首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial communities of four arable soils--pelosol, gley, para brown soil, and podsol brown soil--were analysed by fingerprinting of 16S rRNA gene fragments amplified from total DNA of four replicate samples for each soil type. Fingerprints were generated in parallel by denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (T-RFLP), and single strand conformation polymorphism (SSCP) to test whether these commonly applied techniques are interchangeable. PCR amplicons could be separated with all three methods resulting in complex ribotype patterns. Although the fragments amplified comprised different variable regions and lengths, DGGE, T-RFLP and SSCP analyses led to similar findings: (a) a clustering of fingerprints which correlated with soil physico-chemical properties, (b) little variability between the four replicates of the same soil, (c) the patterns of the two brown soils were more similar to each other than to those of the other two soils, and (d) the fingerprints of the different soil types revealed significant differences in a permutation test, which was recently developed for this purpose.  相似文献   

2.
Retinal dystrophy (Rdy) is an autosomal dominant photoreceptor dysplasia of Abyssinian cats and a model for autosomal dominant retinitis pigmentosa (ADRP) in man. We have pursued a candidate gene approach in the search for the causal mutation in Rdy. The genes RHO (encoding rhodopsin), ROM1 (encoding the structural retinal outer-membrane protein-1) and PDE6G (encoding the gamma subunit of the visual transduction protein cyclic guanosine monophosphate-phosphodiesterase) were polymerase chain reaction-amplified from normal feline genomic DNA. Leader, coding and 3' untranslated regions of each gene, and parts of introns were sequenced. Single-stranded conformation polymorphism (SSCP) analysis of Rdy-affected and normal cats was used to identify intragenic polymorphisms within ROM1 and PDE6G. DNA sequencing of all three genes in Rdy-affected cats was used to confirm results from SSCP. For both ROM1 and PDE6G polymorphisms identified by SSCP and sequencing showed disconcordance between the polymorphism and the disease phenotype within an Rdy disease pedigree. SSCP analysis of RHO performed across the 5' untranslated region, the entire coding sequence and the intron/exon boundaries in Rdy-affected and control cats failed to identify any intragenic polymorphisms that could be used for linkage analysis. DNA sequencing of these regions showed no differences between Rdy-affected and control cats. Mutations in ROM1 or in PDE6G are not causative of feline Rdy. The absence of potentially pathogenic polymorphisms in sequenced portions of the RHO gene makes it unlikely that a mutation in this gene is the cause of Rdy.  相似文献   

3.
The polymorphism of the major histocompatibility complex (MHC) class II DRB gene of riverine buffalo (Bubalus bubalis) was studied. Second exon sequences from the buffalo DRB locus, homologous to the cattle DRB3 gene, were amplified and characterized. A combination of single strand conformation polymorphism (SSCP) and heteroduplex analysis (HA) in a non-denaturing gel was used to identify new DRB second exon sequences. SSCP, HA and finally sequencing allowed the identification of 22 MHC-DRB exon 2 alleles from 25 unrelated Indian river buffalo. These are the first river buffalo DRB second exon sequences reported. A high degree of polymorphism in the sequences encoding the peptide binding regions was observed and some amino acid substitutions were found unique to the river buffalo.  相似文献   

4.
Salmonella enterica serotype gallinarum biotype gallinarum and biotype pullorum are non-motile and pathogenic avian strains. Biotype gallinarum causes fowl typhoid and biotype pullorum is the cause of pullorum disease in chickens. The two biotypes could be differentiated based on biochemical characteristics. However, conventional culture and biochemical assays are time-consuming, laborious and need sterile laboratory practices. Although the two biotypes, gallinarum and pullorum are non-motile, they possess the phase 1 flagellin C gene. The variable regions of the flagellin C gene from 41 biotype pullorum and 52 biotype gallinarum were amplified by colony-PCR and analyzed by single strand conformational polymorphism (SSCP) method. Differences in SSCP electrophoretic patterns were confirmed by nucleotide sequencing. In addition, PCR-RFLP with Hinp1I was also successfully applied to differentiate the two biotypes. These results suggested that the variable regions of fliC could be used as a genetic marker to differentiate biotype gallinarum from biotype pullorum.  相似文献   

