首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibody to the carboxyl-terminal of hexose transporter protein GLUT-1 was used to localize this carrier in normal rat kidney (NRK) cells during D-glucose (Glc) deprivation. Glc-deprivation of NRK cells induces increased hexose transport, inhibits the glycosylation of GLUT-1, and increases the content of both native, 55,000 apparent mol wt (Mr) and aglyco, 38,000 Mr GLUT-1 polypeptides. The distribution of GLUT-1 protein in subcellular fractions isolated from Glc-fed NRK cells shows that the 55,000 Mr polypeptide is most abundant in intracellular membrane fractions. Glc-fed cells that have been tunicamycin treated contain principally the 38,000 Mr GLUT-1 polypeptide, which is found predominantly in intracellular membrane fractions. In Glc-deprived cells the 55,000 Mr GLUT-1 polypeptide localizes predominantly in the Golgi and plasma membrane fractions, whereas the more abundant 38,000 Mr GLUT-1 polypeptide is distributed throughout all membrane fractions. In Glc-deprived but fructose-fed cells only the 55,000 Mr GLUT-1 polypeptide is detected, and it is found predominantly in the plasma membrane and Golgi fractions. The localization of GLUT-1 protein was directly and specifically visualized in NRK cells by immunofluorescence microscopy. Glc-fed cells show little labeling of cell borders and a small punctate juxtanuclear pattern suggestive of localization to the Golgi and, perhaps, endoplasmic reticulum. Glc-fed cells that have been tunicamycin treated show large punctate intracellular accumulations suggestive of localization to distended Golgi and perhaps endoplasmic reticulum. Glc-deprived cells exhibited intense labeling of cell borders as well as intracellular accumulations. Glc-deprived but fructose-fed cells show fewer intracellular accumulations, and the labeling is, in general, limited to the cell borders. Our results suggest that Glc deprivation induces the selective accumulation of GLUT-1 in the plasma membrane of NRK cells.  相似文献   

2.
Antisera to the human erythrocyte Glc transporter immunoblotted a polypeptide of Mr 55,000 in membranes from human hepatocarcinoma cells, Hep G2, human fibroblasts, W138, and murine preadipocytes, 3T3-L1. This antisera immunoprecipitated the erythrocyte protein which had been photoaffinity labeled with [3H]cytochalasin B, immunoblotted its tryptic fragment of Mr 19,000, and immunoblotted the deglycosylated protein as a doublet of Mr 46,000 and 38,000. This doublet reduced to a single polypeptide of Mr 38,000 after boiling. When Hep G2, W138, and 3T3-L1 cells were metabolically labeled with L-[35S]methionine for 6 h, a broad band of Mr 55,000 was immunoprecipitated from membrane extracts. In pulse-chase experiments, two bands of Mr 49,000 and 42,000 were identified as putative precursors of the mature transporter. The t1/2 for mature Glc transporter was 90 min for Hep G2 cells that had been starved for methionine (2 h) and pulsed for 15 min with L-[35S]methionine. Polypeptides of Mr 46,000 and 38,000 were immunoprecipitated from Hep G2 cells that had been metabolically labeled with L-[35S]methionine in the presence of tunicamycin. This doublet reduced to the single polypeptide of Mr 38,000 after boiling. In the absence of tunicamycin, but not in its presence, mature polypeptide of Mr 55,000 was immunoprecipitated from Hep G2 cells metabolically labeled with D-[3H]GlcN. A polypeptide of Mr 38,000 was observed in boiled immune complexes from the in vitro translation products of Hep G2, W138, and 3T3-L1 cell RNA. Dog pancreatic microsomes cotranslationally, but not posttranslationally, converted this to a polypeptide of Mr 35,000. A model for Glc transporter biogenesis is proposed in which the primary translation product of Mr 38,000 is converted by glycosylations to a polypeptide of Mr 42,000. The latter is then processed via heterogeneous complex N-linked glycosylations to form the mature Glc transporter, Mr 55,000.  相似文献   

