首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A class of nonparametric statistical methods, including a nonparametric empirical Bayes (EB) method, the Significance Analysis of Microarrays (SAM) and the mixture model method (MMM) have been proposed to detect differential gene expression for replicated microarray experiments. They all depend on constructing a test statistic, for example, a t-statistic, and then using permutation to draw inferences. However, due to special features of microarray data, using standard permutation scores may not estimate the null distribution of the test statistic well, leading to possibly too conservative inferences. We propose a new method of constructing weighted permutation scores to overcome the problem: posterior probabilities of having no differential expression from the EB method are used as weights for genes to better estimate the null distribution of the test statistic. We also propose a weighted method to estimate the false discovery rate (FDR) using the posterior probabilities. Using simulated data and real data for time-course microarray experiments, we show the improved performance of the proposed methods when implemented in MMM, EB and SAM.  相似文献   

2.
MOTIVATION: Recently a class of nonparametric statistical methods, including the empirical Bayes (EB) method, the significance analysis of microarray (SAM) method and the mixture model method (MMM), have been proposed to detect differential gene expression for replicated microarray experiments conducted under two conditions. All the methods depend on constructing a test statistic Z and a so-called null statistic z. The null statistic z is used to provide some reference distribution for Z such that statistical inference can be accomplished. A common way of constructing z is to apply Z to randomly permuted data. Here we point our that the distribution of z may not approximate the null distribution of Z well, leading to possibly too conservative inference. This observation may apply to other permutation-based nonparametric methods. We propose a new method of constructing a null statistic that aims to estimate the null distribution of a test statistic directly. RESULTS: Using simulated data and real data, we assess and compare the performance of the existing method and our new method when applied in EB, SAM and MMM. Some interesting findings on operating characteristics of EB, SAM and MMM are also reported. Finally, by combining the idea of SAM and MMM, we outline a simple nonparametric method based on the direct use of a test statistic and a null statistic.  相似文献   

3.

Background  

Time-course microarray experiments are widely used to study the temporal profiles of gene expression. Storey et al. (2005) developed a method for analyzing time-course microarray studies that can be applied to discovering genes whose expression trajectories change over time within a single biological group, or those that follow different time trajectories among multiple groups. They estimated the expression trajectories of each gene using natural cubic splines under the null (no time-course) and alternative (time-course) hypotheses, and used a goodness of fit test statistic to quantify the discrepancy. The null distribution of the statistic was approximated through a bootstrap method. Gene expression levels in microarray data are often complicatedly correlated. An accurate type I error control adjusting for multiple testing requires the joint null distribution of test statistics for a large number of genes. For this purpose, permutation methods have been widely used because of computational ease and their intuitive interpretation.  相似文献   

4.
MOTIVATION: An important goal in analyzing microarray data is to determine which genes are differentially expressed across two kinds of tissue samples or samples obtained under two experimental conditions. Various parametric tests, such as the two-sample t-test, have been used, but their possibly too strong parametric assumptions or large sample justifications may not hold in practice. As alternatives, a class of three nonparametric statistical methods, including the empirical Bayes method of Efron et al. (2001), the significance analysis of microarray (SAM) method of Tusher et al. (2001) and the mixture model method (MMM) of Pan et al. (2001), have been proposed. All the three methods depend on constructing a test statistic and a so-called null statistic such that the null statistic's distribution can be used to approximate the null distribution of the test statistic. However, relatively little effort has been directed toward assessment of the performance or the underlying assumptions of the methods in constructing such test and null statistics. RESULTS: We point out a problem of a current method to construct the test and null statistics, which may lead to largely inflated Type I errors (i.e. false positives). We also propose two modifications that overcome the problem. In the context of MMM, the improved performance of the modified methods is demonstrated using simulated data. In addition, our numerical results also provide evidence to support the utility and effectiveness of MMM.  相似文献   

