首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
On a variety of single-stranded DNA templates, the overall rate of in vitro DNA synthesis catalyzed by the bacteriophage T4 DNA polymerase is increased about fourfold by addition of the T4 gene 4462 and 45 proteins. Several different methods suggest that this stimulation reflects an increase in the average DNA polymerase “sticking distance”, or processivity, from 800 to about 3000 nucleotides per initiation event. Both the 4462 protein complex and the 45 protein must be present to obtain this effect, and either ATP or dATP hydrolysis is required. Rapid-mixing experiments indicate that the polymerase stimulation is maximized within a few seconds after addition of these “polymerase accessory proteins.”  相似文献   

3.
The template activity of isolated rat liver nuclei for DNA synthesis assayed with E.coli DNA polymerase was found to be dependent upon the presence of Ca2+ or Mg2+ in the incubation medium. DNA was prepared from isolated nuclei subjected to conditions which activated the template and centrifuged in an alkaline sucrose gradient. The distribution profile showed that smaller fragments were formed, suggesting enhancement of endonucleolytic activity. When isolated nuclei were incubated with NAD to induce poly(adenosine diphosphate ribose) formation and were subjected to the activation conditions, the template for DNA synthesis remained unchanged. The distribution profile in an alkaline sucrose gradient of DNA prepared from these nuclei and control nuclei was identical. The present findings suggest that the template-activating system for DNA synthesis was blocked when isolated nuclei were treated with NAD invitro.  相似文献   

4.
Effect of aphidicolin on viral and human DNA polymerases.   总被引:9,自引:0,他引:9  
DNA polymerases induced by Herpes simplex and Vaccinia viruses are inhibited by aphidicolin and this inhibition is probably the basis of its antiviral activity in vivo. Its possible clinical use is however hampered by the concomitant effect on human replicative DNA polymerase α. The inhibition of human α-polymerase is reversible both invitro and in vivo and the changes in the rate of incorporation of thymidine into DNA, following treatment with aphidicolin for a generation time, indicate the likely synchronization of the cells due to this agent. DNA polymerase β, which has recently been shown to carry out repair synthesis of damaged nuclear DNA, is not inhibited by aphidicolin either in vitro on in vivo suggesting that the drug could allow a rapid and simple evaluation of DNA repair synthesis due to DNA polymerase β.  相似文献   

5.
The presence of cytoplasmic poly(A) polymerase has been established in sea urchin eggs and four-cell embryos by subcellular fractionation and use of enucleate egg halves. ATP is the only ribonucleoside triphosphate incorporated. This incorporation is time dependent, contingent on input protein concentration, and immune to a variety of antimetabolites known to inhibit DNA-directed RNA synthesis. Both the unfertilized egg and the four-cell embryo cytoplasmic poly(A) polymerase activities display a preference for Mn2+. While oligo(A)4 is inactive as a primer, addition of oligo(A)16, poly(A)45 and poly(A)90 stimulates ATP incorporation. On a unit per milligram protein basis, the endogenous activity associated with cytoplasmic fractions obtained from nucleate and enucleate egg halves is 36 and 83% that obtained with the cytoplasmic fraction prepared from the unfertilized egg. In the presence of oligo(A)16, both the nucleate and enucleate egg halves exhibit 81% of the activity associated with the unfertilized egg cytoplasmic fraction. The level of Mn2+ cytoplasmic poly(A) polymerase activity from the four-cell embryo is approximately 50% that of the unfertilized egg. This decrease does not appear to be due to either a postfertilization alteration in the subcellular localization of poly(A) polymerase or an increase in RNase activity. Supplementation with oligo(A)16 failed to restore the four-cell embryo cytoplasmic poly(A) polymerase potential to a level comparable to that of the unfertilized egg. Suppression of postfertilization protein synthesis by emetine, however, prevents this developmental decline in ATP incorporation thereby suggesting that postfertilization cytoplasmic poly(A) polymerase activity is subject to negative translational control.  相似文献   

6.
7.
Phleomycin stimulates ATP-independent DNA repair synthesis by polymerase II in toluenized B. subtilis cells. In the presence of ATP it also increases the synthesis, with BrdUTP, of DNA with a density between that of normal DNA and hybrid DNA, and it enhances replicative DNA synthesis by polymerase III.  相似文献   