3.
Glucose as a regulator of insulin-sensitive hexose uptake in 3T3 adipocytes   总被引:5,自引:0,他引:5  
In the present study we examined the role of glucose in the regulation of its own transport activity in the cultured 3T3 fat cell. A regulatory control of glucose became apparent after these cells were cultured in the absence of glucose. Glucose deprivation of the cells was accompanied by a specific time and protein synthesis-dependent increase in dGlc (2-deoxyglucose) uptake (up to 5-fold), which was due to an increase in the apparent Vmax of the transport system. Concomitantly, the stimulatory effect of insulin on hexose uptake almost completely disappeared. Addition of glucose to the glucose-deprived cells rapidly reversed the deprivation effects. Cycloheximide experiments revealed that the glucose deprivation-induced increase in hexose uptake required protein synthesis as well as a protein synthesis-independent response to glucose deprivation that retarded the turnover of hexose transport activity. Taken together, these data indicate that glucose deprivation is accompanied by retardation of the rate of degradation, internalization, or inactivation of hexose transporters while the increase in dGlc uptake requires at least the continuation of protein synthesis-dependent de novo synthesis, insertion, or activation of hexose transporters. Hexose competitively taken up with dGlc, including the nonmetabolizable glucose analogue 3-O-methylglucose, could replace glucose in the process of prevention and reversal of the deprivation effects, indicating that competitive transport but not the metabolism of hexose is a prerequisite for the regulatory effect of glucose on the activity of its own transport system. In conclusion, our results indicate that in cultured 3T3 fat cells glucose itself is involved in the regulation of the activity of its own transport system by influencing the rate of degradation, internalization, or inactivation of hexose transporters by a protein synthesis-independent mechanism.  相似文献   

4.
The nature of the membrane compartments involved in the regulation by glucose of hexose transport is not well defined. The effect of inhibitors of lysosomal protein degradation on hexose transport (i.e., uptake of [3H]-2-deoxy-D-glucose) and hexose transporter protein GLUT-1 (i.e., immunoblotting with antipeptide serum) in glucose-fed and -deprived cultured murine fibroblasts (3T3-C2 cells) was studied. The acidotropic amines chloroquine (20 microM) and ammonium chloride (10 mM) cause accumulation (both approximately 4-fold) of GLUT-1 protein and a small increase (both approximately 25%) in hexose transport in glucose-fed fibroblasts (24 h). The endopeptidase inhibitor, leupeptin (100 microM) causes accumulation (approximately 4-fold) of GLUT-1 protein in glucose-fed fibroblasts (24 h) without changing hexose transport (less than or equal to 5%). These agents do not greatly alter the electrophoretic mobility of GLUT-1. Neither chloroquine nor leupeptin augment the glucose deprivation (24 h) induced increases in hexose transport (approximately 4-fold) and GLUT-1 content (approximately 7-fold). In contrast, chloroquine or leupeptin diminish the reversal by glucose refeeding of the glucose deprivation induced accumulation of GLUT-1 protein but fail to alter the return of hexose transport to control levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Functional domain structure of calcineurin A: mapping by limited proteolysis   总被引:15,自引:0,他引:15  
M J Hubbard  C B Klee 《Biochemistry》1989,28(4):1868-1874
Limited proteolysis of calcineurin, the Ca2+/calmodulin-stimulated protein phosphatase, with clostripain is sequential and defines four functional domains in calcineurin A (61 kDa). In the presence of calmodulin, an inhibitory domain located at the carboxyl terminus is rapidly degraded, yielding an Mr 57,000 fragment which retains the ability to bind calmodulin but whose p-nitrophenylphosphatase is fully active in the absence of Ca2+ and no longer stimulated by calmodulin. Subsequent cleavage(s), near the amino terminus, yield(s) an Mr 55,000 fragment which has lost more than 80% of the enzymatic activity. A third, slower, proteolytic cleavage in the carboxyl-terminal half of the protein converts the Mr 55,000 fragment to an Mr 42,000 polypeptide which contains the calcineurin B binding domain and an Mr 14,000 fragment which binds calmodulin in a Ca2+-dependent manner with high affinity. In the absence of calmodulin, clostripain rapidly severs both the calmodulin-binding and the inhibitory domains. The catalytic domain is preserved, and the activity of the proteolyzed 43-kDa enzyme is increased 10-fold in the absence of Ca2+ and 40-fold in its presence. The calcineurin B binding domain and calcineurin B appear unaffected by proteolysis both in the presence and in the absence of calmodulin. Thus, calcineurin A is organized into functionally distinct domains connected by proteolytically sensitive hinge regions. The catalytic, inhibitory, and calmodulin-binding domains are readily removed from the protease-resistant core, which contains the calcineurin B binding domain. Calmodulin stimulation of calcineurin is dependent on intact inhibitory and calmodulin-binding domains, but the degraded enzyme lacking these domains is still regulated by Ca2+.  相似文献   