5.
Partially paired data sets often occur in microarray experiments (Kim et al., 2005; Liu, Liang and Jang, 2006). Discussions of testing with partially paired data are found in the literature (Lin and Stivers 1974; Ekbohm, 1976; Bhoj, 1978). Bhoj (1978) initially proposed a test statistic that uses a convex combination of paired and unpaired t statistics. Kim et al. (2005) later proposed the t3 statistic, which is a linear combination of paired and unpaired t statistics, and then used it to detect differentially expressed (DE) genes in colorectal cancer (CRC) cDNA microarray data. In this paper, we extend Kim et al.'s t3 statistic to the Hotelling's T2 type statistic Tp for detecting DE gene sets of size p. We employ Efron's empirical null principle to incorporate inter-gene correlation in the estimation of the false discovery rate. Then, the proposed Tp statistic is applied to Kim et al's CRC data to detect the DE gene sets of sizes p=2 and p=3. Our results show that for small p, particularly for p=2 and marginally for p=3, the proposed Tp statistic compliments the univariate procedure by detecting additional DE genes that were undetected in the univariate test procedure. We also conduct a simulation study to demonstrate that Efron's empirical null principle is robust to the departure from the normal assumption.  相似文献   

6.
MOTIVATION: A common objective of microarray experiments is the detection of differential gene expression between samples obtained under different conditions. The task of identifying differentially expressed genes consists of two aspects: ranking and selection. Numerous statistics have been proposed to rank genes in order of evidence for differential expression. However, no one statistic is universally optimal and there is seldom any basis or guidance that can direct toward a particular statistic of choice. RESULTS: Our new approach, which addresses both ranking and selection of differentially expressed genes, integrates differing statistics via a distance synthesis scheme. Using a set of (Affymetrix) spike-in datasets, in which differentially expressed genes are known, we demonstrate that our method compares favorably with the best individual statistics, while achieving robustness properties lacked by the individual statistics. We further evaluate performance on one other microarray study.  相似文献   

7.
DNA microarray technology allows researchers to monitor the expressions of thousands of genes under different conditions, and to measure the levels of thousands of different DNA molecules at a given point in the life of an organism, tissue or cell. A wide variety of different diseases that are characterised by unregulated gene expression, DNA replication, cell division and cell death, can be detected early using microarrays. One of the major objectives of microarray experiments is to identify differentially expressed genes under various conditions. The detection of differential gene expression under two different conditions is very important in biological studies, and allows us to identify experimental variables that affect different biological processes. Most of the tests available in the literature are based on the assumption of normal distribution. However, the assumption of normality may not be true in real-life data, particularly with respect to microarray data.A test is proposed for the identification of differentially expressed genes in replicated microarray experiments conducted under two different conditions. The proposed test does not assume the distribution of the parent population; thus, the proposed test is strictly nonparametric in nature. We calculate the p-value and the asymptotic power function of the proposed test statistic. The proposed test statistic is compared with some of its competitors under normal, gamma and exponential population setup using the Monte Carlo simulation technique. The application of the proposed test statistic is presented using microarray data. The proposed test is robust and highly efficient when populations are non-normal.  相似文献   

8.
MOTIVATION: False discovery rate (FDR) is defined as the expected percentage of false positives among all the claimed positives. In practice, with the true FDR unknown, an estimated FDR can serve as a criterion to evaluate the performance of various statistical methods under the condition that the estimated FDR approximates the true FDR well, or at least, it does not improperly favor or disfavor any particular method. Permutation methods have become popular to estimate FDR in genomic studies. The purpose of this paper is 2-fold. First, we investigate theoretically and empirically whether the standard permutation-based FDR estimator is biased, and if so, whether the bias inappropriately favors or disfavors any method. Second, we propose a simple modification of the standard permutation to yield a better FDR estimator, which can in turn serve as a more fair criterion to evaluate various statistical methods. RESULTS: Both simulated and real data examples are used for illustration and comparison. Three commonly used test statistics, the sample mean, SAM statistic and Student's t-statistic, are considered. The results show that the standard permutation method overestimates FDR. The overestimation is the most severe for the sample mean statistic while the least for the t-statistic with the SAM-statistic lying between the two extremes, suggesting that one has to be cautious when using the standard permutation-based FDR estimates to evaluate various statistical methods. In addition, our proposed FDR estimation method is simple and outperforms the standard method.  相似文献   