8.
Isolation of a complementing activity for a dna-B mutant   总被引:1,自引:0,他引:1  
A cell free extract which displays temperature sensitive DNA synthesis in the presence of single strand DNA and ATP was prepared from a dna-B mutant. Following an activity which would reverse this temperature sensitivity, a protein fraction was isolated. The absence of this fraction in a dna-B mutant indicates that this protein corresponds to the Dna-B product.  相似文献   

9.
A heat-stable protein factor, capable of stimulating RNA synthesis by nuclear RNA polymerase II, was found in isolated nuclei of chicken myeloblastosis cells. It is adsorbed to a DEAE-Sephadex column used for RNA polymerase purification and then is eluted with 0.1 M ammonium sulfate. This factor appears to differ from previously reported eukaryotic RNA polymerase factors in its property of stimulating the activity of denatured (or single-stranded) DNA template. When heated, this factor contains no detectable endonuclease or exonuclease activity. The degree of stimulation is greater with chicken myeloblastosis RNA polymerase IIb than IIa and is most efficient when homologous DNA is used as template. This factor causes no stimulation of E. coli RNA polymerase.  相似文献   

10.
An enzyme, ribonucleotide polymerase, isolated from the yeast phase of a fungus, Histoplasma capsulatum has been found to stimulate the incorporation of dTMP in the reaction catalysed by DNA polymerase from H. capsulatum and E. coli. The stimulation is dependent on the amount of ribonucleotide polymerase added. The data indicate that protein-protein interaction is responsible for the increase in DNA synthesis. It is suggested that ribonucleotide polymerase may be involved in supplying short RNA primers for DNA polymerase.  相似文献   

11.
Sub-nuclear fractionation. I. Procedure and characterization of fractions   总被引:7,自引:0,他引:7  
A procedure for fractionation of nuclei from rat liver, Xenopus liver and Xenopus erythrocytes is described. It is based on mild sonication of isolated nuclei for 7–12 sec in a nearly isotonic medium, separation of nuclear sap and centrifugation on a discontinuous sucrose density gradient containing Na and K citrate. Nuclei are thus separated in a single operation into 8 fractions representing nucleoplasm, euchromatin, nucleoli, heterochromatin and nuclear membranes. The sub-nuclear fractions were characterized by chemical composition (DNA, protein, RNA and phospholipid), electron microscopy, thermal denaturation properties of chromatin, relative binding of 3H-actinomycin D, polyacrylamide gel electrophoresis of nuclear proteins and titration of membranes against Triton X-100. Approx. 10% of total DNA was recovered as heterochromatin associated with membranes but the bulk of nuclear membranes co-sedimented with the major euchromatin zones. Subnuclear fractions prepared in this way retain virtually all the RNA polymerase activity bound to chromatin [41].  相似文献   

12.
Three phosphorylated guanosine derivatives designated HS-1, HS-2 and HS-3 synthesised during active protein synthesis in the water-mould, Achlya sp (1969) were shown to regulate the enzymatic activities of nucleoplasmic and nucleolar DNA-dependent RNA polymerases (RNAP-I, II and III) from both Achlya and another unrelated water-mould, Blastocladiella emersonii. These HS compounds were without effect on E. coli DNA-dependent RNA polymerase holoenzyme. The most potent of the three compounds was HS-3 which inhibited the activity of all enzymes completely at 100 μg/ml. HS-1, on the other hand, activated maximally at 1 to 10 μg/ml. HS-1 activation (3-fold) was restricted to enzyme III, and it had only partial inhibitory effects on enzymes I and II. The pattern of synthesis of HS-compounds throughout the 20-hour asexual growth cycle of the organism correlated with the detectable levels of the different RNA polymerases of Achlya.  相似文献   