6.
7.
At maximally active concentrations with 20-min exposure, insulin and phorbol myristate acetate (PMA) stimulated hexose transport in 3T3-L1 adipocytes by 11- and 2-fold, respectively. The potential role of phosphorylation of the glucose transporter (GT) in these stimulations was investigated by the isolation of GT through immunoprecipitation from ortho[32P]phosphate-labeled 3T3-L1 adipocytes. It was found that there was no significant 32P incorporation into GT from basal adipocytes after 2- or 18 h-labeling in the presence of 0.5 mCi of 32Pi/ml. Furthermore, under these labeling conditions, insulin treatment for 1, 4, or 30 min failed to stimulate the phosphorylation of GT. Also, there was no detectable phosphate incorporation into GT upon reversal of insulin-stimulated hexose transport by the removal of insulin (half-time for reversal approximately 8 min). In contrast to these results, exposure of adipocytes to PMA (1 microM) for 20 min elicited a phosphorylation of GT to the extent of about 0.1 phosphate/GT molecule. Exposure of cells to both insulin and PMA resulted in a 3-fold increase in the level of phosphate in GT compared to that seen with PMA alone. Possibly this increase is due to the translocation of GT to the plasma membrane where it is a better substrate for activated protein kinase C. Stimulation of hexose transport was the same with the combined treatment of insulin and PMA compared to that seen with insulin alone. These results indicate that neither a change in the phosphorylation state of the GT nor activation of protein kinase C is involved in the mechanism by which the insulin receptor stimulates glucose transport.  相似文献   

8.
Signal transduction pathway involved in glucose deprivation-induced oxidative stress were investigated in human breast carcinoma cells (MCF-7/ADR). In MCF-7/ADR, glucose deprivation-induced prolonged activation of c-Jun N-terminal kinase (JNK1) as well as cytoxicity and the accumulation of oxidized glutathione. Glucose deprivation also caused significant increases in total glutathione, cysteine, gamma-glutamylcysteine, and immunoreactive proteins corresponding to the catalytic as well as regulatory subunits of gamma-glutamylcysteine, and immunoreactive proteins corresponding to the catalytic as well as regulatory subunits of gamma-glutamylcysteine synthetase, suggesting that the synthesis of glutathione increased as an adaptive response. Expression of a catalytically inactive dominant negative JNK1 in MCF-7/ADR inhibited glucose deprivation- induced cell death and the accumulation of oxidized glutathione as well as altered the duration of JNK activation from persistent (> 2 h) to transient (30 min). In addition, stimulation of glutathione synthesis during glucose deprivation was not observed in cells expressing the highest levels of dominant negative protein. Finally, a linear dose response suppression of oxidized glutathione accumulation was noted for clones expressing increasing levels of dominant negative JNK1 during glucose deprivation. These results show that expression of a dominant negative JNK1 protein was capable of suppressing persistent JNK activation as well as oxidative stress and cytotoxicity caused by glucose deprivation in MCF-7/ADR. These findings support the hypothesis that JNK signaling pathways may control the expression of proteins contributing to cell death mediated by metabolic oxidative stress during glucose deprivation. Finally, these results support the concept that JNK signaling-induced shifts in oxidative metabolism may provide a general mechanism for understanding the diverse biological effects seen during the activation of JNK signaling cascades.  相似文献   