9.
Estimating p-values in small microarray experiments   总被引:5,自引:0,他引:5  
MOTIVATION: Microarray data typically have small numbers of observations per gene, which can result in low power for statistical tests. Test statistics that borrow information from data across all of the genes can improve power, but these statistics have non-standard distributions, and their significance must be assessed using permutation analysis. When sample sizes are small, the number of distinct permutations can be severely limited, and pooling the permutation-derived test statistics across all genes has been proposed. However, the null distribution of the test statistics under permutation is not the same for equally and differentially expressed genes. This can have a negative impact on both p-value estimation and the power of information borrowing statistics. RESULTS: We investigate permutation based methods for estimating p-values. One of methods that uses pooling from a selected subset of the data are shown to have the correct type I error rate and to provide accurate estimates of the false discovery rate (FDR). We provide guidelines to select an appropriate subset. We also demonstrate that information borrowing statistics have substantially increased power compared to the t-test in small experiments.  相似文献   

10.
We develop an approach for microarray differential expression analysis, i.e. identifying genes whose expression levels differ between two or more groups. Current approaches to inference rely either on full parametric assumptions or on permutation-based techniques for sampling under the null distribution. In some situations, however, a full parametric model cannot be justified, or the sample size per group is too small for permutation methods to be valid. We propose a semi-parametric framework based on partial mixture estimation which only requires a parametric assumption for the null (equally expressed) distribution and can handle small sample sizes where permutation methods break down. We develop two novel improvements of Scott's minimum integrated square error criterion for partial mixture estimation [Scott, 2004a,b]. As a side benefit, we obtain interpretable and closed-form estimates for the proportion of EE genes. Pseudo-Bayesian and frequentist procedures for controlling the false discovery rate are given. Results from simulations and real datasets indicate that our approach can provide substantial advantages for small sample sizes over the SAM method of Tusher et al. [2001], the empirical Bayes procedure of Efron and Tibshirani [2002], the mixture of normals of Pan et al. [2003] and a t-test with p-value adjustment [Dudoit et al., 2003] to control the FDR [Benjamini and Hochberg, 1995].  相似文献   

11.

Background  

Before conducting a microarray experiment, one important issue that needs to be determined is the number of arrays required in order to have adequate power to identify differentially expressed genes. This paper discusses some crucial issues in the problem formulation, parameter specifications, and approaches that are commonly proposed for sample size estimation in microarray experiments. Common methods for sample size estimation are formulated as the minimum sample size necessary to achieve a specified sensitivity (proportion of detected truly differentially expressed genes) on average at a specified false discovery rate (FDR) level and specified expected proportion (π 1) of the true differentially expression genes in the array. Unfortunately, the probability of detecting the specified sensitivity in such a formulation can be low. We formulate the sample size problem as the number of arrays needed to achieve a specified sensitivity with 95% probability at the specified significance level. A permutation method using a small pilot dataset to estimate sample size is proposed. This method accounts for correlation and effect size heterogeneity among genes.  相似文献   

12.
Cook AJ  Li Y 《Biometrics》2008,64(4):1289-1292
Summary. This short note evaluates the assumptions required for a permutation test to approximate the null distribution of the spatial scan statistic for censored outcomes proposed in Cook et al. (2007). In particular, we study the exchangeability conditions required for such a test under survival models. A simulation study is further performed to assess the impact on the type I error when the global exchangeability assumption is violated and to determine whether the permutation test still well approximates the null distribution.  相似文献   

