivo as measured by light-induced proteolysis of dCRY and dTIM in Drosophila S2R+ cells. We conclude that both oxidized and reduced forms of dCRY are capable of photosignaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号