9.
The rates of incorporation of various metabolites into starch by isolated amyloplasts from developing endosperm of spring wheat (Triticum aestivum L. cv. Axona) were examined. Of the metabolites tested that were likely to be present in the cytosol at concentrations sufficient to sustain starch synthesis, only glucose 1-phosphate (Glc1P) supported physiologically relevant rates of starch synthesis. Incorporation of Glc1P into starch was both dependent on the presence of ATP and intact organelles. The rate of incorporation of hexose into starch became saturated at a Glc1P concentration of less than 1 mol·m-3 in the presence of 1 mol·m-3 ATP. Starch synthesis from 5 mol · m-3 ADP-glucose supplied to the organelles occurred at rates 15-fold higher than from similar concentrations of Glc1P, but it is argued that this is probably of little physiological relevance. The net incorporation of hexose units into starch from GlclP was inhibited 50% by 100 mmol.m-3 carboxyatractyloside. Carbohydrate oxidation in the amyloplast was stimulated by the addition of 2-oxoglutarate and glutamine, and in such circumstances incorporation of14C-labelled metabolites into starch was reduced. Glucose 6-phosphate proved to be a better substrate for oxidative pathways than Glc1P. Our results suggest that Glc1P is the primary substrate for starch synthesis in developing wheat endosperm, and that ATP required for starch synthesis is imported via an adenylate translocator.  相似文献   

10.
Rabbit skeletal muscle glycogen previously has been shown to be covalently bound to a 40,000-Da protein ("glycogenin") via a novel glucosyl-tyrosine linkage [I.R. Rodriguez and W.J. Whelan (1985) Biochem. Biophys. Res. Commun. 132, 829-836]. Antibodies raised against rabbit skeletal muscle glycogenin cross-react with a similar protein present in rabbit heart and liver glycogens, as well as with a 42,000-Da "acceptor protein" present in high-speed supernatants of rabbit muscle, heart, retina, and liver. This 42,000-Da protein incorporates [U-14C]Glc when an ammonium sulfate fraction prepared from the tissue supernatants is incubated with UDP-[U-14C]Glc. The [U-14C]Glc incorporated can be removed quantitatively by treatment with amylolytic enzymes, indicating that the [U-14C]Glc incorporation represents elongation of a preexisting glucan attached to the acceptor protein. Furthermore, a commercial preparation of rabbit skeletal muscle glycogen synthase contains this 42,000-Da protein. We propose that the 42,000-Da protein represents the free form of glycogenin in tissues, with its covalently attached glucan chain(s) providing a "primed" elongation site for glycogen synthesis.  相似文献   

11.
Incorporation of Glc and Fru into glycogen was measured in perfused livers from 24-h fasted rats using [6-3H]Glc and [U-14C]Fru. For the initial 20 min, livers were perfused with low Glc (2 mM) to deplete hepatic glycogen and were perfused for the following 30 min with various combinations of Glc and Fru. With constant Fru (2 mM), increasing perfusate Glc increased the relative contribution of Glc carbons to glycogen (7.2 +/- 0.4, 34.9 +/- 2.8, and 59.1 +/- 2.7% at 2, 10, and 20 mM Glc, respectively; n = 5 for each). During perfusion with substrate levels seen during refeeding (10 mM Glc, 1.8 mumol/g/min gluconeogenic flux from 2 mM Fru), Fru provided 54.7 +/- 2.7% of the carbons for glycogen, while Glc provided only 34.9 +/- 2.8%, consistent with in vivo estimations. However, the estimated rate of Glc phosphorylation was at least 1.10 +/- 0.11 mumol/g/min, which exceeded by at least 4-fold the glycogen accumulation rate (0.28 +/- 0.04 mumol of glucose/g/min). The total rate of glucose 6-phosphate supply via Glc phosphorylation and gluconeogenesis (2.9 mumol/g/min) exceeded reported in vivo rates of glycogen accumulation during refeeding. Thus, in perfused livers of 24-h fasted rats there is an apparent redundancy in glucose 6-phosphate supply. These results suggest that the rate-limiting step for hepatic glycogen accumulation during refeeding is located between glucose 6-phosphate and glycogen, rather than at the step of Glc phosphorylation or in the gluconeogenic pathway.  相似文献   