5.
Single-strand conformation polymorphism (SSCP) was analyzed to detect a mutation in the transthyretin (TTR) gene from the mother and son showing polyneuropathy with carpal tunnel syndrome. DNA segments containing TTR coding sequence were amplified by polymerase chain reaction, heat denatured and electrophoresed on a neutral polyacrylamide gel. The single-stranded DNA fragments in the gel were transferred to a nylon membrane and hybridized with biotinylated TTR cDNA probe, followed with chemiluminescent DNA detection. The mobility shift was found in the fragments of exon 3 from the patients' DNA. Sequencing analyses of the exon 3 confirmed a T----G base change, resulting in a Leu 58----Arg substitution. TTR Arg 58 is the first mutant TTR gene that has been detected by SSCP analysis. The rapid and sensitive detection of new mutations at various sites on the TTR gene is hereafter possible by the present method in the facilities for non-radioactive experiments.  相似文献   

6.
A single nucleotide polymorphism was identified in the coding sequence of the bovine transferrin gene. Two alleles (SSCP1 and SSCP2) were detected by SSCP analysis and the mutation point was identified and confirmed by direct sequencing of the PCR products. The relationship between protein and DNA polymorphism was established. Protein variants A, D1 and E correspond to SSCP allele 1 and variant D2 corresponds to SSCP allele 2. DNA sequences from genotypes AA, AE, AD2, D1E, D2E and D2D2 reveal an A/G substitution at position 1455 of the cDNA which causes a Gly/Glu substitution which could be responsible for the mobility difference between D1 and D2 variants. Because of the number of variants, this suggests that other SNPs exist in the bovine transferrin gene. A linkage analysis between the SSCPs and two microsatellites (UWCA46 and CSSM019) mapped the transferrin gene to BTA1. Two-point analysis revealed a tight linkage within the transferrin protein variants and the SSCPs.  相似文献   

7.
Highly polymorphic regions of the circumsporozoite protein (CSP) of Plasmodium falciparum are associated with cellular immune responses. One of these regions, the TH3R polymorfic region of the csp gene codes for known T-cell epitopes. The present study tested the use of SSCP to determine sequence variations of the TH3R regions of four clones of P. falciparum (3D7, HB3, Dd2 and K1) which are known to have different TH3R regions. Single-strand conformation polymorphism (SSCP) technique was performed on amplified products labelled with fluorescent primer (both strands) and electrophoresed in an automated sequencer. Various gel compositions and electrophoresis conditions were tested. Even if some electrophoretogram differences were observed between clones, they could not distinguish between the alleles.  相似文献   

8.
Based on EST sequences, fragments of 37 genes have been amplified and sequenced in two inbred lines of sugar beet. The rate of single nucleotide polymorphisms (SNP) corresponded to 1 every 130 bp, with an average (nucleotide diversity) value of 7.6×10–3. When extrapolated to the whole sugar beet genome, randomly compared lines differ at 5.4×106 SNPs in the genetic pool considered. In a wider search for SNP-related polymorphisms, 96 fragments of expressed genes were scanned with SSCP (single-strand conformation polymorphism) and heteroduplex (HA) analyses in 8 inbred lines. One SSCP or HA polymorphism was found every 1,470 bp of amplified DNA, corresponding to 5×105 SSCP or HA loci in the whole genome. This frequency, 11 times lower than the SNP rate, was attributed to the high frequency of base pair substitution along the amplified fragment analysed electrophoretically. Therefore nucleotide variability was further studied by sequencing fragments of 10 genes in the same 8 lines. The results indicate that sugar beet alleles of expressed genes are very frequently organized as robust intragene haplotypes. In the 8 lines analysed, two haplotypes were identified for each of three gene fragments, three haplotypes for six gene fragments and four haplotypes for one gene fragment which is in good correspondence with the number of alleles detected by SSCP and HA analysis. In a cross between two lines, SSCP or HA alleles of expressed genes have 54% probability to be different.  相似文献   