13.
A template independent poly (A)·poly (U) synthesizing activity has been isolated from Bacillus subtilis. This activity is eluted from a DNA-cellulose column along with DNA-dependent RNA polymerase. The column fractions which exhibit this activity contain RNA polymerase holoenzyme plus a polypeptide which is slightly larger than sigma factor; pure RNA polymerase holoenzyme did not synthesize poly (A)·poly (U). The activity was dependent on the presence of ATP, UTP, and Mn++ (Mg++ could not substitute), and was inhibited by rifampicin, streptolydigin, and Cibacron Blue. The incorporation of nucleotides was not linear with time, but appeared after a lag period. The results suggest that a modified form of DNA-dependent RNA polymerase analogous to Escherichia coli holoenzyme II is catalyzing the synthesis of poly (A)·poly (U).  相似文献   

14.
DNA-dependent RNA polymerase activities were measured in subnuclear fractions obtained from rat liver by the procedure described in the preceding paper [14]. Most of the total nuclear enzyme was recovered in a form bound to chromatin with only small amounts as free enzyme in the nucleoplasm. The multiple eukaryotic RNA polymerases were resolved according to the endogenous template to which they were bound and which they continue to transcribe in vitro. The A and B forms of the enzyme were distinguished from each other by their differential sensitivities to α-amanitin, exogenous native and denatured DNA, thermal denaturation at 45 °, Mg2+ and Mn2 ions, high ionic strength and by the binding of 14C-methyl-γ-amanitin. RNA polymerase B (α-amanitin-sensitive) was exclusively recovered in the nucleoplasmic and euchromatin fractions. RNA polymerase A was recovered in the dispersed nucleolar as well as in heterochromatin. By assaying in the presence of α-amanitin subnuclear fractions that had been pre-incubated at 45 °C a third enzyme (form C) was located exclusively in heterochromatin fractions. Only the euchromatin associated RNA polymerase B was capable of initiating the synthesis of new RNA chains in vitro on endogenous template at low ionic strength. Raising the ionic strength abolished initiation but accelerated chain elongation by this form of enzyme.When nuclear RNA was labelled in vivo, newly made RNA turned over rapidly in the nucleoplasm but accumulated in the euchromatin + membrane fraction. RNA in the nucleolar fraction accumulated gradually after a lag period, whereas a significant amount of rapidly-labelled nuclear RNA was recovered in the heterochromatin fractions. The distribution of RNA labelled in vivo compared with that of RNA polymerase activities suggested that RNA synthesized in vivo is rapidly translocated from its site of synthesis to some other sites within the nucleus.  相似文献   

15.
The invitro DNA dependent synthesis of ribosomal protein L12 and the β subunit of RNA polymerase has been investigated using DNA from a plasmid which contains the genetic information for ribosomal protein L12 and the β subunit of RNA polymerase. This DNA, however, lacks the promoter region and the genetic information for the first 26 amino acids of ribosomal protein L10. It was found that L12 and the β subunit of RNA polymerase are efficiently synthesized invitro from this DNA. These results suggest that L12 and the β subunit of RNA polymerase can be synthesized from a promoter situated within the L10 gene.  相似文献   

16.
Purified RNA polymerase, DNA polymerase III and unwinding protein of Escherichiacoli catalyze limited rifampicin sensitive fd or ØX 174 DNA-dependent DNA synthesis. A protein has been partially purified from E.coli which stimulates rifampicin sensitive dXMP incorporation in this system 20 to 30 fold. This protein also stimulates DNA synthesis catalyzed by DNA polymerases I and II; the stimulation occurs in reactions primed with natural and synthetic DNAs as well as RNA-DNA hybrids. The protein is not a product of the known dna genes. In contrast to the above system of purified enzymes, rifampicin sensitive dXMP incorporation in crude extracts of E.coli is specifically dependent on fd but not ØX 174 DNA. An additional factor has been isolated from extracts of E.coli which restores specificity to the purified rifampicin sensitive system by preventing ØX 174 DNA from serving as a template.  相似文献   

17.
3′-deoxyadenosine triphosphate inhibited invitro [3H]UMP incorporation by RNA-dependent RNA polymerases from tobacco and cowpea plants. The inhibition of [3H]UMP incorporation could be reversed by simultaneous addition of higher ATP concentrations but not with increasing concentrations of UTP or when excess ATP was added 10 min after the inhibitor. These results suggest 3′-deoxyadenosine triphosphate competes specifically with ATP in reaction mixtures and results in premature termination of RNA synthesis invitro by RNA-dependent RNA polymerase.  相似文献   