12.
Intact rat fat cells exposed to 12.5 microM [gamma-32P]ATP incorporate label into specific proteins within minutes. By solubilizing the reaction mixture with SDS which by passes the subcellular fractionation steps, the labeled proteins can be identified in autoradiographs of SDS-PAGE gels. The most prominently labeled protein has an Mr of 42,000. Localization of this component to the cell surface can be made on the basis of inhibition of phosphorylation by addition of a protein derived from the rat brain with protein kinase inhibitory property, susceptibility of the phosphorylated protein to tryptic digestion, whereas the unphosphorylated protein is unaffected by digestion with trypsin (15 min), inhibition of phosphorylation of this protein after brief exposure to melittin, and the consistent observation that more label is associated with the 42,000 Mr band in homogenates and permeabilized cells than in comparable numbers of intact cells exposed to the same amount of label. A 42,000 Mr phosphoprotein is also present in mitochondria which is most likely the alpha subunit of pyruvate dehydrogenase. To rule out the possibility that the cell surface protein might be a mitochondrial contaminant from broken cells, 32Pi-labeled and [gamma-32P]ATP-labeled cells were solubilized with Triton and chromatographed on a rabbit anti-pyruvate dehydrogenase antibody-Sepharose 4B column. A single labeled peak was detected upon elution of the bound fraction only in the 32Pi-labeled sample, and not in the [gamma-32P]ATP-labeled sample. Subcellular fractionation studies of intact cells labeled with [gamma-32P]ATP showed differences in the recovery of phosphoproteins of 42,000 Mr depending on whether a continuous sucrose gradient (27.6-54.1%, g/ml) or a discontinuous sucrose gradient (16, 35 and 48%, g/ml) was used. Phosphoproteins of 42,000 Mr were located in the mitochondrial and membrane fractions collected by discontinuous sucrose gradient separation, whereas a phosphoprotein of 42,000 Mr was found primarily in the mitochondrial fraction after continuous sucrose gradient separation. By 5'-nucleotidase activity measurements, the latter approach appears to result in the isolation of a heavy fragment of the plasma membrane with the mitochondrial light fraction which is 42,000 in Mr and labeled. Finally, comparison of the autoradiographs of two-dimensional (2D) gels (isoelectric focusing followed by 10% SDS-PAGE) show different isoelectric points for 42,000 Mr components in [gamma-32P]ATP- and 32Pi-labeled cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
14.
We have shown previously that the subcellular distribution of a major calmodulin-binding protein is altered under conditions causing increased synthesis of cAMP in Aplysia neurons (Saitoh, T., and J. H. Schwartz, 1983, Proc. Natl. Acad. Sci. USA, 80:6708-6712). We now provide evidence that this Mr 55,000 protein is a subunit of a Ca2+/calmodulin-dependent kinase: (a) both the Mr 55,000 calmodulin-binding protein and kinase activity are loosely attached to the membrane-cytoskeletal complex; (b) both kinase activity and the Mr 55,000 protein are translocated from the membrane-cytoskeleton complex to the cytoplasm under conditions that cause the change in the subcellular distribution of the Mr 55,000 calmodulin-binding protein; and (c) calmodulin-binding activity of the Mr 55,000 protein and the ability to carry out the Ca2+/calmodulin-dependent phosphorylation of synapsin I are purified in parallel. The subcellular localization of the Ca2+/calmodulin-dependent protein kinase appears to be under control of two second messengers: Ca2+ and cAMP. We find that the Mr 55,000 subunit is phosphorylated when the extracted membrane-cytoskeleton complex is incubated with Ca2+, calmodulin, and ATP, with the concomitant release of this phosphorylated peptide from the complex. Previously, we had found that, when translocation occurs in extracts in the presence of cAMP and ATP (but in the absence of Ca2+), there was no detectable phosphorylation of the Mr 55,000 subunit itself. The subcellular distribution of the subunit thus appears to be influenced by (a) cAMP-dependent phosphorylation, which, we infer, modifies some as yet unidentified structural component, causing the release of the enzyme; and (b) Ca2+/calmodulin-dependent phosphorylation of the Mr 55,000 subunit. These studies also suggest that phosphorylation has an important regulatory consequence: during the Ca2+/calmodulin-dependent translocation of the Mr 55,000 subunit, the kinase appears to be activated, becoming independent of added Ca2+/calmodulin.  相似文献   