9.
The MYF5 gene has been reported to be integral to muscle growth and development, and hence it has been considered as a candidate gene for meat selection programs in pig. To ascertain whether there was variation in the porcine MYF5 gene, we have developed a method of PCR–single-strand conformational polymorphism (PCR–SSCP) analysis. In this study, two coding regions of the MYF5 gene were investigated. Four unique SSCP patterns were detected in exon 1 and three patterns were identified in exon 3. Two SNPs detected in exon 1 led to a non-synonymous alanine/proline substitution. A nucleotide change in exon 3 did not affect the amino acid sequence. Five extended haplotypes were observed across the two regions. The variation detected in this study might underpin the development of gene markers for improved muscle growth in pig breeding.  相似文献   

10.
Single-strand-conformation polymorphism (SSCP) of DNA, a method widely used in mutation analysis, was adapted to the analysis and differentiation of cultivated pure-culture soil microorganisms and noncultivated rhizosphere microbial communities. A fragment (approximately 400 bp) of the bacterial 16S rRNA gene (V-4 and V-5 regions) was amplified by PCR with universal primers, with one primer phosphorylated at the 5′ end. The phosphorylated strands of the PCR products were selectively digested with lambda exonuclease, and the remaining strands were separated by electrophoresis with an MDE polyacrylamide gel, a matrix specifically optimized for SSCP purposes. By this means, reannealing and heteroduplex formation of DNA strands during electrophoresis could be excluded, and the number of bands per organism was reduced. PCR products from 10 of 11 different bacterial type strains tested could be differentiated from each other. With template mixtures consisting of pure-culture DNAs from 5 and 10 bacterial strains, most of the single strains could be detected from such model communities after PCR and SSCP analyses. Purified bands amplified from pure cultures and model communities extracted from gels could be reamplified by PCR, but by this process, additional products were also generated, as detected by further SSCP analysis. Profiles generated with DNAs of rhizosphere bacterial communities, directly extracted from two different plant species grown in the same field site, could be clearly distinguished. This study demonstrates the potential of the selected PCR–single-stranded DNA approach for microbial community analysis.  相似文献   

11.
犬MC1R基因R306ter与毛色性状相关性研究   总被引:1,自引:0,他引:1  
目的 分析犬MC1R基因中R30 6ter位点多态性与犬毛色表型的相关性 ,为遗传育种 ,培育出更加优良的实验用犬奠定基础。方法 采用PCR SSCP技术 ,对MC1R基因R30 6ter位点进行基因多态性检测 ,分析位点多态性与毛色性状之间的相关性 ,并对该位点进行克隆测序。结果 PCR SSCP分析结果表明 ,R30 6ter位点序列具有多态性 ,表现为C、D二个等位基因和CC、CD及DD三种基因型。对R30 6ter多态性片段克隆测序发现 ,MC1R基因在编码第 30 6位氨基酸的密码子处存在一个由CGA到TGA的终止突变。结论 经统计分析结果表明在杂种犬中MC1R基因多态性与毛色性状不存在显著的相关性 ,这可能是由于外科手术学教学用犬是杂种犬 ,其遗传背景不同所致。由于MC1R基因的R30 6ter位点内存在碱基变异 ,因此在杂种犬中表现出明显的PCR SSCP多态性  相似文献   

12.
In this field study, we compared the bacterial communities inhabiting the rhizosphere of a transgenic, herbicide-resistant sugar beet (Beta vulgaris) cultivar with those of its nonengineered counterpart, using a genetic profiling technique based on PCR amplifications of partial 16S rRNA gene sequences and single-strand conformation polymorphism (SSCP). As a control for the plasticity of the bacterial community, we also analyzed the influence of herbicides, the field heterogeneity, and the annual variation. DNA was isolated from bacterial cell consortia that were directly collected from root material. PCR was carried out with primers that hybridized to evolutionarily conserved regions flanking variable regions 4 and 5 of the 16S rRNA gene. SSCP patterns of these PCR products were composed of approximately 50 distinguishable bands, as detected by silver staining of the gels after electrophoresis. Patterns of the replicates and the different treatments were highly similar, but digital image and similarity analyses revealed differences that corresponded to the positions of the replicates in the field. In addition, communities collected from sugar beet in two successive growing seasons could be distinguished. In contrast, no effect of the transgenic herbicide resistance was detectable. Sequencing of 24 dominant products of the SSCP profiles indicated the presence of bacteria from different phylogenetic groups, with Proteobacteria and members of the Cytophaga-Flavobacterium-Bacteroides group being most abundant.  相似文献   