13.
MOTIVATION: An important application of microarray experiments is to identify differentially expressed genes. Because microarray data are often not distributed according to a normal distribution nonparametric methods were suggested for their statistical analysis. Here, the Baumgartner-Weiss-Schindler test, a novel and powerful test based on ranks, is investigated and compared with the parametric t-test as well as with two other nonparametric tests (Wilcoxon rank sum test, Fisher-Pitman permutation test) recently recommended for the analysis of gene expression data. RESULTS: Simulation studies show that an exact permutation test based on the Baumgartner-Weiss-Schindler statistic B is preferable to the other three tests. It is less conservative than the Wilcoxon test and more powerful, in particular in case of asymmetric or heavily tailed distributions. When the underlying distribution is symmetric the differences in power between the tests are relatively small. Thus, the Baumgartner-Weiss-Schindler is recommended for the usual situation that the underlying distribution is a priori unknown. AVAILABILITY: SAS code available on request from the authors.  相似文献   

14.
Tan YD  Fornage M  Fu YX 《Genomics》2006,88(6):846-854
Microarray technology provides a powerful tool for the expression profile of thousands of genes simultaneously, which makes it possible to explore the molecular and metabolic etiology of the development of a complex disease under study. However, classical statistical methods and technologies fail to be applicable to microarray data. Therefore, it is necessary and motivating to develop powerful methods for large-scale statistical analyses. In this paper, we described a novel method, called Ranking Analysis of Microarray Data (RAM). RAM, which is a large-scale two-sample t-test method, is based on comparisons between a set of ranked T statistics and a set of ranked Z values (a set of ranked estimated null scores) yielded by a "randomly splitting" approach instead of a "permutation" approach and a two-simulation strategy for estimating the proportion of genes identified by chance, i.e., the false discovery rate (FDR). The results obtained from the simulated and observed microarray data show that RAM is more efficient in identification of genes differentially expressed and estimation of FDR under undesirable conditions such as a large fudge factor, small sample size, or mixture distribution of noises than Significance Analysis of Microarrays.  相似文献   

15.
SUMMARY: Differential gene expression detection using microarrays has received lots of research interests recently. Many methods have been proposed, including variants of F-statistics, non-parametric approaches and empirical Bayesian methods etc. The SAM statistics has been shown to have good performance in empirical studies. SAM is more like an ad hoc shrinkage method. The idea is that for small sample microarray data, it is often useful to pool information across genes to improve efficiency. Under Bayesian framework Smyth formally derived the test statistics with shrinkage using the hierarchical models. In this paper we cast differential gene expression detection in the familiar framework of linear regression model. Commonly used test statistics correspond to using least squares to estimate the regression parameters. Based on the vast literature of research on linear models, we can naturally consider other alternatives. Here we explore the penalized linear regression. We propose the penalized t-/F-statistics for two-class microarray data based on [Formula: see text] penalty. We will show that the penalized test statistics intuitively makes sense and through applications we illustrate its good performance. AVAILABILITY: Supplementary information including program codes, more detailed analysis results and R functions for the proposed methods can be found at http://www.biostat.umn.edu/~baolin/research CONTACT: baolin@biostat.umn.edu SUPPLEMENTARY INFORMATION: http://www.biostat.umn.edu/~baolin/research.  相似文献   

16.
Multidimensional local false discovery rate for microarray studies   总被引:1,自引:0,他引:1  
MOTIVATION: The false discovery rate (fdr) is a key tool for statistical assessment of differential expression (DE) in microarray studies. Overall control of the fdr alone, however, is not sufficient to address the problem of genes with small variance, which generally suffer from a disproportionally high rate of false positives. It is desirable to have an fdr-controlling procedure that automatically accounts for gene variability. METHODS: We generalize the local fdr as a function of multiple statistics, combining a common test statistic for assessing DE with its standard error information. We use a non-parametric mixture model for DE and non-DE genes to describe the observed multi-dimensional statistics, and estimate the distribution for non-DE genes via the permutation method. We demonstrate this fdr2d approach for simulated and real microarray data. RESULTS: The fdr2d allows objective assessment of DE as a function of gene variability. We also show that the fdr2d performs better than commonly used modified test statistics. AVAILABILITY: An R-package OCplus containing functions for computing fdr2d() and other operating characteristics of microarray data is available at http://www.meb.ki.se/~yudpaw.  相似文献   

17.