15.
We have used a Chinese hamster ovary cell line deficient in N-acetylglucosaminyltransferase 1 activity (Lec1) to study the effects of altered asparagine-linked oligosaccharides on the structure, biosynthesis, and function of glucose transporter protein. Immunoblots of membranes of Lec1 cells show a glucose transporter protein of Mr 40,000, whereas membranes of wild-type (WT) cells contain a broadly migrating Mr 55,000 form similar to that observed in several other mammalian tissues. The total content of immunoreactive glucose transporters in Lec1 cells is 3.5-fold greater than that of WT cells. Digestion with endoglycosidases, treatment with inhibitors of glycosylation, and interactions with agarose-bound lectins demonstrate that glucose transporters of both cell lines derive from a similar Mr 38,000 core polypeptide and that both contain asparagine-linked oligosaccharide. Transporters in Lec1 cells contain primarily "undecorated" but "trimmed" mannose-type asparagine-linked oligosaccharides, while the protein in WT cells contains a mixture of "decorated" and "trimmed" asparagine-linked oligosaccharides. Biosynthetic and turnover studies demonstrate that Lec1 cells, in contrast to WT cells, are unable fully to process the core asparagine-linked oligosaccharides of maturing glucose transporters. When radiolabeled in methionine-deficient medium both Lec1 and WT cells show similar rates of synthesis and turnover of glucose transporter proteins. It should be noted, however, that starvation for a critical amino acid may alter the ability of the cell to synthesize or degrade proteins. The abilities of Lec1 and WT cells to transport hexoses and to interact with the inhibitor cytochalasin B are very similar. The results indicate that, although altered asparagine-linked glycosylation can affect the content and biogenesis of glucose transporters, these changes do not greatly modify cellular hexose uptake. The possibility that alterations in asparagine-linked glycosylation may change the cell surface localization or acquisition of a "functional conformation" of the glucose transporter is also suggested.  相似文献   

16.
In human foreskin fibroblast cultures, two proteins with Mr 60,000 and 55,000 were found to be induced about 3.5-fold by epidermal growth factor (EGF), platelet-derived growth factor, and beta-transforming growth factor. The induced proteins were identified as procollagenases by immunoprecipitation of induced medium with antibodies to purified human fibroblast collagenase. Collagenase enzyme activity in the medium from EGF-treated cultures was also induced at least 3-fold compared to control cultures. Induction of collagenase was dependent upon de novo protein and RNA synthesis and was observed in the medium 10 h after addition of EGF. Although these growth-promoting factors interact with separate membrane receptors, each induced the secretion of a common protein, suggesting that collagenase may be important in some aspect of mitogenesis, cell mobilization, and migration.  相似文献   

17.
Assay for D-glucose-inhibitable 3H-cytochalasin B-binding was carried out to elucidate the action mechanism of the tumor promoter-induced enhancement of glucose transport activity in Swiss 3T3 cells. Incubation of the cells with 12-0-tetradecanoylphorbol-13-acetate (TPA) increased the amount of D-glucose-inhibitable cytochalasin B-binding sites in plasma membrane from 13.5 to 40.1 pmol/mg protein. On the other hand, TPA treatment resulted in the decrease of binding sites in microsomal membrane from 68.9 to 34.1 pmol/mg protein. The tumor promoter-induced translocation of hexose transport system from microsomal membrane to plasma membrane was inhibited by the treatment with 2,4-dinitrophenol before the addition of TPA but was not affected by the treatment with cycloheximide. By removal of the promoter from its receptor, the stimulatory effect of the promoter on the translocation of hexose transport system was decreased. The analysis by electrophoresis demonstrated that among the affinity labeled hexose transporter components of Mr 48,000 and Mr 55,000, the former was responsible for the TPA-induced increase in hexose transport activity in plasma membrane.  相似文献   