13.
A single nucleotide polymorphism (SNP) may have an impact on phenotype, but it may also be influenced by multiple SNPs within a gene; hence, the haplotype or phase of multiple SNPs needs to be known. Various methods for haplotyping SNPs have been proposed, but a simple and cost-effective method is currently unavailable. Here we describe a haplotyping approach using two simple techniques: polymerase chain reaction–single-strand conformational polymorphism (PCR–SSCP) and haplotype-specific PCR. In this approach, individual regions of a gene are analyzed by PCR–SSCP to identify variation that defines sub-haplotypes, and then extended haplotypes are assembled from the sub-haplotypes either directly or with the additional use of haplotype-specific PCR amplification. We demonstrate the utility of this approach by haplotyping ovine FABP4 across two variable regions that contain seven SNPs and one indel. The simplicity of this approach makes it suitable for large-scale studies and/or diagnostic screening.  相似文献   

14.
The identification of polymorphic alleles at loci coding for functional genes is crucial for genetic association and linkage studies. Since the tryptophan hydroxylase (TPH) gene codes for the rate-limiting enzyme in the biosynthesis of the neurotransmitter serotonin, it would be advantageous to identify a polymorphism in this gene. By examining introns of the human TPH gene by PCR amplification and analysis by the single-strand conformational polymorphism (SSCP) technique, an SSCP was revealed with two alleles that occur with frequencies of .40 and .60 in unrelated Caucasians. DNAs from 24 informative CEPH families were typed for the TPH intron polymorphism and analyzed with respect to 10 linked markers on chromosome 11, between p13 and p15, with the result that TPH was placed between D11S151 and D11S134. This region contains loci for several important genes, including those for Beckwith-Wiedemann syndrome and tyrosine hydroxylase.  相似文献   

15.
To detect mutations in the glucocerebrosidase gene in Gaucher disease patients, we used the recently described technique of single-strand conformation polymorphism (SSCP) analysis in combination with selective amplification. We analyzed exon 8, 9, 10 and 11 of the glucocerebrosidase gene; these exons were sequentially amplified using the selectively amplified products as templates. We found variant SSCP patterns corresponding to the presence or absence of the 6433C mutation, which was detected by NciI digestion analysis, in exon 10. Furthermore, we detected four variant SSCP patterns in exon 8, 10 and 11. Sequencing analysis consistently revealed four single-base substitutions in the corresponding exons, three novel missense mutations (5409A, 6375G and 6682T) and one silent polymorphism (6594A). These mutations were found only in one patient; therefore, these findings have confirmed the marked genetic heterogeneity of Gaucher disease. SSCP analysis in combination with selective amplification is a rapid and sensitive procedure for the screening of the mutations in the glucocerebrosidase gene of patients with Gaucher disease.  相似文献   

16.
Alterations of the Bruton's tyrosine kinase(Btk) gene are responsible for X-linked agammaglobulinemia (XLA). Although mutations in various regions were reported mainly in the Caucasian population, correlation between the locations of mutation and the clinical phenotypes remains unclear. We report 12 abnormalities of theBtk gene found in 12 unrelated families out of 14 XLA families in Japan and their clinical features. We utilized Southern blotting and single-strand conformation polymorphism (SSCP) analysis. Gene rearrangement in the kinase domain was identified in two patients by Southern blotting. Seven point mutations, two small deletions, and one small insertion were detected by SSCP and sequencing. The SSCP analysis also provided information about the carriers in these families. We found some clinical heterogeneity in the affected family members with the same gene mutation. Moreover, there is considerable inconsistency between the locations of gene aberrations and the immunological phenotypes. Some patients with a nonsense mutation, which may result in the lack of kinase domain, have detectable B cells and immunoglobulins. These identified alterations will provide valuable clues to theBtk protein function and the pathogenesis of XLA.  相似文献   