Background  

Thousands of genes in a genomewide data set are tested against some null hypothesis, for detecting differentially expressed genes in microarray experiments. The expected proportion of false positive genes in a set of genes, called the False Discovery Rate (FDR), has been proposed to measure the statistical significance of this set. Various procedures exist for controlling the FDR. However the threshold (generally 5%) is arbitrary and a specific measure associated with each gene would be worthwhile.  相似文献   

18.
MOTIVATION: Multiclass response (MCR) experiments are those in which there are more than two classes to be compared. In these experiments, though the null hypothesis is simple, there are typically many patterns of gene expression changes across the different classes that led to complex alternatives. In this paper, we propose a new strategy for selecting genes in MCR that is based on a flexible mixture model for the marginal distribution of a modified F-statistic. Using this model, false positive and negative discovery rates can be estimated and combined to produce a rule for selecting a subset of genes. Moreover, the method proposed allows calculation of these rates for any predefined subset of genes. RESULTS: We illustrate the performance our approach using simulated datasets and a real breast cancer microarray dataset. In this latter study, we investigate predefined subset of genes and point out interesting differences between three distinct biological pathways. AVAILABILITY: http://www.bgx.org.uk/software.html  相似文献   

19.

Background

Microarray technology provides an efficient means for globally exploring physiological processes governed by the coordinated expression of multiple genes. However, identification of genes differentially expressed in microarray experiments is challenging because of their potentially high type I error rate. Methods for large-scale statistical analyses have been developed but most of them are applicable to two-sample or two-condition data.

Results

We developed a large-scale multiple-group F-test based method, named ranking analysis of F-statistics (RAF), which is an extension of ranking analysis of microarray data (RAM) for two-sample t-test. In this method, we proposed a novel random splitting approach to generate the null distribution instead of using permutation, which may not be appropriate for microarray data. We also implemented a two-simulation strategy to estimate the false discovery rate. Simulation results suggested that it has higher efficiency in finding differentially expressed genes among multiple classes at a lower false discovery rate than some commonly used methods. By applying our method to the experimental data, we found 107 genes having significantly differential expressions among 4 treatments at <0.7% FDR, of which 31 belong to the expressed sequence tags (ESTs), 76 are unique genes who have known functions in the brain or central nervous system and belong to six major functional groups.

Conclusion

Our method is suitable to identify differentially expressed genes among multiple groups, in particular, when sample size is small.  相似文献   

20.
Wang Y  Sun G  Ji Z  Xing C  Liang Y 《PloS one》2012,7(1):e29860
In previous work, we proposed a method for detecting differential gene expression based on change-point of expression profile. This non-parametric change-point method gave promising result in both simulation study and public dataset experiment. However, the performance is still limited by the less sensitiveness to the right bound and the statistical significance of the statistics has not been fully explored. To overcome the insensitiveness to the right bound we modified the original method by adding a weight function to the D(n) statistic. Simulation study showed that the weighted change-point statistics method is significantly better than the original NPCPS in terms of ROC, false positive rate, as well as change-point estimate. The mean absolute error of the estimated change-point by weighted change-point method was 0.03, reduced by more than 50% comparing with the original 0.06, and the mean FPR was reduced by more than 55%. Experiment on microarray Dataset I resulted in 3974 differentially expressed genes out of total 5293 genes; experiment on microarray Dataset II resulted in 9983 differentially expressed genes among total 12576 genes. In summary, the method proposed here is an effective modification to the previous method especially when only a small subset of cancer samples has DGE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号