18.
Platelets exposed to collagen sufficient to stimulate the release reaction show an increase in labeling of two intracellular proteins with molecular weights of 20,000 and 42,000. The 20,000 Mr protein has already been identified as the light chain of myosin whereas the identity of the 42,000 Mr protein had not been established. By use of biochemical and immunological techniques, the identify of the 42,000 Mr component of prelabeled platelets found in the 100,000g supernatant of freeze-thawed or sonicated cells appears to be one of the subunits of pyruvate dehydrogenase complex which is translocated from the mitochondria to the 100,000g supernatant during the preparative procedure. Increased phosphorylation of the 42,000 Mr protein occurred after collagen stimulation and was accompanied by diminished pyruvate dehydrogenase activity.  相似文献   

19.
Biosynthesis of the c-series gangliosides GT3, GT2 and GP1c was studied in Golgi derived from rat liver. Competition experiments show that the synthesis of ganglioside GT2 (GalNAc beta 1----4-(NeuAc alpha 2----8NeuAc alpha 2----8NeuAc alpha 2----3)Gal- beta 1----4Glc beta 1----1Cer) from GT3 (NeuAc alpha 2----8NeuAc alpha 2----8-NeuAc alpha 2----3Gal beta 1----4Glc beta 1----1Cer) seems to be catalysed by the same N-acetylgalactosaminyl-transferase (GalNAc-T), which converts GM3 (NeuAc alpha 2----3Gal beta 1----4Glc beta 1----1Cer) to GM2 (GalNAc beta 1----4(NeuAc alpha 2----3)Gal beta 1----4Glc beta 1----1Cer). Similar competition experiments suggest moreover that the sialytransferase V (SAT V), which catalyses the synthesis of GT1a (NeuAc alpha 2----8NeuAc alpha 2----3Gal beta 1----3GalNAc beta 1----4- (NeuAc alpha 2----3)-Gal beta 1----4Glc beta 1----1Cer) from GD1a (NeuAc alpha-2----3Gal beta 1----3GalNAc beta 1----4(NeuAc alpha 2----3)Gal beta 1----4Glc beta 1----1-Cer) appears to be identical to the enzyme that catalyses the synthesis of GP1c (NeuAc alpha 2----8NeuAc alpha 2----3Gal beta 1----3-GalNAc beta 1----4(NeuAc alpha 2----8-NeuAc alpha 2----8NeuAc alpha 2----3)Gal beta-1----4Glc beta 1----4Glc beta 1----1Cer) from GQ1c (NeuAc alpha 2----3Gal beta 1----3Gal-NAc beta 1----4 (NeuAc alpha 2----8NeuAc alpha 2----8NeuAc alpha 2----3)Gal beta 1----4-Glc beta 1----1Cer).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Cytovillin and other microvillar proteins of human choriocarcinoma cells   总被引:7,自引:0,他引:7  
Microvilli were isolated from cultured human JEG-3 choriocarcinoma cells using a gentle shearing method. The protein components of the isolated microvilli were examined by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. The major Mr 42,000 and Mr 100,000 polypeptide bands reacted with anti-actin and anti-alpha-actinin antisera, respectively. Extraction of the isolated JEG-3 microvilli with Triton X-100 left an insoluble cytoskeletal residue containing mainly actin, alpha-actin, and polypeptides of Mr 200,000, 55,000 and 35,000. The Mr 35,000 polypeptide remained insoluble only at high concentrations of free Ca2+. Immunoblotting analysis of the JEG-3 microvilli indicated that they were devoid of tropomyosin, although the total JEG-3 protein lysates gave a strong positive reaction with anti-tropomyosin antiserum. The different subcellular localization of cytovillin and tropomyosin was also shown by indirect immunofluorescence microscopy. Cytovillin, an Mr 75,000 microvillus-specific membrane protein of JEG-3 cells, existed in an oligomeric form (dimer or trimer) as shown by gel filtration of Triton X-100 solubilized microvillar proteins and by native polyacrylamide gel electrophoresis of purified cytovillin. Disulfide bridges were not involved in the aggregation, because the mobility of cytovillin was similar under reducing and nonreducing conditions in SDS-PAGE. Cytovillin was shown to be closely related to ezrin, a minor component of chicken intestinal brush border microvilli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号