17.
Citrus tristeza closterovirus (CTV) isolates of several geographical origins were compared for variations in their coat protein (CP) gene by analysis of single-strand conformation polymorphism (SSCP). The CP gene of 17 isolates was reverse transcribed, amplified by polymerase chain reaction (PCR), and 22 clones were inserted into a plasmid vector. These clones were sequenced and found to have between 91.7% and 99.8% sequence homology. Clones were amplified and the PCR products denatured and compared by SSCP analysis in 8% polyacrylamide gels. Using two different electrophoretic conditions, the patterns were different for 16 or 17 clones. Four pairs of clones (T36/T66, P1/Q2, 03/8Q, and E1/E2) differing by 10, 2, 1 and 1 nucleotides, respectively, could not be distinguished using either condition. When these clones were compared by SSCP after digestion with Eco91I (BstEII) three of the pairs (T36/T66, P1/Q2, and 03/8Q) could be differentiated, whereas the clones E1 and E2 (differing by 1 nucleotide) remained indistinguishable. Thus, SSCP analysis combining two electrophoretic conditions and restriction of eight clones with Eco91I allowed discrimination between 21 of the 22 CP gene clones selected. SSCP analysis may provide a procedure to identify and differentiate CTV isolates based on comparisons of several genes or gene regions. It is rapid and cheap and may drastically reduce the amount of sequencing necessary for accurate comparisons.  相似文献   

18.
Single-strand conformaiton polymorphism (SSCP) profiles of six PCR-amplified fragments (250–800 bp) were analyzed in three full-sib families of pedunculate oak (Quercus robur L.) and their parents. Among the six fragments, four were polymorphic and one exhibited complex patterns that were not changed by varying the SSCP conditions. The number of bands for the analyzed fragments varied between two and four among individuals regardless of fragment size. As shown by segregation data, the variation in the number of bands between trees could only be attributed to the allelic composition (homozygotes vs heterozygotes): a genotype that exhibited two bands was presumptively homozygous, wheras a genotype exhibiting three or four bands was heterozygous. Mendelian proportions were observed in all crosses for each polymorphic fragment. In one cross, we could clearly identify a null allele due to a possible mutation at a primer site. Single-base mutations and short insertion-deletions were shown to be the molecular causes of the SSCP polymorphism observed between different alleles. The use of SSCP as a technique to identify co-dominant markers of PCR fragments (up to 800 bp) is recommended for gene diversity studies or for gene mapping.  相似文献   

19.
目的:通过检测藏獒黑素皮质激素受体1(MC1R)基因的单链构象多态性(SSCP)在不同毛色群体中的分布,探讨MC1R基因多态性与毛色表型的相关性。方法:采用DNA测序技术,选择不同毛色藏獒的DNA为样本,根据GenBank发布的荷斯坦牛MC1R基因序列设计一对引物,采用PCR-SSCP技术分析MC1R基因在藏獒中的SSCP。结果:MC1R基因在藏獒中具有PCR-SSCP多态性,分别检测到3种基因型(AA、AB和BB);对MC1R基因多态性片段DNA克隆测序后发现,MC1R基因在编码区第313位存在单碱基突变(G→A),该突变导致第105位氨基酸发生由丙氨酸向苏氨酸的改变(T105A)。结论:MC1R基因的多态性与毛色性状不存在显著的相关性。  相似文献   

20.
Seven nucleotide sequence polymorphisms were detected within exons of the low-density lipoprotein (LDL) receptor gene using single-strand conformation polymorphism (SSCP) analysis followed by direct sequence analysis on amplified DNA. Four nucleotide changes at nucleotide positions 1617, 1725, 2232, and 2635 were new nucleotide sequence polymorphisms not previously described. The remaining three nucleotide changes were identical with restriction fragment length polymorphisms and a previously reported nucleotide sequence polymorphism. These nucleotide sequence polymorphisms, detectable by SSCP analysis, are useful genetic markers for linkage analysis of the LDL receptor gene and familial hypercholesterolemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号