18.
The intraperitoneal administration of glucagon (200 μg) to rats produced a transient increase of the hepatic polypeptide chain completion time, the increase being maximum at 5 min returning to control values at 20 min. This inhibitory effect was sustained when glucagon was constantly supplied by continuous infusion. Postmitochondrial supernatants from livers of the control group or rats treated with glucagon for 5 min showed no difference in their protein synthetic activity. After 20 min of intraperitoneal administration of the hormone, that is, when the effect on protein synthesis had vanished, the levels of cAMP were still 40% above those of the control group, and the ribosomal proteins were 110% more phosphorylated. These results suggest that the observed effect of glucagon is not due to its direct action on the protein synthesis machinery. On the other hand, the variations in the hepatic amino acid content brought about by glucagon do not appear to be quantitatively significant to account for the observed inhibition of protein synthesis. The effect of glucagon was always paralleled by a decrease in the [ATP][ADP] ratio which may be responsible for the observed decrease in the rates of elongation and/or termination steps of protein synthesis. Glucagon also produced a rise in the [NADH][NAD+] ratio in both cellular compartments, cytosol and mitochondria, as reflected by the rise in the lactate to pyruvate and the β-hydroxybutyrate to acetoacetate ratios. This shift of the NAD+ couple to a more reduced state seems to be the result of an increased mobilization and oxidation of fatty acids brought about by the hormone. It is postulated then that the primary effect of glucagon leading to a decrease in protein synthesis is probably to increase the state of reduction of the hepatic nicotinamide nucleotide system. This point of view is supported by the fact that the nicotinamide and adenine nucleotide systems in rat liver are in equilibrium through cytosolic equilibrium reactions, so that a decrease in the [ATP][ADP] ratio brought about by glucagon may be secondary to the increase in the [NADH][NAD+] ratio. This hypothesis is supported by the fact that glucagon was not effective in inhibiting hepatic protein synthesis in rats pretreated with a drug, 2-benzene-sulfonamido-5-(β-methoxy-ethoxy)pyrimidine, that prevents fatty acid mobilization and the subsequent changes in the [NADH][NAD+] and [ATP][ADP] ratios. Furthermore, the administration of exogenous fatty acid brings about an inhibition of the rate of hepatic protein synthesis accompanied by a decrease in the ATP levels and an increase in the state of reduction of the NAD+ system.  相似文献   

19.
DNA replication in isolated nuclei from Concanavalin A-stimulated and resting bovine lymphocytes has been studied. Nuclei from S phase lymphocytes incorporate 4–7 times more (3H)dTTP than nuclei from resting cells. The DNA synthesis was dependent on ATP, Mg2+ and all four deoxynucleoside triphosphates and was linear for about 60 min. The newly synthesized DNA is nuclear and DNase-sensitive and is the product of discontinuous and semiconservative replication. After limited digestion with micrococcal nuclease the in vitro replicated DNA was found to occur in nucleosomes prior to joining of primary DNA pieces. Addition of a protein extract from replicating cells stimulated the DNA synthesizing capacity of nuclei from resting lymphocytes. A preliminary characterization of this extract is given.  相似文献   

20.
A spontaneous mutant of Bacillussubtilis resistant to killing by two hydroxyphenylazopyrimidines has been isolated. The DNA polymerase III of this mutant is resistant to inhibition by these drugs. The Ki for 6-(p-hydroxyphenylazo)-uracil (HPUra) is 20 μM, about 40 times higher than the Ki of the wild-type enzyme. The mutant and wild-type polymerases behave similarly during purification, are sensitive to N-ethylmaleimide and to 0.1 M KCl, and have the same Km for dGTP (0.5 μM). The HPUra inhibition of both enzymes is attenuated competitively by dGTP. We conclude that polymerase III is the target for hydroxyphenylazopyrimidines invivo, and since the drugs specifically inhibit replicative DNA synthesis, polymerase III is necessary for DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号